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Abstract
As process technology scales, the number of transistors that
can fit in a unit area has increased exponentially. Proces-
sor throughput, memory storage, and memory throughput
have all been increasing at an exponential pace. As such,
DRAM has become an ever-tightening bottleneck for appli-
cations with irregular memory access patterns. Computer
architects in industry sometimes use ad hoc analytical mod-
eling techniques in lieu of cycle-accurate performance sim-
ulation to identify critical design points. Moreover, ana-
lytical models can provide clear mathematical relationships
for how system performance is affected by individual mi-
croarchitectural parameters, something that may be difficult
to obtain with a detailed performance simulator. Modern
DRAM controllers rely on Out-of-Order scheduling policies
to increase row access locality and decrease the overheads of
timing constraint delays. This paper proposes a hybrid ana-
lytical DRAM performance model that uses memory address
traces to predict the DRAM efficiency of a DRAM system
when using such a memory scheduling policy. To stress our
model, we use a massively multithreaded architecture based
upon contemporary GPUs to generate our memory address
trace. We test our techniques on a set of real CUDA ap-
plications and find our hybrid analytical model predicts the
DRAM efficiency to within 15.2% absolute error when arith-
metically averaged across all applications.

1. INTRODUCTION
As the gap between memory speed and microprocessor speed
increases, efficient dynamic random access memory (DRAM)
system design is becoming increasingly important as it be-
comes an increasingly limiting bottleneck. This is especially
true in General Purpose Applications for Graphics Process
Units (GPGPU) where applications do not necessarily make
use of caches (which are both limited in size and capabilities
1 relative to the processing throughput of GPUs).

Modern memory systems can no longer be treated as hav-
ing a fixed long latency. Figure 1 shows the measured la-
tency for different applications when run on our performance
simulator, GPGPU-Sim [3], averaged across all memory re-
quests. As shown, average memory latency can vary greatly
across different applications, depending on their memory ac-

1
As of NVIDIA’s CUDA Programming Framework version 2, all

caches are read-only [17].
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Figure 1: Average memory latency measured in perfor-

mance simulation

cess behavior. In the massively multithreaded GPU Com-
pute architecture that we simulate, threads are scheduled to
Single-Instruction Multiple-Data pipelines in groups of 32
called warps, each thread of which is capable of generating
a memory request to any location in GPU main memory.
(This can be done as long as the limit on the number of in-
flight memory requests per GPU shader core has not been
reached. In CPUs, this is determined by the number of Miss
Status Holding Registers (MSHR) [11].) In this microarchi-
tecture, a warp cannot proceed as long as any single thread
in it is still blocked by a memory access, making DRAM an
even bigger bottleneck. As such, DRAM must be properly
modeled to provide useful insight for microprocessor and
memory designers alike.

Few analytical models for DRAM have been proposed be-
fore [2, 23], with Ahn et al.’s being the most recent [2]. Their
first-order analytical DRAM model predicts the achievable
bandwidth given a uniform memory access pattern with a
constant fixed row access locality. (Row access locality is
defined as the number of requests serviced in a DRAM row
before the row is closed and a new row is open. More details
on modern DRAM systems are given in Section 2.) While
this model does not try to handle any non-regular memory
access behavior (behavior exhibited in our applications), it
does show good accuracy for the microbenchmarks it consid-
ers, indicating that analytical modeling of DRAM in more
demanding scenarios is promising.

In this paper, we introduce a hybrid analytical DRAM per-
formance model that predicts DRAM efficiency, which is
closely related to DRAM utilization. DRAM utilization is
the percentage of time that a DRAM chip is transferring
data across its data pins over a given period of time. DRAM
efficiency is the percentage of time that a DRAM chip is
transferring data across its data pins over a period of time
in which the DRAM is not idle. In other words, only time



when DRAM has work to do is considered when calculating
DRAM efficiency. In essence, both these metrics give a no-
tion of how much useful work is being done by DRAM. Our
analytical model is “hybrid” [22] in the sense that it uses
equations derived analytically in conjunction with a highly
simplified simulation of DRAM request scheduling.

In order to keep up with high memory demands, modern
DRAM chips are banked to increase efficiency by allowing
requests to a ready bank to be serviced while other banks
are unavailable. To use these banks more effectively, mod-
ern memory controllers re-order the requests waiting in the
memory controller queue [19]. Modeling the effects of the
memory controller is thus crucial to accurately predicting
DRAM efficiency.

This paper makes the following contributions:

• It presents a novel DRAM hybrid analytical model to
model the overlapping of DRAM timing constraint de-
lays of one bank by servicing requests to other banks,
given an aggressive First-Ready First-Come First-Serve [19]
(FR-FCFS) memory scheduler that re-orders memory
requests to increase row access locality.

• It presents a method to use this hybrid analytical model
to predict DRAM efficiency over the runtime of an ap-
plication by profiling a memory request address trace.
By doing so, it achieves an arithmetic mean of the ab-
solute error across all benchmarks of 15.2%2.

• It presents data for a set of applications simulated on a
massively multithreaded architecture using GPGPU-
Sim [3]. To the best of our knowledge, this is the
first work that attempts to use an analytical DRAM
model to predict the DRAM efficiency for a set of real
applications.

The rest of this paper is organized as follows. Section 2 re-
views the mechanics of the GDDR3 memory [21] that we
are modeling. Section 3 introduces our first-order hybrid
analytical DRAM model, capable of predicting DRAM effi-
ciency for an arbitrary memory access pattern, and describes
the two different heuristics of the algorithm we use in our
results. Section 4 describes the experimental methodology
and Section 5 presents and analyzes our results. Section 6
reviews related work and Section 7 concludes the paper.

2. BACKGROUND
Before explaining the details of our techniques introduced in
Section 3, it is necessary to be familiar with the background
of modern DRAM and the mechanics of the memory that we
are modeling, GDDR3 [21], including the different timing
constraints and various other terminology. A summary is
provided in Table 2.

GDDR3-SDRAM is a modern graphics-specific DRAM ar-
chitecture that improves upon older DRAM technology used

2
In this paper, we use arithmetic mean of the absolute value of error

to validate the accuracy of our analytical model, which was argued
by Chen et al. [6] to be the correct measure since it always reports
the largest error numbers and is thus conservative in not understating
said errors.
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Figure 2: Memory system organization

in graphics processors, like DDR-SDRAM [16], by increasing
clock speeds and lowering power requirements. Like DDR-
SDRAM, it uses a double data rate (DDR) interface, mean-
ing that it transfers data across its pins on both the positive
and negative edge of the bus clock. More specific to the par-
ticular GDDR3 technology that we study, a 4n-prefetch ar-
chitecture is used, meaning that a single read or write access
consists of 4 bits transferred across each data pin over 2 cy-
cles, or 4 half-cycles. (This is more commonly known as the
burst length, BL.) For a 32-bit wide interface, this trans-
lates to a 16 byte transfer per access for a single GDDR3
chip.

Similar to other modern DRAM technology, GDDR3-SDRAM
is composed of a number of memory banks. Each bank is
composed of a 2D array that is addressed with a row ad-
dress and a column address, both of which share the same
address pins to reduce the pin count. In a typical mem-
ory access, a row address is first provided to a bank using
an activate command that activates all of the memory cells
in, or “opens”, the row, connecting them using long wires
to the sense amplifiers, which are subsequently connected to
the data pins. A key property of the sense amplifiers is that,
once they detect the values of the memory cells in a row, they
hold on to the values so that subsequent accesses to the row
do not force the sense amplifiers to re-read the row. This
property allows intelligent memory controllers to schedule
requests out of order to take advantage of this “row access
locality” (as defined in Section 1) to improve efficiency. The
organization of such a memory system is shown in Figure 2.

The process of “opening the row,” which must be done be-
fore a column can be requested, takes a significant amount
of time called the row address to column address delay, or
tRCD [21]. After this delay, the column address can then be
provided to the bank. The process of reading the column
address and choosing the data in the specific column to be
output across the data pins is not instantaneous, instead
taking an amount of time called the column access strobe
latency, or CL, from when the column address is provided to
when the first bits of data appear on the data pins. However,
since all of the memory cells in the opened row are connected
to sense amplifiers, multiple column addresses can be pro-
vided back-to-back, limited only by the column to column



delay, tCCD, and the operations will be pipelined. Once the
initial CL cost has been paid, a bank can provide a continu-
ous stream of data as long as all accesses are to the opened
row.

If we want to access data in one row and another row is
opened in the same bank, we must close the opened row
by disconnecting it from the long wires connecting it to the
sense amplifiers. Before these long wires, which represent
a significant capacitance, can be connected to the new row,
they must first be precharged in order for the sense ampli-
fiers to work properly. This process is defined as the row
precharge delay, or tRP [7]. To summarize, in order to ser-
vice a request to a new row when a different row has al-
ready been opened, we must first close the row (by issuing
a precharge command) and open the new row (by issuing
an activate). This process takes an amount of time tRP +
tRCD.

Furthermore, in a single bank, there is a minimum time
required between issuing an activate command and then
issuing a precharge (in other words, between opening and
closing the row). This minimum time is defined as the row
access strobe latency, tRAS , and is greater than tRCD. This
is because tRAS also encapsulates the process of restoring
the data from the sense amplifiers to the corresponding row
cells, or “refreshing.” (Unlike static RAM, which retains the
values in its memory cells as long as it is provided power, dy-
namic RAM must be periodically refreshed since the bit val-
ues are stored in capacitors which leak charge over time [7].)
Opening a new row too quickly may not allow adequate time
to perform the refresh [23]. Accordingly, the minimum time
required between issuing two successive activate commands
in a single bank is tRAS + tRP , which is defined as tRC .

In addition to these timing constraints, there is also a tRRD,
the minimum time needed between successive activate com-
mands to different banks, and tWTR and tRTW , the mini-
mum time needed between a write and a read command or a
read and a write command, respectively, since the data bus
is bi-directional and requires time to switch modes.

In the specific GDDR3 technology that we study, each row
must be refreshed every 32ms, taking 8192 DRAM cycles
each time. With an 800MHz DRAM clock and 4096 rows per
bank, this amounts to each bank having to perform refresh
4.2% of the time on average, assuming DRAM is idle and
all rows contain data [21]. As mentioned previously, the
process of accessing a row also refreshes the data in the row,
meaning only rows of unaccessed data needs to be actively
refreshed, possibly reducing the refreshing overhead from
4.2%. Due to this relatively small overhead, we model the
effects of refresh on performance in neither our performance
simulator nor our analytical model.

3. MODELING GDDR3 MEMORY
In this section, we describe our analytical model of GDDR3
memory. First, we present a more formal definition of DRAM
efficiency in Section 3.1. Then, we present our baseline ana-
lytical model for predicting DRAM efficiency in Section 3.2.
Finally, we show how to implement our model using a slid-
ing window profiling technique on a memory request address
trace in Section 3.3.

3.1 DRAM Efficiency
We first define DRAM utilization as the percentage of time
that a DRAM chip is transferring data across its bus over an
arbitrary length of time, T . We also define DRAM efficiency
as the percentage of time that the DRAM chip is transfer-
ring data across its bus over only the period of time when the
DRAM is active (Tactive). We say that a DRAM chip is ac-
tive when it is either actively transferring data across its bus
or when there are memory requests waiting in the memory
controller queue for this DRAM and it is waiting to service
the requests but cannot due to any of the timing constraints
mentioned in Section 2. If the DRAM is always active, the
DRAM utilization and DRAM efficiency metric will evalu-
ate to the same value for the same period of time (e.g. T
= Tactive). While 100% DRAM efficiency and utilization
is theoretically achievable, less-than-maximum throughput
can occur for a variety of different reasons: there may be
poor row access locality among the requests waiting in the
memory controller queue, resulting in DRAM having to pay
the overhead cost of constantly closing and reopening dif-
ferent rows too frequently, and therefore the few requests
per open row are not enough to hide the aforementioned
overheads; the memory controller may also be causing the
DRAM to frequently alternate between servicing reads and
writes, thus having to pay the overhead cost of tWTR and
tRTW each time; and, specific only to DRAM utilization,
the memory controller queue may simply be empty, forcing
the DRAM to sit idle.

3.2 Hybrid Analytical Model
As described in the previous section, both our DRAM uti-
lization and DRAM efficiency metrics are essentially frac-
tions. We use these definitions as the basis of our analytical
model, replacing the numerators and denominators with an
expression of variables that can be derived by analyzing a
collected memory request address trace.

We develop our analytical model by first considering re-
quests to a single bank j for a time period T, which starts
from when a request to bank j must open a new row and
ends when the last request to the new row in bank j present
in the memory controller queue at the start of the period
has been serviced. We use i to denote the requests to any
bank of B banks, not just those to bank j.

Effj =
MIN

[
MAX(tRC , tRP + tRCD + tj),

∑B−1
i=0 ti

]

MAX(tRC , tRP + tRCD + tj)
(1)

where

ti = number of requests to bank i ∗ Tsrvc req (2)

and

Tsrvc req =
request size

DRAMs per MC ∗ busW ∗ data rate
(3)

To aid our description, we provide the example shown in
Figure 3 which will be referred to as we elaborate our model.

The principle underlying Equation 1 is that a bank must
first wait at least tRC before switching to a new row. This
overhead can be hidden if there are requests to other banks
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Figure 3: Timing diagram example

that are to opened rows. In Figure 3, this is the case. In
this example, j is 0 and the requests to banks 1, 2, and 3
help hide the precharge and activate delays.

When DRAM efficiency is less than 100%, the numerator
in Equation 1 is the sum of all ti, where ti is defined as
the product of two terms: the number of requests that can
be serviced by bank i over the set period of time defined
in the denominator multiplied by the time it takes to ser-
vice each request (Tsrvc req). Note that the sum of all ti

also includes tj . We assume that all memory requests are
for the same amount of data. The formula for calculating
how much a single request to bank i contributes to ti is
shown in Equation 3. Here, request size is the size of the
memory request in bytes, DRAMs per MC is the number
of DRAM chips controlled by each memory controller (e.g.,
having two DRAM chips connected in parallel doubles the
effective bandwidth per memory controller, meaning each
single chip only needs to transfer half the data per request),
busW is the bus width in bytes, and data rate is the number
of transfers per cycle, 2 for GDDR3’s double data rate inter-
face [21]. Moreover, the minimum granularity of a memory
access, ReqGranularity which determines how many read
or write commands need to be issued per request, is defined
in Equation 4.

ReqGranularity = DRAMs per MC ∗ busW ∗BL (4)

Equation 4 depends on a new parameter unused in the pre-
vious equations called the burst length, or BL. Our example
corresponds to the baseline configuration described in Sec-
tion 4, where each request is comprised of 2 read commands
to a DRAM chip (2 read commands * 2 DRAM chips per
memory controller * 4B bus width * burst length 4 = 64B
request size in our baseline configuration).

Basing our model on our defined metrics, we set the de-
nominator of Equation 1 as the period of time starting from
when a particular bank of a DRAM chip begins servicing a
request to a new row (by first precharging, assuming a dif-
ferent row is opened, and then issuing activate to open the
new row) and ending at when the bank issues a precharge to
begin servicing a new request to a different row. To simplify
our definition of T in this case, our model assumes that a
precharge command is not issued until its completion can be
immediately followed by an activate to the same bank. Un-
der this assumption, the delay between successive precharge
commands is then constrained by the same delay as the delay

between successive activate commands, tRC . This is shown
as T in Figure 3. The denominator is controlled by two dif-
ferent sets of factors, depending on how many requests need
to be serviced in this new row. This is because switching to
a new row is primarily constrained by the three timing pa-
rameters described in Section 2, tRC (row cycle time), tRP

(row precharge delay), and tRCD (row address to column ad-
dress delay). In the GDDR3 specification that we use, tRC

is greater than the sum of tRP and tRCD, so the denomi-
nator must always be greater than or equal to tRC . This is
expressed in our model using the MAX() function. In our
example, since there is only one request (2 read commands)
to bank 0, the denominator is dominated by tRC so T equals
to tRC .

Given our microarchitectural parameters outlined in Table 1
and Table 2, our read and write requests take four “DRAM
clock” cycles to complete, where each request is comprised of
two commands. To obtain number of requests to bank i,
we count the number of requests waiting in the memory
controller queue that are to the row currently open for cor-
responding bank i. This is equivalent to doing so when the
memory controller first chooses the request to the new row
of bank j (in other words, right before it needs to precharge
and activate). Requests to unopened rows are not counted
because they must wait at least tRC before they can begin
to be serviced, by which time they can no longer be used
to hide the timing constraint overhead for bank j. Since
requests to the new row in bank j itself can not be used to
hide the latency of precharging and activating the new row,
it appears in both the denominator and in the numerator
as one of the terms of

∑
i ti (when i = j). In our example,

there are 2 read commands to bank 0 and 10 read commands
issued to banks 1 through 3 so here tj=2*2=4 and

∑
i ti =

2*(2+10) = 24. Therefore, for the time period T, Eff0 =
24/34 = 70.6%.

As previously described, ti is used to determine how much
of the row switching overhead can be hidden by row-hit
requests to other banks. With good DRAM row access
locality, there may be more such requests than necessary,
causing

∑
i ti to be greater than the denominator in Equa-

tion 1. Using the MIN() function to find the minimum
between

∑
i ti and the expression identical to the denom-

inator is simply done to impose a ceiling on our predicted
result at unity, which we argue is accurate since

∑
i ti >

MAX(tRC , tRP +tRCD +tj) means that there are more than
enough requests to completely hide the timing constraint de-
lays imposed by opening the new row in bank j.

As stated before, this equation assumes T = Tactive. In
other words, it does not take into account the amount of time
when the DRAM is inactive; therefore, it is more suitable for
predicting DRAM efficiency rather than DRAM utilization.
We expect that provided memory request address traces will
not necessarily provide this sort of timing information, in
which case we are limited to only being able to predict the
DRAM efficiency. In order to find the DRAM efficiency
over the entire runtime length of a program, we sum the
numerators obtained using Equation 1 of the time periods
that make up the runtime length of the program and divide
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Figure 4: Sliding window profiling technique example

the sum by the sum of the corresponding numerators.

Effj =

∑N
n=1 MIN

[
MAX(tRC , tRP + tRCD + tj,n),

∑B−1
i=0 ti,n

]

∑N
n=1 MAX(tRC , tRP + tRCD + tj,n)

(5)
Equation 5 shows the DRAM efficiency calculation of a pro-
gram whose entire runtime length is comprised of N periods,
where the DRAM efficiency of each period can be calculated
using Equation 1. How we determine which time periods to
use is explained next in Section 3.3, where we detail how we
use Equation 1 with a memory address trace to determine
the DRAM efficiency.

3.3 Processing Address Traces
We assume that the memory request address trace is cap-
tured at the point where the interconnection network from
the processor feeds the requests into the memory controller
queue, allowing the order in which the requests are inserted
into the memory controller to be preserved. We assume that
the trace is otherwise devoid of any sort of timing informa-
tion, such as the time when requests enter the queue.

Consider a simple case of a memory controller with a queue
size of 4 and a DRAM with only two banks, Bank 0 and
Bank 1, where each bank has only two rows (Row A and
Row B for Bank 0 and Row X and Row Y for Bank 1 ).
Now assume the memory address trace shown in Figure 4(a),
where the top request (Bank 0 Row A) is the oldest.

To process the trace, we use the algorithm in Figure 5 to
determine the ti values needed for Equation 1. Figure 5
shows two different heuristics which we quantify the accu-

Start: Reset window_size to 0
while (window_size < memory controller queue size) { 
//while memory controller queue is not full

Read in newest request, req, to sliding window
if (req.row == opened_row[req.bank]) {
//check if request is to opened row, if so, service it 
//(first-ready first-come first-serve policy)

remove req from window and from trace
treq.bank += Tsrvc_req//update t

} else {
//request is to different row, so store in queue and 
//check if later requests can be serviced first

window_size++ //add this req into window
}

}
Calculate_efficiency(ti) //uses ti to calculate efficiency 
Reset(ti)
if (mode == no_activate_overlap){

//find oldest request, oldest_req
opened_row[oldest_req.bank] = oldest_req.row

}
if (mode == full_activate_overlap){

//find oldest request of all banks, oldest_req[]
for (all i in banks) {

opened_row[oldest_req[i].bank] = 
oldest_req[i].row;

}
}
Go back to Start

Figure 5: Sliding window profiling algorithm for pro-

cessing memory request address traces

racy for in Section 5. The first heuristic, which we call pro-
filing + no activate overlap, is guarded by the “if(mode ==
no activate overlap)” statement and the second heuristic,
which we call profiling + full activate overlap, is guarded by
the “if(mode == full activate overlap)” statement. While
this algorithm applies only to First-Ready First-Come First-
Serve (FR-FCFS), it can be modified to handle other mem-
ory scheduling algorithms. In Section 5.3, we modify our
algorithm to predict the DRAM efficiency of another out-
of-order scheduling algorithm, “Most-Pending” [19]. Our
approach is based on a sliding window profiling implemen-
tation where the window is the size of the memory controller
queue.

We start with the assumption that initially Row A of Bank
0 and Row X of Bank 1 are open (Figure 4(a)). Following
our algorithm, the first request that we encounter is to Bank
0 Row A, which is an opened row, so we can remove that re-
quest from the sliding window and increment t0 by Tsrvc req

(in Section 3.2). The next request that we read in is to the
same bank but this time to Row B. We leave this request in
the sliding window, e.g. our memory controller queue, in the
hopes that, by looking ahead to newer requests, we can find
ones that are to the opened row. Moving on, it can be seen
that the next request is again to Bank 0 Row A, allowing us
to service it right away.

In this manner, we process all the requests up to Request 8,
removing (servicing) requests that are to the opened rows
(shown as shaded entries in Figure 4(b)), at which point our
window size is 4, meaning the memory controller queue is
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now full. The ti values can now be used to calculate the
efficiency for this period using Equation 1. The ti values
are then reset to signify the start of a new prediction period
and repeat our algorithm from the start. For profiling +
no activate overlap, we then open the row of only the next
oldest request, which is to Bank 0 Row B (Figure 4(c)).
The DRAM efficiency over the entire length of the trace can
also be computed using the method described at the end of
Section 3.2.

While profiling + no activate overlap focuses on the predic-
tion of efficiency by accounting for the requests in the mem-
ory controller queue that can help reduce the overhead of
timing constraint delays, it does not account for the timing
constraints of separate banks that can also be overlapped.
More specifically, the process of precharging and activating
rows in different banks of the same chip is only constrained
by tRRD. With a tRC value of 34 and a tRRD of 8 as per our
DRAM parameters 2, we can completely overlap the activa-
tion of rows in all 4 banks (34/8 = 4.25 activate commands
issuable per row cycle). Performance-wise, this means that
even for a memory access pattern with minimal row access
locality, the access pattern that finely interleaves requests to
all 4 banks can achieve 4 times the bandwidth of an access
pattern that has requests to only a single bank. As such, it is
crucial to also take into account the overlapping of precharge
and activates for applications with poor row access locality.
Otherwise, the analytical model will significantly underes-
timate the DRAM efficiency. We model this using our sec-
ond heuristic, profiling + full activate overlap, which instead
opens the rows of the oldest requests to all banks, assum-
ing that the delays associated with switching rows can be
overlapped in all banks. This is shown in Figure 4(d) as
Bank 1 also switching from Row X to Row Y in accordance
with the code guarded by “mode = full activate overlap” in
Figure 5. Leaving the opened row for Bank 1 as Row X
essentially forces the switching overhead of this bank to be
paid separately from Bank 0’s switching overhead from Row
A to Row B (profiling + no activate overlap), potentially
causing underestimation of DRAM efficiency. Conversely,
switching the rows of all banks at the same time completely
overlaps the switching overheads of all banks (profiling +
full activate overlap), potentially causing overestimation of
DRAM efficiency.

In the next section, we will describe our experimental method-
ology. In Section 5, we will show the accuracy of the two
heuristics described in this section in comparison to the
DRAM efficiency measured in performance simulation.

Table 1: Microarchitectural parameters (Bolded
Values Show Baseline Configuration)

Shader Cores 32
Threads per Shader Core 1024
Interconnection Network Full Crossbar

Maximum Supported In-flight 64
Requests per Shader Core

Memory Request Size (Bytes) 64
DRAM Chips 8,16,32

DRAM Controllers 8
DRAM Chips per Controller 1,2,4

DRAM Controller 8,16,32,64
Queue Size

DRAM Controller First-Ready First-Come
Scheduling Policy First-Serve (FR-FCFS),

Most Pending [19]

Table 2: DRAM parameters

Name Description Value
Number of Banks 4

Bus Width (in Bytes) 4
BL Burst Length (in Bytes) 16

tCCD Delay between successive 2
reads or successive writes

tRRD Minimum time between successive 8
ACT commands to different banks

tRAS Minimum time between opening (ACT) 21
and closing (PRE) a row

tRCD Minimum time between issuing ACT 12
and issuing a Read or Write

tRC Minimum time between successive 34
ACTs to different rows in same bank

tW T R Write to Read command delay 5
tRP Minimum time between closing 13

a row and opening a new row
CL Column Address Strobe Latency 9

4. METHODOLOGY
To evaluate our hybrid analytical model, we modified GPGPU-
Sim [3], a massively multi-threaded cycle-accurate perfor-
mance simulator, to collect the memory request address
streams that are fed to the memory controllers for use in
our analytical model. Table 1 shows the microarchitectural
parameters used in our study. The advantage of studying a
massively multi-threaded architecture that GPGPU-Sim is
capable of simulating is that it allows us to stress the DRAM
memory system due to the sheer number of memory requests
to DRAM that can be in-flight simultaneously at any given
time. In our configuration, we allow for 64 in-flight requests
per shader core. This amounts to a maximum of 2048 simul-
taneous in-flight memory requests to DRAM. In comparison,
Prescott has only eight MSHRs [4] and Williamette has only

Table 3: Benchmarks
Benchmark Label Suite
Black-Scholes option pricing BS CUDA SDK
Fast Walsh Transform FWT CUDA SDK
gpuDG DG 3rd Party
3D Laplace Solver LPS 3rd Party
LIBOR Monte Carlo LIB 3rd Party
Matrix Multiply MMC 3rd Party
MUMmerGPU MUM 3rd Party
Neural Network Digit Recognition NN 3rd Party
Ray Tracing RAY 3rd Party
Reduction RED CUDA SDK
Scalar Product SP CUDA SDK
Scan Large Array SLA CUDA SDK
Matrix Transpose TRA CUDA SDK
Weather Prediction WP 3rd Party
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Figure 7: Comparison of measured DRAM efficiency to

predicted DRAM efficiency averaged across all DRAM

chips for each benchmark
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Figure 8: Arithmetic mean of absolute error of pre-

dicted DRAM efficiency averaged across all DRAM chips

for each benchmark (AM = arithmetic mean across all

benchmarks)

four MSHRs [8]. With an eight memory controller config-
uration, we use our model on 8 separate memory request
address streams per application. We test our model on the
14 different applications shown in Table 3, all of which have
various levels of measured DRAM efficiency and utilization.
We use six applications from NVIDIA’s CUDA software de-
velopment kit (SDK) [15] and seven applications from the
set used by Bakhoda et. al in [3]. The last application, Ma-
trix Multiply, is from Ryoo et al [20]. Our only criterium
for selecting applications from the two suites is that they
must show greater than 10% DRAM utilization averaged
across all DRAM chips for our given baseline microarchitec-
ture configuration.

To illustrate the diversity of our application set, Figure 6
shows the DRAM efficiency and utilization measured by
GPGPU-Sim in performance simulation averaged across all
DRAM chips for each application. We simulate each ap-
plication to completion in order to collect the full memory
request address trace.

5. RESULTS
In Section 5.1, we will first show our results for the two
heuristics that we described in Section 3.3. We show that
our model obtain a correlation of 68.8% with an arithmetic
mean absolute error of 15.2%. In Section 5.2, we provide an
in-depth analysis on the cause of our errors. In Section 5.3,
we perform a sensitivity analysis of our analytical DRAM
model across different microarchitecture configurations.

5.1 DRAM Efficiency Prediction Accuracy
Figure 7 compares the actual measured DRAM efficiency to
the modeled DRAM efficiency when using the profiling tech-
nique described in Section 3.3. For clarity, we show only the
arithmetic average of the efficiency across all DRAM con-
trollers of each application. The arithmetic average of these
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0 0.2 0.4 0.6 0.8 1Measured EfficiencyPrediction

(a) Profiling + no activate
overlap

00.20.40.60.81
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overlap

Figure 9: Comparison of actual DRAM efficiency to

modeled DRAM efficiency (1 data point per memory

controller per benchmark)

absolute errors is 15.2% for profiling + no activate overlap
and 27.2% for profiling + full activate overlap. The corre-
sponding correlation is 68.8% and 41.6% respectively. We
described in Section 3.3 that, without accounting for overlap
of row activates, we expect our predictions to underestimate
the measured efficiency (profiling + no activate overlap).
(We explain why the results of some applications do not
match these expectations in Section 5.2.) In order to help
us determine this, we propose a new metric, polarity, which
is defined as the arithmetic average of the non-absolute er-
rors divided by the arithmetic average of the absolute errors.
The value of polarity can range between -1 and 1, where -
1 means that the test value (predicted efficiency) is always
less than the reference value (measured efficiency), 1 means
that the test value is always greater than the reference value,
and 0 means that on average, the error is not skewed posi-
tively or negatively in anyway. We calculated the arithmetic
mean of the non-absolute errors for profiling + no activate
overlap to be -8.8%, meaning a polarity of -0.579. This
implies a moderate tendency to underestimate the DRAM
efficiency, confirming our expectations. On the other hand,
the polarity of average arithmetic error of profiling + full
activate overlap is 0.985, meaning it almost always overesti-
mates the DRAM efficiency. We expect this to occur since
the frequency of issuing activates is constrained by tRRD.
Moreover, a row activate to a bank cannot be issued as long
as there are still requests to the current row of that bank,
further constraining the frequency of issuing activates. Our
profiling + full activate overlap heuristic captures neither
of these, essentially meaning that assuming full overlap of
the row activates will always be optimistic in predicting the
DRAM efficiency. Figure 9(a) shows the scatter plot of pre-
dicted DRAM efficiency using our best profiling method,
Profiling + no activate overlap, to the measured efficiency
and Figure 9(b) shows the scatter plot of our other heuris-
tic, Profiling + full activate overlap. Each dot represents
the measured DRAM efficiency versus predicted for a single
DRAM controller. Several facts become immediately appar-
ent. First of all, the data points in Figure 9(a) are closer
to the X=Y line, further illustrating Profiling + no activate
overlap’s improved accuracy over Profiling + full activate
overlap. Most of the data points for Profiling + no activate
overlap tend to be under the X=Y line, meaning that this
modeling heuristic tends to underestimate the DRAM effi-
ciency, while Profiling + full activate overlap behaves the
opposite.
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5.2 Modeling Error Analysis
Applications where one technique generates significantly poor
predictions tend to be predicted much more accurately by
the other technique (BS, FWT, DG, LPS, MMC, MUM, NN,
RED, SLA, TRA). It is encouraging to see this because it im-
plies that a heuristic that predicts which to use may reduce
the mean absolute error. We postulate that for applications
with poor row access locality, the overlapping of row acti-
vates has more significant impact. Consequently profiling +
full activate overlap should perform much better than profil-
ing + no activate overlap, which serializes the precharge and
activate delays and potentially underestimates the DRAM
efficiency. Conversely, we postulate that applications with
good row access locality will not benefit as much from row
activate overlapping, which will make profiling + full acti-
vate overlap overestimate the efficiency.

To verify this, we obtain the average row access locality by
dividing the total number of read and write requests by the
number of activates per memory controller and arithmeti-
cally averaging these values across all memory controllers
for each application. Figure 10 shows this average row ac-
cess locality. MUM, TRA, and WP exhibit the lowest row
access locality and, corresponding with our hypothesis, they
are all predicted more accurately by profiling + full activate
overlap than profiling + no activate overlap. A quick cal-
culation showed that the error of a “smart” heuristic that
chooses profiling + full activate overlap when the average
row access locality is less than 2.0 and profiling + no ac-
tivate overlap otherwise would result in an error reduction
of 24.8% compared to profiling + no activate overlap, from
15.2% to 11.4%. (The value 2.0 was chosen to minimize the
error and small variations can increase this error.)

Of the 5 applications where profiling + full activate over-
lap is more accurate (LIB, MUM, RAY, TRA, WP), 3 of
them rank in the bottom 3 in terms of row access local-
ity (MUM, TRA, WP). The other 2, LIB and RAY, both
have average row access locality, less than the arithmetic
mean but more than the harmonic mean. While BS, MMC,
NN and SP have row access locality approximately equal to
LIB and RAY, profiling + full activate overlap predicts less
accurately than profiling + no activate overlap for these ap-
plications by severely overestimating the DRAM efficiency.
A closer look at SP shows that it is dominated by reads
(99.8% reads and 0.2% writes) and the DRAM is actually
stalled during 48% of its total runtime on average due to
congestion in the interconnect that sends data from DRAM
to the processors. This congestion backs up to the memory
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Figure 11: Arithmetic mean absolute error versus

DRAM controller queue size averaged across all DRAM

controllers and across all benchmarks

controller itself, which cannot issue requests since there is no
output buffer space. Therefore, while the DRAM is actually
capable of utilizing the bus better and being more efficient,
it is unable to due to this interconnect congestion.

For BS and MMC, we noticed that the utilization is quite
low, at only 29% and 21% respectively. We measured the
average occupancy of the memory controller queue for these
applications, considering only the time when there is at least
one request waiting in the memory controller queue. Over
the course of their entire runtimes, BS and MMC show an
average occupancy of only 10% and 19% respectively. (Fur-
thermore, MMC also shows congestion at the interconnect
from DRAM to the processors 28% of the time.) This essen-
tially means that our profiling technique is too aggressive in
that the sliding window (whose length is equal to the mod-
eled memory controller queue size) that it uses is too large
relative to the average memory controller queue occupancy
in simulation. As such, the profiling technique is finding row
access locality that does not exist in simulations since the
majority of the requests have not arrived to the memory con-
troller yet. (Note that the profiling technique used does not
take timing information into account so it assumes that the
memory controller (sliding window) can always look ahead
in the memory request address trace by an amount equal to
the memory controller queue size.)

NN is a unique case in that it has four compute kernels
that each exhibit different memory access patterns (A com-
pute kernel is defined as a portion of the application capa-
ble of having a unique number and organization of parallel
threads [17].) The first two compute kernels exhibit high row
access locality but, like SP, they suffer from congestion at
the interconnect from DRAM to the processor cores, stalling
77% of the time at the interconnect. The row access local-
ity for the third kernel is much lower, as is the occupancy
at 37% (compared to 72% for the first two kernels), so it
exhibits the same problem as BS and MMC. Both problems
cause profiling + full activate overlap to overestimate the
DRAM efficiency, explaining the large error for this applica-
tion. (The last compute kernel is significantly shorter than
the first three so it contributes little to the average measured
and predicted efficiency.)

5.3 Sensitivity Analysis
In this section, we present the accuracy of our results while
sweeping across different key parameters: the DRAM con-
troller queue size, the number of parallel DRAM chips per
DRAM controller, and the DRAM controller scheduling pol-
icy.
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We first present Figure 11, which shows the arithmetic mean
absolute error of our two profiling heuristics, profiling + full
activate overlap and profiling + no activate overlap, across
four different DRAM controller queue sizes of 8, 16, 32 and
64. For clarity, we only present the values averaged across
all DRAM controllers and all benchmarks. The naming con-
vention of the different bars is “Q#H*”, where Q# is the
DRAM controller queue size and H* is the heuristic. HN is
profiling + no activate overlap and HO is profiling + full ac-
tivate overlap. In general, the error tends to increase as the
queue size increases. We attribute this to the fact that, since
the queue occupancy is not always 100% for some bench-
marks for our baseline DRAM controller queue size of 32
anyways (as explained in Section 5.2), the occupancy will
be even lower when the queue size is increased to 64. This
means that the size of the profiling window that we use
is too large compared to what is occurring in simulation.
Moreover, the efficiency of all DRAM controllers decreases
as the queue size is reduced, meaning the absolute value of
the difference will decrease as well.

Figure 12 shows the modeling error as the number of DRAM
chips connected in parallel (to increase bandwidth) to the
DRAM controller is varied. The naming convention of the
labels for this barchart is “#H*”, where the leading # speci-
fies the number of DRAM chips per controller and H* again
specifies the two profiling heuristics. Increasing the num-
ber of DRAM chips per controller is an effective way of
increasing the total off-chip bandwidth to the chip with-
out incurring much additional circuit logic on the chip (al-
though it will increase the chip package size due to an in-
creased number of pins needed for data transfer). Since
our memory request data sizes are fixed at 64B and each
of our DRAM chips is capable of transferring 16 bytes of
data per command, the limit in this amount of parallelism
is no more than 4 DRAM chips per controller. Furthermore,
as this parallelism is increased, the memory access pattern
becomes much more important in determining the DRAM
efficiency. This is because more DRAM chips per controller
means less read and write commands per request, thus re-
ducing Tsrvc req. The number of requests per row (e.g., the
row access locality) thus needs to be higher to maintain the
DRAM efficiency as shown in Equation 1. Moreover, re-
ducing Tsrvc req can reduce the value of the denominator of
Equation 1, MAX(tRC , tRP + tRCD + tj). This means that
there is less time to overlap the row activate commands of
different banks, implying that profiling + no activate over-
lap should be more accurate than profiling + full activate
overlap. As we see in Figure 12, this is indeed the case.

Finally, we also try implementing our hybrid analytical model
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for another memory scheduling policy, “Most Pending” [19].
After all requests to a row have been serviced, our default
memory scheduling policy, First-Ready First-Come First-
Serve (FR-FCFS) [19], will then open the row of the oldest
request. “Most Pending,” conversely, will open the row that
has the most number of requests pending to it in the queue
(e.g., essentially a greedy bandwidth maximization scheme).
The algorithm to implement this in our analytical model is
virtually the same as the one shown in Figure 5 except, in-
stead of finding the oldest request whenever we switch rows,
we now find the oldest request corresponding to the row
that has the most number of requests. Figure 13 shows the
arithmetic mean absolute error for our baseline configura-
tion. We see that for this scheduling policy, the error is
comparable to that of FR-FCFS.

In conclusion, we see that our model is quite robust and the
error stays comparable when varying across key microarchi-
tectural parameters and even for a different memory schedul-
ing policy. With smarter heuristics, such as the simple one
described in Section 5.2, this error can be reduced even fur-
ther.

6. RELATED WORK
Ahn et al. [2] explore the design space of DRAM systems.
They study the effects on throughput of various memory
controller policies, memory controller queue sizes, and DRAM
timing parameters such as the Write to Read delay and
the Burst Length. More relevant to our work, they also
present an analytical model for expected throughput assum-
ing a “random indexed” access pattern and a fixed “record
length”. This essentially means that they assume a constant
fixed number of requests accessed per row and a continuous
stream of requests whereas our model handles any memory
access pattern. Furthermore, they only show the results of
their analytical model for two micro-benchmarks while we
test a suite of applications with various memory access pat-
terns. We leave a quantitative comparison between their
model and ours to future work.

In his PhD thesis, Wang [23] presents an equation for calcu-
lating DRAM efficiency by accounting for the idle cycles in
which the bus is not used. His model assumes that the
request stream from the memory controller to DRAM is
known while we also account for optimizations to the request
stream made by the memory controller to help hide timing
constraint delays. He also considers only single-threaded
workloads, for which he observes high degrees of access lo-
cality. Our massively multi-threaded workloads have a wide
range of access localities.



There exist many analytical models proposed for a variety of
microprocessors [14, 18, 12, 13, 10, 6, 5, 9], from out-of-order
execution superscalar to in-order execution fine-grained mul-
tithreaded processors to even GPU architectures. Agarwal
et al. [1] also present an analytical cache model estimating
cache miss rate when given cache parameters such as cache
size, block size, associativity, etc., and their model also re-
quires an address trace of the program being analyzed. Of
these microprocessor analytical models, only Karkhanis and
Smith [10], Chen and Aamodt [6, 5], and Hong and Kim [9]
model long, albeit fixed, memory latency.

7. CONCLUSIONS
In this paper we have proposed a novel hybrid analytical
DRAM model which takes into account the effects of Out-
of-Order memory scheduling and hiding of DRAM timing
delays. We showed that this model can be used with a slid-
ing window profiling technique to predict the DRAM effi-
ciency over the entire runtime of an application, given we
have its full memory request address trace. We chose a mas-
sively multi-threaded architecture connected to a set of high-
bandwidth GDDR3-SDRAM graphics memory as our simu-
lation framework and evaluated the accuracy of our model
on a set of real CUDA applications with diverse dynamic
memory access patterns. Using our sliding window profil-
ing approach with two different heuristics, we were able to
predict the DRAM efficiency of a set of real applications to
within an arithmetic mean of 15.2% absolute error using our
best performing heuristic. We also showed that applications
that are predicted poorly by one heuristic tend to be pre-
dicted much better with the other, implying the possibility
for improvement by combining the two heuristics or develop
more intelligent ones, which we leave to future work.
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