
ReSprop: Reuse Sparsified Backpropagation

Negar Goli, Tor M. Aamodt
University of British Columbia

Vancouver, Canada
{negargoli93,aamodt}@ece.ubc.ca

Abstract

The success of Convolutional Neural Networks (CNNs)
in various applications is accompanied by a significant in-
crease in computation and training time. In this work,
we focus on accelerating training by observing that about
90% of gradients are reusable during training. Leverag-
ing this observation, we propose a new algorithm, Reuse-
Sparse-Backprop (ReSprop), as a method to sparsify gradi-
ent vectors during CNN training. ReSprop maintains state-
of-the-art accuracy on CIFAR-10, CIFAR-100, and Ima-
geNet datasets with less than 1.1% accuracy loss while en-
abling a reduction in back-propagation computations by
a factor of 10× resulting in a 2.7× overall speedup in
training. As the computation reduction introduced by Re-
Sprop is accomplished by introducing fine-grained spar-
sity that reduces computation efficiency on GPUs, we intro-
duce a generic sparse convolution neural network acceler-
ator (GSCN), which is designed to accelerate sparse back-
propagation convolutions. When combined with ReSprop,
GSCN achieves 8.0× and 7.2× speedup in the backward
pass on ResNet34 and VGG16 versus a GTX 1080 Ti GPU.

1. Introduction
Convolutional neural networks (CNNs) have been

tremendously successful in many modern machine learning
applications [8, 15, 29, 53, 56, 57]. Prior work has adopted
two main strategies to accelerate CNN training: (1) reduc-
ing the number of iterations per compute node required
to converge using techniques such as batch normalization
[23], parallelize training with data or model parallelism
[10, 31], and importance sampling [27, 28]; (2) reducing
the amount of computation per iteration using techniques
such as stochastic depth to remove layers during training
[22], randomized hashing to reduce the number of multi-
plications [54], quantization [6, 58, 62] and sparse train-
ing [13, 35, 55, 59]. We explore the second strategy and
propose Reuse Sparse Backprop (ReSprop), a novel way to

0

1

2

3

4

R
eS

P
ro

p
 o

ve
rh

ea
d

 in
 f

o
rw

ar
d

 p
as

s
 (

%
)

2
8

.4
9

%

3
0

.7
6

%

2
8

.0
7

%

3
0

.3
6

%

3
3

.3
9

%

3
3

.3
8

%

7
1

.5
1

%

6
9

.2
4

%

7
1

.9
3

%

6
9

.6
4

%

6
6

.6
1

%

6
6

.6
2

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ResNet18 ResNet34 ResNet50 WRN-50-2 VGG16 VGG19

FP
 o

p
er

at
io

n
s

in
 t

ra
in

in
g

(%
) Forward Backward

Figure 1. Percentage of floating point operations during backward
and forward pass in training different architectures.

sparsify convolution computations during training1.
Sparse convolutions decrease computational cost by re-

ducing the number of multiplication and addition opera-
tions. Recent related work [20, 37, 38, 40, 42] studies differ-
ent approaches to sparsifying inference, and many studies
[1, 2, 9, 16, 46] have designed accelerators to exploit spar-
sity in inference; however, there is limited work on sparse
training [13, 35, 44, 55, 59]. Our measurements shown in
Figure 1 indicate that back-propagation consumes around
70% of the time during training. MeProp [55, 59] and DSG
[35] accelerate back-propagation convolutions using differ-
ent sparsification methods. However, we observe that me-
Prop fails to converge while training deeper networks or
when using large datasets (Sections 3 and 5) and DSG loses
more accuracy and achieves less training speedup compared
to ReSprop. ReSprop reduces the computation overhead
of back-propagation by reusing gradients to sparsify back-
propagation convolutions. ReSprop overcomes these limita-
tions and can be accelerated by hardware similar to recently
proposed inference accelerators [1, 2, 9, 16, 46].

Our observations (in Section 3.2) demonstrate that up-
dating a small portion of the gradient components each iter-
ation and replacing the rest with the previous iteration’s gra-
dient component values is sufficient for maintaining state-
of-the-art accuracy. The ReSprop algorithm (Section 4) ex-
ploits gradient reusability and sparsifies the gradients in the

1Source code available at https://github.com/negargoli/ReSprop

1

https://github.com/negargoli/ReSprop

back-propagation convolutions up to 90% with less than
1.1% loss of accuracy on the ImageNet dataset. ReSprop
has less than 2% computation overhead and less than 16%
memory footprint overhead while training the ImageNet
dataset with batch sizes larger than 128. For 90% spar-
sity, we calculate ReSprop theoretical speedups between
9.3× and 9.8× for backward pass calculations and, as
a consequence of Amdahl’s Law [4], between 2.5× and
2.9× for the overall training process on different archi-
tectures. Moreover, we estimate the speedup that might
be achieved on a custom hardware accelerator. Specifi-
cally, we propose a novel Generic Sparse Convolutional
Neural network (GSCN) accelerator hardware architecture
(Section 5.4). GSCN is designed to accelerate sparse back-
propagation convolutions and based on SCNN [46], an ac-
celerator proposed by NVIDIA for sparse convolutions.
Our results (Section 5.4) show ReSprop on GSCN achieves
8.0× speedups versus a GPU on the backward pass of
ResNet34.

2. Related Work
Dense to sparse networks by weight pruning: Creat-

ing sparse networks by eliminating the weights has an ex-
tensive history. LeCun et al. [33]; Karnin [26]; Hassibi and
Stork [18] present the early work of network pruning us-
ing second-order derivatives as the pruning criterion. Han
et al. [17] propose parameter magnitude as the pruning cri-
terion and introduced the pipeline of training, pruning, and
fine-tuning. There are also pruning methods with different
pruning criteria [37, 38, 42] and approaches to removing
channels and filters [20, 34, 36, 40, 43, 60]. These often in-
volve a re-training phase, which, contrary to our motivation,
increases training time.

Sparse training: More recent studies try to find the
sparse network during training through a prune, redis-
tribute, and regrowth cycle. Bellec et al. [7]; Mocanu et
al. [41]; Mostafa and Wang et al. [44] propose different re-
growth methods for sparsifying the networks through train-
ing. Dettmers et al. [13] present faster training by sparse
momentum, which uses the exponentially smoothed gradi-
ents as the criterion for pruning and regrowth weights. A
different approach to accelerate training is sparsifying acti-
vations. Liu et al. [35] introduce a dynamic sparse graph
(DSG) structure, which activates only a small amount of
neurons at each iteration via a dimension-reduction and ac-
celerates forward and backward passes. Methods that main-
tain sparse gradients throughout training are most closely
related to our work. Sun et al. [55] and Wei et al. [59] intro-
duce meProp, an algorithm which targets computation re-
duction in training by sparsifying gradients. They demon-
strate meProp convergence while training a network with
two convolutional layers on the MNIST dataset at 95% gra-
dient sparsity. However, they do not analyze larger datasets

and deeper networks.
Reuse gradients: Principle stochastic variance reduc-

tion (SVR) techniques including SVRG [24], SAGA [11],
and their variants reuse the gradients for updating the
weights on smooth strongly-convex optimization problems.
Recent works explore the extension of SVR approaches to
general non-convex problems [3, 50]. However, the faster
theoretical convergence rate of the SVR methods is not
a guarantee of better empirical performance in deep neu-
ral networks [12]. ReSprop reuses gradients in a different
way than SVR. ReSprop reuses gradients between succes-
sive mini-batches to sparsify back-propagation calculations.
The goal of ReSprop is reducing computation, not variance.
We show that our method reaches state-of-the-art accuracy
with minimal loss while having 10× computation reduction
in back-propagation for different network architectures with
varying widths and depths.

3. Gradient reuse
In this section, we discuss the motivation behind Re-

Sprop. We compare reusing gradients against sparsifying
gradients (meProp).

3.1. Notation and Preliminaries

Convolution is the predominant operation in CNNs. The
output of the lth layer in the CNNs’ forward-propagation is
obtained by:

yl+1 = wl ⊗ al (1)

Where al and wl denote activations and weights at layer
l, respectively, and ⊗ is the convolution operation. In back-
propagation the lth layer receives the output gradient of the
l + 1th layer. The output gradient is the gradient of the loss
(L) with respect to the layer’s output (∂L

∂yl+1
). The output

gradient is used to compute the gradient of input activa-
tion (∂L

∂al
) and the gradient of weights (∂L

∂wl
). The back-

propagation convolutions for calculating gradient of inputs
and weights at the lth layer can be defined as [32]:

∂L

∂al
=

∂L

∂yl+1
⊗ wt

l (2)
∂L

∂wl
=

∂L

∂yl+1
⊗ atl (3)

Mini-batch training applies the above equations and up-
dates the model parameters at each iteration (mini-batch).
In this study, mini-batch training allows us to leverage the
correlation among output gradient components of consec-
utive iterations and facilitates reusing the output gradient
components. We use “gradients” to refer to individual com-
ponents of the gradient vector throughout the paper.

3.2. Approach and Key Insights

Our approach to accelerate training is to modify back-
propagation calculations. The output gradient vector and in

turn the vectors dependant on it (Eq. 2 and 3) are updated
in the backward pass. In essence, ReSprop precalculates
a portion of the output gradient vector, and this, in turn,
enables precomputing a portion of the backpropagated val-
ues. We conjectured that there are a large number of similar
features between training samples, and this motivated us to
explore reusing the output gradients among mini-batches.
We focus on the feasibility of reusing a subset of the output
gradients between consecutive iterations and measure the
inter-iteration similarity of output gradients. We propose
a reuse strategy to leverage precalculated output gradients
from the previous iteration while performing computation
only for significantly changed output gradients in the cur-
rent iteration (mini-batch). We define our reuse strategy as
follows: If a component of an output gradient compared to
its previous iteration changes more than an adaptive thresh-
old then we use the current (ith) iteration value; otherwise,
we reuse the value of the previous iteration. We introduce a
vector we call the hybrid output gradient (HG). We define
HG such that it contains x% of the previous iteration’s gra-
dients and (100 − x)% of the current iteration’s gradients.
Here, x% is called the reuse percentage. The HG for layer l
at iteration i is defined as:

(HGl)i = (
∂L

∂yl+1
)i−1+Thl[(

∂L

∂yl+1
)i−(

∂L

∂yl+1
)i−1] (4)

We use the notation (al)i to denote the value of vector a at
layer l and iteration i. Each layer has its own adaptively ad-
justed threshold (Tl), which satisfies the reuse percentage.
The function Thl(V), where Th stands for “Threshold”, at
layer l applied to output gradient vector V is defined as:

∀vi ∈ V : ui =

{
vi |vi| > Tl

0 |vi| ≤ Tl

(5)

where ui represents the elements of output vector Thl(V)
and Tl is a per layer adaptive threshold. In Section 4, we ex-
plain how to use (HGl)i to sparsify back propagation using
ReSprop. Here, we empirically show that HGl is a good
approximation to the original output gradient (∂L

∂yl+1
), and

that it is feasible to train the network with the HG vector.
To study the correlation between HG and the original out-
put gradient, we investigate the angle preservation using co-
sine similarity. According to hyperdimensional computing
theory [25], two independent isotropic vectors picked ran-
domly from a high dimensional space d, are approximately
orthogonal. If there is no correlation between the HG vec-
tor and the original output gradient, they would make an
angle of approximately 90◦. On the other hand, Anderson
et al. [5] show that binarizing a random vector in high di-
mensional space d (d→∞), preserves the vector direction
with minimal changes, and a random vector and its bina-
rized version form an angle of around 37◦. According to

Anderson et al.’s observations, in a high dimensional space
37◦ is a relatively small angle between two vectors, so that
both vectors have similar directions.

0

20

40

60

80

100

30% 50% 60% 70% 80% 90% 100%

A
n

gl
e

Sparsity percentage (meProp) / Reuse percentage (HG)

θ=<HG,Original grad> θ=<meProp,Original grad>

θ=90° θ=37°

1

Figure 2. HG and meProp angles for different reuse percentages
and sparsities, respectively. The angle is calculated by finding the
average angle of all layers while training ResNet-18 on CIFAR-10
for 100 iterations (batch size=128).

Reuse HG Val Acc Sparsity meProp Val Acc
50% 84.21± 0.09 50% 84.14± 0.08
60% 84.11± 0.06 60% 64.29± 0.07
70% 83.87± 0.10 70% 50.65± 0.13
80% 78.40± 0.14 80% 41.67± 0.25
90% 73.14± 0.17 90% 23.67± 0.23

Table 1. Validation accuracy of meProp and reuse strategy (HG)
with different sparsities and reuse percentages, repectively. Train-
ing ResNet-18 on CIFAR-10 for 30 epochs (batch size = 128, lr =
0.1 and optimizer = SGD).

Figure 2 demonstrates the angle between the original
output gradient vector and both the HG vector (dark green
bar) and meProp gradient (light blue bar). As shown at 1 ,
the angle between output gradient vectors of consecutive
iterations is close to 90◦. This indicates that successive out-
put gradients are approximately orthogonal. However, we
observe that reusing a subset of output gradient in consec-
utive iterations, via HG reuse strategy, reduces the angle
between the original output gradients and the HG vector to
less than 37◦. We compare this strategy with meProp [55]
by studying the angle preservation property and the valida-
tion accuracy of these algorithms. The meProp algorithm
sets output gradients not ranked in the Top-K by magnitude
to zero and calculates Eq. 3 and 2 with the sparse output
gradient. Figure 2 shows the angle between the original
output gradient and meProp. Since cosine similarity is un-
defined for a zero vector, the angle for 100% sparse meProp
is not presented. We can see HG preserves the original out-
put gradient direction far better than meProp’s sparse output
gradient. Table 1 further verifies the network convergence
while reusing gradients. This table shows the validation
accuracy of reusing output gradients with small magnitude
change (HG Val Acc) compared to setting small magnitude

(al)i

Layer
parameters

Pre-ReSprop

Forward convolution
(Yl+1)i

Save parameters for backward pass

T
h

re
sh

o
ld() 𝜕L

 𝜕wl i
 𝜕L
 𝜕wl i
() 𝜕L
 𝜕wl i

() 𝜕L
 𝜕al

i
 𝜕L
 𝜕al

i() 𝜕L
 𝜕al

i

(P
re

 ∇
w

l)
i

(P
re

 ∇
a l

) i

(sparse ∇wl)i

(sparse ∇al)i

Rand() 𝜕L
𝜕yl+1

i-1
 𝜕L
𝜕yl+1

i-1Rand() 𝜕L
𝜕yl+1

i-1

(wl)i

(al)i (wl)i

-
+

+

B
ac

k-
R

eS
p

ro
p

(s

pa
rs

e
co

n
v)

Forward pass

Backward pass

f

∇
f

(al+1)i

La
ye

r
L-

1

La
ye

r
L+

1

Layer L

() 𝜕L

𝜕al+1
i

 𝜕L

𝜕al+1
i() 𝜕L

𝜕al+1
i() 𝜕L 𝜕L

𝜕yl+1
i

𝜕yl+1
i

 𝜕L

𝜕yl+1
i

Rand() 𝜕L
𝜕yl+1

i-1
 𝜕L
𝜕yl+1

i-1
Rand() 𝜕L

𝜕yl+1
i-1

Figure 3. Training with ReSprop for layer l at iteration i.

gradients to zero (meProp Val Acc). MeProp has consider-
ably less validation accuracy versus HG after 30 epochs of
training. The gap between HG and meProp validation ac-
curacy is more pronounced at higher sparsity percentages.
Further, Table 2 shows the accuracy of ReSprop (using HG)
improves further after 200 epochs of training CIFAR-10.

4. ReSprop: Reuse-Sparse-Backprop
This section describes ReSprop, an efficient back-

propagation algorithm, which we developed to exploit
the reusability of gradients. We reformulate the back-
propagation convolutions based on the HG vector, which
leads to sparse convolutions and a training speedup. The
HG vector in Eq. 4 at iteration i can be split into two sep-
arated parts: One, ReHG (“Reused HG”) the output gra-
dient of the previous iteration (∂L

∂yl+1
)i−1 and is computed

and stored before the current iteration; two, SpHG (“Sparse
HG”) the result of Th[(∂L

∂yl+1
)i − (∂L

∂yl+1
)i−1]. SpHG is

sparse due to the threshold function. Using these definitions
Eq. 4 can be rewritten as follows:

(HGl)i = (ReHGl)i + (SpHGl)i (6)

By replacing the output gradient in Eq. 3 and 2 with the HG
vector defined in Eq. 6 the back-propagation convolutions
can be rewritten as:

(
∂L

∂wl
)i = ((ReHGl)i ⊗ (atl)i)︸ ︷︷ ︸

1 Pre∇wl

+((SpHGl)i ⊗ (atl)i)︸ ︷︷ ︸
2 Sparse∇wl

(7)

(
∂L

∂al
)i = ((ReHGl)i ⊗ (wt

l)i)︸ ︷︷ ︸
1 Pre∇al

+((SpHGl)i ⊗ (wt
l)i)︸ ︷︷ ︸

2 Sparse∇al

(8)

Algorithm 1 ReSprop forward pass for lth convolutional
layer at iteration i.

1: for l = 1 to Layers do
2: Receive: random sample (∂L

∂yl+1
)i−1

3: (yl+1)i = (wl)i ⊗ (al)i
4: (pre∇wl)i = (random (∂L

∂yl+1
)i−1)⊗Avg(atl)i

5: (pre∇al)i = (wt
l)i ⊗ (random(∂L

∂yl+1
)i−1)

6: end for

Algorithm 2 ReSprop backward pass for lth convolutional
layer at iteration i.

1: for l = Layers to 1 do
2: Receive:(∂L

∂yl
)i, random sample (∂L

∂yl+1
)i−1

3: Calculate (SpHGl)i
4: Receive: (pre∇wl)i from forward pass

5: (∂L
∂wl

)i = (pre∇wl)i + (SpHGi,l ⊗ (atl)i)

6: Receive: (pre∇al)i from forward pass

7: (∂L
∂al

)i = (pre∇al)i + ((wt
l)i ⊗ (SpHGl)i)

8: Update (wl)i with (∂L
∂wl

)i

9: Send (∂L
∂al

)i to previous layer
10: end for

Using ReHG + SpHG in the back-propagation convo-
lutions as shown in Eq. 7 and 8 allows us to break calcula-
tions into two parts labeled 1 and 2 . Part 1 represents
the precomputed portion and can be calculated in paral-
lel with forward-propagation, before the current iteration’s
backward-propagation starts and part 2 is where computa-
tion is saved using sparse convolution due to the sparsity of
SpHG. We name the above algorithm ReSprop. We call the
process for calculating part 1 pre-ReSprop (Alg. 1) and
the process for calculating part 2 back-ReSprop (Alg. 2).
Varying reuse percentage leads to different levels of spar-
sity in back-ReSprop. Thus, we name the sparsity generated
by our algorithm reuse-sparsity (RS). As shown in Alg. 2
(lines 5 and 7), in ReSprop the back-propagation convolu-
tions are sparse, and RS percentage is the main factor that
defines the amount of computation reduction. In Section 5,
we analyze the accuracy of ReSprop and show that at 90%
RS, it loses negligible (less than 1.1%) accuracy for differ-
ent datasets and has higher accuracy compared to DSG and
meProp sparse training algorithms.

4.1. Stochastic Output Gradient

Storing the output gradients for an entire mini-batch at
each iteration as implied by Eq. 4 to 8 creates a substantial
memory overheads. We define full mode Resprop as a vari-
ant of ReSprop in which we store the output gradient for
all samples in a minibatch. A simple approach for reduc-

ing the memory overheads and decreasing the computation
in pre-ReSprop is to use the average output gradients of the
previous mini-batch. We call this variant average mode Re-
Sprop. In average mode, we add the extra step of computing
average of gradients over the mini-batch. To avoid the extra
step of averaging, stochastic sampling of the previous itera-
tion’s output gradient can be used in the ReSprop algorithm.
We call this variant stochastic mode ReSprop. Our results
indicate that using stochastic sampling of the output gradi-
ent does not decrease the accuracy of ReSprop compared
to average or full mode. Table 2 shows the validation ac-
curacy results for training ResNet-18 with CIFAR-10 using
full, average, and stochastic mode variants of ReSprop after
200 epochs. Storing and using the output gradient vector of
a random sample at each iteration significantly reduces the
computation and memory cost of the ResProp. Below we
use ReSprop as a shorthand for stochastic mode ReSprop.

RS Full (HG) Avg Stochastic
50% 94.54± 0.04 94.71± 0.06 94.69± 0.04
60% 94.38± 0.08 94.58± 0.03 94.66± 0.07
70% 94.36± 0.03 94.52± 0.04 94.53± 0.09
80% 93.18± 0.16 93.28± 0.12 93.51± 0.12
90% 91.10± 0.11 91.82± 0.07 91.43± 0.11

Baseline: 94.42± 0.08

Table 2. Validation accuracy of full, average and stochastic Re-
Sprop for ResNet-18 on the CIFAR-10 dataset for 200 epochs
(batch size = 128, lr = 0.1, optimizer = SGD, avg of 3 runs).

Algorithms 1 and 2 show the forward and backward pass
calculations, respectively, for ReSprop. The convolutions
needed for computing pre∇a and pre∇w in the full mode
are shown respectively in Figure 4(a) and 4(c). We decrease
the memory and computation overheads needed for convo-
lutions in pre-ReSprop by a factor of mini-batch size when
we use stochastic or average mode. The convolutions for
stochastic mode is shown in Figure 4(b) and 4(d). For com-
puting pre∇a in Figure 4(b), one random output gradient
(K × H ×W) out of N samples is chosen and convolved
with weights, producing one sample pre∇a, which then is
replicated N times for all the N samples. Similarly, for
computing pre∇w in Figure 4(d), a random output gradient
(K × H × W) out of N samples is chosen and reshaped
into the desired shape (K × 1×H ×W). Since in stochas-
tic mode, we use the output gradient of a random sample,
the output gradient is the same for all the convolutions for
computing pre∇w. Thus, due to the distributive property
of convolutions, we can average the inputs and then con-
volve the average input with a random gradient sample (Fig-
ure 4(d)). Figure 3 demonstrates the computation flow of
ReSprop for the forward and backward pass. The Back-
ReSprop box in the figure represents backward convolutions
which are sparse (lines 5 and 7 in Alg. 2). The computa-

weight

C

N
 (

sa
m

p
le

s)

N
 (

sa
m

p
le

s)

=

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1 (Pre ∇al)i

(a) Compute pre∇a in full
mode

=

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1

weight

C

(Pre ∇al)i
Random

(b) Compute pre∇a in
stochastic mode

C =

N
 (

sa
m

p
le

s)

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1 (Pre ∇wl)iInput

K

(c) Compute pre∇w in full mode

kC =K

(
 𝜕L

 𝜕yl+1

 𝜕L
 𝜕yl+1

)i-1(
 𝜕L

 𝜕yl+1
)i-1

(Pre ∇wl)i
Average of

N Inputs

Random

Avg

Avg

(d) Compute pre∇w in stochas-
tic mode

Figure 4. Back-propagation convolutions in stochastic mode com-
pared to full mode for layer l at iteration i.

tion overhead of ReSprop for the forward pass computations
(pre-ReSprop) is shown in Figure 6; this overhead is less
than 2% for batch sizes larger than 128.

4.2. Warm Up

Narang et al. [45] and Zhu et al. [63] show that gradu-
ally increasing the sparsity percentage as training proceeds
results in less drop in the model’s final accuracy compared
to maintaining a constant rate of sparsity during training.
We apply the same approach and gradually increase the
reuse-sparsity. We call this approach warm up ReSprop
(W-ReSprop). In W-ResProp, we increase the sparsity per-
centage linearly in the first m (m � number of epochs)
epochs until we get to the targeted reuse-sparsity. W-
ReSprop helps the model adapt to gradient reuse, and it
noticeably increases the network accuracy at high reuse-
sparsities compared to base ReSprop. Results for W-
ReSprop are shown and compared to base ReSprop in Sec-
tion 5.

5. Evaluation
In this section, we present our experimental results of

the ReSprop and W-ReSprop algorithms adapted to differ-
ent datasets and architectures. Moreover, we quantify the
theoretical computation reduction of ReSprop and simulate
the speedup it achieves on a generic hardware accelerator
designed to support sparse back-propagation.

5.1. Experimental Setup

We implement the ReSprop and W-ReSprop algorithms
in PyTorch [47]. To evaluate our algorithms, we train three
different widely used state-of-the-art architectures; ResNet-
18, 34, 50 [19], Wide Residual Networks [61], and VGG-
16 [53] on three different datasets: CIFAR-10, CIFAR-100

CIFAR-100 CIFAR-10
RS Algorithm ResNet34 WRN-28-10 VGG-16 ResNet34 WRN-28-10 VGG-16

50% ReSprop 76.02± 0.15 81.45± 0.17 72.58± 0.23 95.85± 0.06 96.58± 0.09 93.35± 0.18
W-ReSprop 76.4± 0.11 81.78± 0.16 72.79± 0.21 95.91± 0.05 96.93± 0.11 93.28± 0.19

60% ReSprop 75.81± 0.15 80.44± 0.16 70.89± 0.22 95.25± 0.04 95.89± 0.11 93.18± 0.14
W-ReSprop 76.01± 0.12 81.34± 0.15 72.45± 0.22 95.41± 0.09 96.79± 0.07 93.26± 0.15

70% ReSprop 73.92± 0.18 78.34± 0.11 69.76± 0.19 95.01± 0.07 95.68± 0.08 92.63± 0.16
W-ReSprop 75.60± 0.13 81.09± 0.15 71.98± 0.23 95.23± 0.09 96.13± 0.15 92.91± 0.17

80% ReSprop 70.76± 0.15 76.87± 0.13 66.04± 0.29 94.17± 0.07 93.23± 0.08 91.90± 0.18
W-ReSprop 75.44± 0.17 80.87± 0.14 71.88± 0.23 94.96± 0.13 95.93± 0.12 92.64± 0.17

90% ReSprop 69.12± 0.13 75.06± 0.10 65.32± 0.21 91.61± 0.09 90.71± 0.15 90.01± 0.18
W-ReSprop 75.14± 0.16 80.38± 0.17 71.57± 0.24 94.36± 0.07 95.67± 0.11 92.43± 0.18

Baseline 75.61± 0.16 81.29± 0.17 72.50± 0.21 95.13± 0.09 96.30± 0.11 93.25± 0.15

Table 3. Validation accuracy of ReSprop and W-ReSprop at different reuse-sparsity constraints on the CIFAR-10 and CIFAR-100.

[30] and ImageNet ILSVRC2012 [51]. For training, we use
the SGD optimizer with momentum of 0.9, weight decay
of 0.0001, initial learning rate of 0.1 and 5 to 8 warm up
epochs for W-ReSprop. The baseline is trained with no
sparsity or reusing. CIFAR-10 and CIFAR-100 datasets are
trained for 200 epochs on a single GPU with a mini-batch
size of 128. The learning rate is annealed by a factor of
(1/10)th at the 80th and 120th epochs. We run each exper-
iment with three different seeds and use the average value
for all the results. The ImageNet dataset is trained for 90
epochs with a total mini-batch size of 256 samples on 4
GPUs (RTX 2080 Ti GPU). The learning rate is reduced by
(1/10)th at the 30th and 60th epoch. The choice of hyper-
parameters follows [19, 21]. For all evaluations in this sec-
tion, we use the above setup, except in Section 5.3, where
we study batch size impact and effect of the number of com-
pute nodes on accuracy.

5.2. Accuracy Analysis

In this section, we provide a comprehensive analysis of
the ReSprop and W-ReSprop algorithms and evaluate con-
vergence and robustness on a wide range of models.

Accuracy on CIFAR10 and CIFAR100: Table 3 shows
the accuracy of the ReSprop and W-ReSprop algorithms
at different reuse-sparsity percentages on CIFAR-10 and
CIFAR-100 datasets. We can see that ReSprop and W-
Resprop algorithms achieve better accuracy than the base-
line with reuse-sparsities of 50% and 60%, respectively.
CIFAR-10, with fewer classification classes, is more robust
to reuse gradients, and it suffers only a slight accuracy loss
at 70% reuse-sparsity using the ReSprop algorithm. While
the accuracy drop for reuse-sparsities higher than 70% is
considerable in the ReSprop algorithm, it can be avoided
by the addition of a warm up phase. For both CIFAR-
10 and CIFAR-100, on three different architectures, W-
ReSprop algorithm loses less than 0.95% validation accu-
racy at 90% and less than 0.7% at 80% reuse-sparsity. Ac-

curacy on ImageNet: Table 4 shows the accuracy obtained
by the ReSprop and W-ReSprop on ResNet34, VGG-16 and
Wide-Resnet-50-2. The results indicate that unlike CIFAR
datasets for which W-ReSprop and ReSprop algorithms out-
perform the baseline at reuse-sparsities lower than 70%,
for the ImageNet dataset at 50% resue-sparsity ReSprop
and W-ReSprop have less than 0.5% and 0.15% loss of ac-
curacy, respectively. We observe that for the CIFAR-100
dataset, the W-ReSprop algorithm has better accuracy at
high reuse-sparsities compared to the base ReSprop; the
same trend holds for the Imagenet dataset. W-ReSprop at
90% reuse-sparsity has less than 1.1% accuracy loss in all
three networks. For a fair comparison with W-ReSprop, we

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

V
al

id
at

io
n

 a
cc

u
ra

cy
 -

to
p

1
 (

%
)

Epoch

ReSprop - 50% RS meProp - 50% sparsity

ReSprop - 70% RS meProp - 70% sparsity

W-ReSprop - 70% RS W-meProp - 70% sparsity

Baseline

Figure 5. Top 1 validation accuracy of ReSprop, W-ReSprop, me-
Prop and W-meProp algorithms for training ResNet-18 on the Im-
ageNet dataset. The baseline is trained with no sparsity or reusing.

evaluate W-meProp, a variation of the meProp algorithm
employing a warm up phase. Figure 5 demonstrates the
validation curve of ReSprop, W-ReSprop, meProp and W-
meProp algorithms on the ImageNet dataset for the Resnet-
18 architecture. The validation curve indicates a significant

RS Algorithm ResNet34 WRN-50-2 VGG16

50% ReSprop 73.08 78.69 70.09
W-ReSprop 73.21 78.81 70.41

70% ReSprop 67.12 73.34 68.73
W-ReSprop 72.73 78.25 70.01

90% ReSprop 63.78 67.72 60.76
W-ReSprop 72.44 77.93 69.46

Baseline 73.34 78.88 70.50

Table 4. Top 1 validation accuracy of ReSprop and W-ReSprop
algorithms at different reuse-sparsity constraints on the ImageNet
dataset.

loss of accuracy for meProp and W-meProp. MeProp has
validation accuracy of 32.56% at 50% sparsity while the Re-
Sprop validation accuracy at 50% reuse-sparsity is 69.83%
which is 0.03% less than the baseline. The W-Resprop al-
gorithm at 50% reuse-sparsity gains 0.08% higher accuracy
than the baseline and loses negligible accuracy of 0.7% at
70% reuse-sparsity.

5.3. Sensitivity Study

Deep and wide networks: Previous studies have shown
that network depth and width affect network convergence
[39, 52, 48]. Here, we study the effect of depth and width
on the ReSprop algorithms. Table 5 shows the accuracy
of ResNet-18, 34 and 50 for W-Resprop algorithm on CI-
FAR100 at 90% reuse percentage. We observe from the
results that W-ReSprop converges to the state-of-the-art ac-
curacy with minimal loss of accuracy for deep networks.
At 90% reuse-sparsity W-ReSprop algorithm has an accu-
racy loss of 0.17% for ResNet-50. Similarly, the results for
WRN-28-10 shown in Table 3, shows slight accuracy loss
on training wide networks with the W-ReSprop algorithm.

ResNet18 ResNet34 ResNet50
W-ReSprop 90% 73.26 75.15 76.67

Baseline 74.84 75.61 76.84

Table 5. Validation accuracy of ResNet-18, 34 and 50 on the
CIFAR-100 dataset at 90% reuse-sparsity.

Impact of batch size: Here, we explore effects of batch
size on the accuracy of ReSprop. Table 6 demonstrates
that ReSprop converges with negligible accuracy loss for
different batch sizes. ReSprop and W-ReSprop algorithms
achieve higher accuracy for larger batch sizes. This behav-
ior may be a result of including more samples increasing the
likelihood similar features are present resulting in a higher
correlation with the next iteration’s gradients.

Distribute training across multiple compute nodes:
Data parallelism is a popular way to accelerate training
[31, 49]. To explore the impact of distributed training on ac-
curacy, and still ignoring speedup, we evaluate ReSprop on

Batchsize 32 64 128
ReSprop 70% 72.94 73.48 73.92

W-ReSprop 90% 74.98 75.09 75.14
Baseline 76.12 75.88 75.61

Table 6. Validation accuracy of ResNet-34 on the CIFAR-100
dataset with different batch sizes of 32, 64 and 128.

multiple GPUs to compute gradient updates and then aggre-
gating these locally computed updates. Below, we focus on
training with multiple GPUs on a single machine by split-
ting the input across the specified GPUs. The ReSprop al-
gorithm (Alg. 1 and 2) is applied during the training on each
GPU independently. Table 7 shows the accuracy results for
training ResNet-18 on ImageNet with a varied number of
GPUs on a single machine. Since the ReSprop algorithm is
applied to each GPU, the number of GPUs does not affect
the model’s accuracy trained with the ReSprop algorithm.

GPUs in total 2 4 8
Batchsize in total 128 256 512
W-ReSprop 90% 68.73 68.81 68.61

Baseline 69.21 69.45 69.47

Table 7. Top 1 validation accuracy of ResNet-18 on the ImageNet
dataset trained on 2, 4 and 8 nodes.

5.4. Speedup

In this section, we quantify the computation reduction,
overheads, and the speedup of the ReSprop algorithm.
Since we are using 5 to 8 epochs of whole training (90-200
epochs) for the warm up phase, the speedup for W-ReSprop
would be the same order as the ReSprop algorithm.

Adaptive thresholding: The threshold operation can be
implemented with O(n) complexity. For each layer, if the
reuse-sparsity of (SpHGl)i becomes less than the targeted
reuse-sparsity, we halve Tl (Eq (5)) to force more elements
to zero and use the updated value of Tl for the next iteration.
On the other hand, if the sparsity of (SpHGl)i is more than
the targeted reuse-sparsity, we increase Tl by doubling it.
To accelerate the process of moving toward the desired Tl,
we chose the initialization value of 10−7 for all the layers
in all the experiments, based on the output gradient’s distri-
bution on the ResNet-18, 34 and 50 on CIFAR datasets. We
experimentally find that for a given layer and a fixed reuse-
sparsity, the threshold is almost constant during training.
Thus, the threshold can be updated after a specific number
of iterations, which reduces the computation overhead. The
total computation overhead of adaptive thresholding, matrix
additions, and subtractions in the ReSprop algorithm is less
than 2.5% for both Imagenet and CIFAR datasets.

Pre-ReSprop overhead: As shown in Section 4, the
ReSprop algorithm consists of pre-ReSprop and back-

ReSprop. Pre-ReSprop can be calculated in parallel with
the original forward pass convolution. Figure 6 plots com-
putation overhead (measured in terms of floating-point op-
erations) added by ReSprop to the forward-pass at differ-
ent batch sizes. This overhead is less than 2% for batch
sizes larger than 128. We theoretically analyze the memory
footprint by calculating ReSprop parameters that need to be
stored and fetched. The results of the pre-ReSprop calcula-
tions and a random sample of the previous iteration’s out-
put gradient are stored and used in the back-ReSprop. We
compute ReSprop memory footprint overhead by consider-
ing the adaptive threshold, pre-ReSprop, and back-ReSprop
overheads. For the CIFAR and ImageNet datasets for batch
sizes larger than 128, ReSprop has less than 16% memory
footprint overhead compared to the total model parameters
and the input activations’ memory footprint for different ar-
chitectures (ResNet18, 34, 50 and VGG-16).

0

1

2

3

4

5

6

7

8

9

ResNet18 ResNet34 ResNet50 WRN-50-2 VGG16 VGG19

R
eS

P
ro

p
 o

ve
rh

ea
d

 in
 f

o
rw

ar
d

 p
as

s
 (

%
)

32

64

128

256

Figure 6. Computation overhead of ReSprop at forward pass (pre-
ReSprop) for different batch sizes (ImageNet dataset).

Theoretical speedup: We evaluate the theoretical im-
provement in computational cost for forward and backward
passes by comparing the number of floating-point opera-
tions with and without ReSprop. First row of Table 9 shows
the theoretical speedup of ReSprop for the backward pass.
Since ReSprop accelerates only the backward pass, the the-
oretical training (forward + backward) speedup can be cal-
culated using Amdahl’s Law [4]. Figure 7 shows the total
training speedup considering the overheads of pre-ReSprop
and thresholding. This analysis shows that at 90% reuse-
sparsity, ImageNet can be trained 2.5× to 3.0× (on average
2.7×) faster using ReSprop. Among sparse training algo-
rithms, DSG sparsifies back-propagation convolutions (Eq.
2 and 3). Table 8 shows the accuracy and speedup of DSG
and W-ReSprop. W-ReSprop with the same sparsity per-
centage achieves higher accuracy and speedup. Reducing
dimension for sparsifying gradients and inputs is the main
reason for accuracy loss at high sparsities in DSG.

Accelerator for sparse back-propagation: We modify
the SCNN [46] to support back-propagation convolutions
and call the resulting architecture a generic sparse convolu-
tion accelerator (GSCN). We feed GSCN with sparse con-

0

0.5

1

1.5

2

2.5

3

3.5

ResNet18 ResNet34 ResNet50 WRN-50-2 VGG16 VGG19

Sp
ee
d
u
p 50%

70%

90%

Figure 7. ReSprop training (forward+backward) speedup versus
architecture for three reuse-sparsity percentages (ImageNet).

ResNet-18 WRN-8-2
Algorithm Speedup Acc ↓ Speedup Acc ↓

DSG 2.2 3.88% 2.3 2.74%
W-ReSprop 2.7 0.51% 2.8 0.43%

Table 8. Validation accuracy and train speedup at 90% sparsity
compared to dense training (CIFAR-10 dataset).

ResNet18 ResNet34 VGG-16
Theoretical 9.83 9.68 9.34

GSCN+Baseline 1.32 1.81 1.27
GSCN+ReSprop 8.6 8.01 7.21

Table 9. Theoretical and GSCN speedup at backward pass compu-
tations with 90% resue-sparsity (ImageNet).

volutions of ReSprop. To model performance of GSCN, we
rely primarily on the DNNsim cycle-level simulator [14].
We extend this simulator to support GSCN. Table 9 shows
the speedup we can gain on GSCN accelerator compared
to GTX 1080 ti GPU by running standard training (second
row) and ReSprop algorithm (third row) on GSCN.

6. Conclusion

This work proposes Reuse-Sparsified Backpropagation
for faster training by reusing the gradients during training.
ReSprop sparsifies backward convolutions while adding
minimal computation overhead to the forward pass. Re-
Sprop and W-ReSprop can be used for training common
network architectures and achieves average 2.7× overall
speedup in training with negligible loss in model accuracy
when run on a generic convolution accelerator.

Acknowledgements We thank Mohammad Jafari for dis-
cussions and comments, and Aamir Raihan, Francois De-
moullin, Deval Shah and Dave Evans for their feedback.
This research funded in part by the Computing Hardware
for Emerging Intelligent Sensory Applications (COHESA)
project financed under National Sciences and Engineering
Research Council of Canada (NSERC) Strategic Networks
grant number NETGP485577-15.

References
[1] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Shar-

ify, Gerard O’Leary, Roman Genov, and Andreas Moshovos.
Bit-pragmatic deep neural network computing. In Proceed-
ings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 382–394. ACM, 2017. 1

[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor
Aamodt, Natalie Enright Jerger, and Andreas Moshovos. Cn-
vlutin: Ineffectual-neuron-free deep neural network comput-
ing. in 2016 ieee. In ACM/IEEE International Conference on
Computer Architecture (ISCA), volume 10, 2016. 1

[3] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for
faster non-convex optimization. In International Conference
on Machine Learning, pages 699–707, 2016. 2

[4] Gene M Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings
of the April 18-20, 1967, spring joint computer conference,
pages 483–485, 1967. 2, 8

[5] Alexander G Anderson and Cory P Berg. The high-
dimensional geometry of binary neural networks. arXiv
preprint arXiv:1705.07199, 2017. 3

[6] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.
Scalable methods for 8-bit training of neural networks. In
Advances in Neural Information Processing Systems, pages
5145–5153, 2018. 1

[7] Guillaume Bellec, David Kappel, Wolfgang Maass, and
Robert Legenstein. Deep rewiring: Training very sparse deep
networks. arXiv preprint arXiv:1711.05136, 2017. 2

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016. 1

[9] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He,
Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun,
et al. Dadiannao: A machine-learning supercomputer. In
IEEE/ACM International Symposium on Microarchitecture,
pages 609–622. IEEE Computer Society, 2014. 1

[10] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. In Advances in Neural Information Process-
ing Systems, pages 1223–1231, 2012. 1

[11] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In Advances in
Neural Information Processing Systems, pages 1646–1654,
2014. 2

[12] Aaron Defazio and Léon Bottou. On the ineffectiveness
of variance reduced optimization for deep learning. arXiv
preprint arXiv:1812.04529, 2018. 2

[13] Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv
preprint arXiv:1907.04840, 2019. 1, 2

[14] Isak Edo, Omar Awad, Ali Hadi Zadeh, Dylan Malone
Stuart, Alberto Delmas Lascorz, Milo Nikoli, and Andreas

Moshovos. DNNsim: Deep Learning Accelerators Toolkit.
https://github.com/isakedo/DNNsim. 8

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 580–587, 2014.
1

[16] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-
dram, Mark A Horowitz, and William J Dally. Eie: effi-
cient inference engine on compressed deep neural network.
In ACM/IEEE International Symposium on Computer Archi-
tecture (ISCA), pages 243–254. IEEE, 2016. 1

[17] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 2

[18] Babak Hassibi and David G Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Advances
in Neural Information Processing Systems, pages 164–171,
1993. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016. 5, 6

[20] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In IEEE Inter-
national Conference on Computer Vision, pages 1389–1397,
2017. 1, 2

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4700–4708, 2017. 6

[22] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-
ian Q Weinberger. Deep networks with stochastic depth. In
European Conference on Computer Vision, pages 646–661.
Springer, 2016. 1

[23] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 1

[24] Rie Johnson and Tong Zhang. Accelerating stochastic gradi-
ent descent using predictive variance reduction. In Advances
in Neural Information Processing Systems, pages 315–323,
2013. 2

[25] Pentti Kanerva. Hyperdimensional computing: An in-
troduction to computing in distributed representation with
high-dimensional random vectors. Cognitive computation,
1(2):139–159, 2009. 3

[26] Ehud D Karnin. A simple procedure for pruning back-
propagation trained neural networks. IEEE Transactions on
Neural Networks, 1(2):239–242, 1990. 2

[27] Angelos Katharopoulos and François Fleuret. Biased im-
portance sampling for deep neural network training. arXiv
preprint arXiv:1706.00043, 2017. 1

[28] Angelos Katharopoulos and François Fleuret. Not all sam-
ples are created equal: Deep learning with importance sam-
pling. arXiv preprint arXiv:1803.00942, 2018. 1

[29] Yoon Kim. Convolutional neural networks for sentence clas-
sification. arXiv preprint arXiv:1408.5882, 2014. 1

https://github.com/isakedo/DNNsim

[30] Alex Krizhevsky et al. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009. 6

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 1097–1105, 2012. 1, 7

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
2

[33] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in Neural Information Process-
ing Systems, pages 598–605, 1990. 2

[34] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 2

[35] Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei
Ding, and Yuan Xie. Dynamic sparse graph for efficient deep
learning. arXiv preprint arXiv:1810.00859, 2018. 1, 2

[36] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In IEEE
International Conference on Computer Vision, pages 2736–
2744, 2017. 2

[37] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian
compression for deep learning. In Advances in Neural Infor-
mation Processing Systems, pages 3288–3298, 2017. 1, 2

[38] Christos Louizos, Max Welling, and Diederik P Kingma.
Learning sparse neural networks through l 0 regularization.
arXiv preprint arXiv:1712.01312, 2017. 1, 2

[39] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and
Liwei Wang. The expressive power of neural networks: A
view from the width. In Advances in Neural Information
Processing Systems, pages 6231–6239, 2017. 7

[40] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A fil-
ter level pruning method for deep neural network compres-
sion. In IEEE International Conference on Computer Vision,
pages 5058–5066, 2017. 1, 2

[41] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature
communications, 9(1):2383, 2018. 2

[42] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In In-
ternational Conference on Machine Learning, pages 2498–
2507. JMLR. org, 2017. 1, 2

[43] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 2

[44] Hesham Mostafa and Xin Wang. Parameter efficient train-
ing of deep convolutional neural networks by dynamic sparse
reparameterization. arXiv preprint arXiv:1902.05967, 2019.
1, 2

[45] Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho
Sengupta. Exploring sparsity in recurrent neural networks.
arXiv preprint arXiv:1704.05119, 2017. 5

[46] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, An-
tonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,
Joel Emer, Stephen W Keckler, and William J Dally. Scnn:
An accelerator for compressed-sparse convolutional neural
networks. In ACM/IEEE 44th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 27–40. IEEE,
2017. 1, 2, 8

[47] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[48] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli,
and Jascha Sohl Dickstein. On the expressive power of deep
neural networks. In International Conference on Machine
Learning, pages 2847–2854. JMLR. org, 2017. 7

[49] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-
scale deep unsupervised learning using graphics processors.
In International Conference on Machine Learning, pages
873–880. ACM, 2009. 7

[50] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poc-
zos, and Alex Smola. Stochastic variance reduction for non-
convex optimization. In International Conference on Ma-
chine Learning, pages 314–323, 2016. 2

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 6

[52] Or Sharir and Amnon Shashua. On the expressive power
of overlapping operations of deep networks. arXiv preprint
arXiv:1703.02065, 2017. 7

[53] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 1, 5

[54] Ryan Spring and Anshumali Shrivastava. Scalable and sus-
tainable deep learning via randomized hashing. In ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 445–454. ACM, 2017. 1

[55] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang.
meprop: Sparsified back propagation for accelerated deep
learning with reduced overfitting. In Proceedings of the
34th International Conference on Machine Learning, pages
3299–3308. JMLR. org, 2017. 1, 2, 3

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015. 1

[57] Maria Vakalopoulou, Konstantinos Karantzalos, Nikos Ko-
modakis, and Nikos Paragios. Building detection in very
high resolution multispectral data with deep learning fea-
tures. In IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pages 1873–1876. IEEE, 2015. 1

[58] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. Training deep neural
networks with 8-bit floating point numbers. In Advances in
Neural Information Processing Systems, pages 7675–7684,
2018. 1

[59] Bingzhen Wei, Xu Sun, Xuancheng Ren, and Jingjing Xu.
Minimal effort back propagation for convolutional neural
networks. arXiv preprint arXiv:1709.05804, 2017. 1, 2

[60] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 2074–2082, 2016. 2

[61] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 5

[62] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and
Yurong Chen. Incremental network quantization: Towards
lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017. 1

[63] Michael Zhu and Suyog Gupta. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression. arXiv
preprint arXiv:1710.01878, 2017. 5

