
A Framework for Modeling and Optimization of Prescient
Instruction Prefetch∗

Tor M. Aamodt †‡ Pedro Marcuello
�

Paul Chow ‡ Antonio González
�

Per Hammarlund
�

Hong Wang † John P. Shen †

†Microprocessor Research, Intel Labs ‡Dept. of Electrical and Computer Engineering
Santa Clara, CA 95054, USA University of Toronto, Canada

�
Intel Barcelona Research Center

�
Desktop Products Group, Intel Corp.

Universitat Politècnica de Catalunya, Spain Hillsboro, OR 97124, USA

ABSTRACT
This paper describes a framework for modeling macroscopic
program behavior and applies it to optimizing prescient in-
struction prefetch—a novel technique that uses helper threads
to improve single-threaded application performance by per-
forming judicious and timely instruction prefetch. A helper
thread is initiated when the main thread encounters a spawn
point, and prefetches instructions starting at a distant target
point. The target identifies a code region tending to incur
I-cache misses that the main thread is likely to execute soon,
even though intervening control flow may be unpredictable.
The optimization of spawn-target pair selections is formu-
lated by modeling program behavior as a Markov chain
based on profile statistics. Execution paths are considered
stochastic outcomes, and aspects of program behavior are
summarized via path expression mappings. Mappings for
computing reaching, and posteriori probability; path length
mean, and variance; and expected path footprint are pre-
sented. These are used with Tarjan’s fast path algorithm
to efficiently estimate the benefit of spawn-target pair se-
lections. Using this framework we propose a spawn-target
pair selection algorithm for prescient instruction prefetch.
This algorithm has been implemented, and evaluated for
the Itanium � Processor Family architecture. A limit study
finds 4.8% to 17% speedups on an in-order simultaneous
multithreading processor with eight contexts, over nextline
and streaming I-prefetch for a set of benchmarks with high I-
cache miss rates. The framework in this paper is potentially
applicable to other thread speculation techniques.

∗E-mail addresses: {aamodt, pc}@eecg.toronto.edu,
{pedro.marcuello,antoniox.gonzalez, per.hammarlund,
hong.wang, john.shen}@intel.com. Tor Aamodt, and
Paul Chow were partly supported by the Natural Sciences
and Engineering Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’03, June 10–14, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-664-1/03/0006 ... � 5.00.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture

General Terms
Algorithms, Measurement, Performance, Design, Theory

Keywords
Multithreading, Helper Threads, Analytical Modeling, Op-
timization, Path Expressions, Instruction Prefetch

1. INTRODUCTION
As the gap between processor and memory speed contin-

ues to widen, performance is increasingly determined by the
effectiveness of the cache hierarchy. Prefetching is a well-
known technique for improving the effectiveness of the cache
hierarchy. We investigate the use of spare simultaneous mul-
tithreading (SMT) [25, 8, 12] thread contexts for prefetching
instructions. On an SMT machine, a thread context may go
unused if the operating system cannot find useful work for
it. Even though SMT has been shown to be an effective
way to boost throughput performance with limited impact
on processor die area [10] the performance of many single-
threaded applications does not benefit from SMT. Recently,
a number of proposals have been put forth to exploit SMT
resources to improve the latency of single-threaded appli-
cations [7, 3, 28, 19, 16, 27, 1, 14, 6, 5, 4, 13]. In partic-
ular, several studies have investigated using helper threads
in the form of program-slice based precomputation for re-
ducing latency due to load instructions tending to miss in
the cache, and branches that mispredict. To our knowledge,
there has been little if any published work that is focused
specifically on improving I-cache performance by exploiting
helper threads. This paper describes a novel framework for
modeling such helper threads so as to optimize their impact
on performance.

Dubois and Song proposed assisted execution as a generic
way to use multithreading resources to improve single thread-
ed application performance [7]. Chappell et al. proposed
Simultaneous Subordinate Multithreading (SSMT), a gen-
eral framework for leveraging otherwise spare execution re-
sources to benefit a single-threaded application. They first
evaluated the use of SSMT as a mechanism to provide a very

large local pattern history based branch predictor [3], and
subsequently proposed hardware mechanisms for dynami-
cally constructing and spawning subordinate microthreads
to predict difficult-path branches [4]. Weiser [26] proposed
program slicing to find that subset of a program impact-
ing the execution of a particular statement to aid program
understanding. Combining these themes, Zilles and Sohi
proposed analyzing the dynamic backward slice of perfor-
mance degrading instructions so as to pre-execute them [28].
They subsequently implemented hand-crafted speculative
slices to precompute branch outcomes and data prefetch
addresses [27]. Roth and Sohi [19] proposed using data
driven multithreading (DDMT) to dynamically prioritize se-
quences of operations leading to branches that mispredict
or loads that miss. Concurrent with our work, they pro-
pose a framework for optimizing the selection of slices for
loads that miss in the second-level cache based upon an
analysis of program traces [20]. Moshovos et al. proposed
Slice Processors, a hardware mechanism for dynamically
constructing and executing slice computations for generat-
ing data prefetches [16]. Annavaram proposed Dependence
Graph Precomputation [1], which effectively uses the pre-
dicted stream of instructions to produce accurate dynamic
slices. Luk proposed software controlled preexecution [14]
as a mechanism to prefetch data by executing a future por-
tion of the program. Collins et al. proposed speculative pre-
computation [6], and later dynamic speculative precompu-
tation [5] as techniques to leverage spare SMT resources for
generating long range data prefetches by executing slices
that compute effective addresses for loads that miss often.
They showed that chaining the precomputation of a load
that repeatedly misses can help tolerate long memory laten-
cies. Liao et al. extended the work of Collins et al. by imple-
menting a post-pass compilation tool to augment a program
with automatically generated precomputation threads for
data prefetching [13].

One task common to all these techniques is the selection
of a trigger point where a helper thread should be spawned
off for precomputation leading to a target branch or load.
As a matter of convenience, we call this trigger the spawn

point. In contrast to helper threads for loads and branches,
for instruction prefetch the target identifies not just a sin-
gle instruction, but rather the beginning of an entire region
of code that the main thread is likely to execute soon. A
similar notion of a spawn-target pair can be found in spec-
ulative multithreading, where a thread is forked to specula-
tively execute a future portion of the program with the goal
of quickly reusing the architected state it generates when
the main catches up with it. Traditionally, control flow id-
ioms such as loops and procedure calls have been exploited
for identifying spawn-target pairs. Generalizing the near
control independence between spawn and target common to
such idioms, Marcuello and Gonzalez [15] proposed using a
reaching probability threshold to define a far larger set of

Section 3

Section 4

Stochastic Path Analysis

HW Abstraction

Optimization Algorithms

Path Expression Mappings

Figure 1: Modeling and Optimization Framework

 prefix

 infix

 postfix

 (a) program structure (b) thread view

spawn

target

Main
Thread

Phase #2

Phase #1

I-cache
misses

Spawning
helper
thread

Figure 2: Prescient Instruction Prefetch. (a)
Control-flow graph with spawn and target points
highlighted. From profiling, the region labeled post-
fix is known to encounter heavy instruction cache
misses. (b) Two phases of helper thread execution:
Phase #1 live-in precomputation; Phase #2 postfix
precomputation and instruction prefetch.

candidate spawn-target pairs from which thread-level paral-
lelism may be harvested. They considered refining the se-
lection on the basis of maximal spawn-target distance, min-
imum inter-thread dependencies, and value predictability.

By using a spare thread context to speculatively execute
a future, probabilistically control-independent, region of the
program, far ahead of the main thread, prescient instruction
prefetch can bring most instructions into the first-level cache
likely to be encountered soon by the main thread, before it
needs them. As prescient instruction prefetch speeds up the
main thread by hiding fetch latency, rather than updating
the main thread’s architected state, it needs to accurately
execute only those instructions pertaining to control-flow.

In this paper, we present a framework for analyzing tra-
ditional control-flow and I-cache profile information to ju-
diciously select spawn-target pairs for instruction prefetch.
The key ideas, are: (1) estimating the execution time ben-
efit of a helper thread defined by a particular spawn-target
pair to guide the overall spawn-target pair selection pro-
cess, by (2) using a Markov model of control flow to enable
the evaluation of statistical properties of program execution
over the set of all paths between any pair of points in the
program. Novel path expression mappings are applied to
leverage Tarjan’s fast-path algorithm [23]. Figure 1 depicts
the overall framework for optimization. Using this frame-
work, we propose and evaluate a simple algorithm. Fur-
thermore, we demonstrate that instruction prefetch helper
threads constructed for the selected spawn-target pairs can
achieve significant performance improvement.

The rest of this paper is organized as follows: Section 2
introduces the prescient instruction prefetch paradigm. Sec-
tion 3 describes the framework for characterizing program
behavior, formulates a set of key statistical quantities related
to helper thread execution, and details a novel approach to
use path expressions to compute these statistical quanti-
ties. Section 4 describes an algorithm using this framework
to perform spawn-target pair selection for prescient instruc-
tion prefetch helper threads. Section 5 presents simulation
results, and performance analysis. Finally, Section 6 con-
cludes.

2. PRESCIENT INSTRUCTION PREFETCH
Prescient instruction prefetch uses helper threads that

perform instruction prefetch to reduce stall cycles due to I-
cache misses for single-threaded applications. Here the term
prescient carries two connotations: One, that the helper
threads are initiated in a timely and judicious manner based
upon a profile-guided analysis of program’s global behavior,
and two, that the instructions prefetched are useful as the
helper thread follows the same control-flow path through the
program that the main thread will follow when it reaches the
code that the helper thread has prefetched.

Profile information is used to identify code regions that
incur significant I-cache misses in the single-threaded ap-
plication; candidate target points are then identified as in-
structions closely preceding the basic blocks that incur the
I-cache misses. For each candidate target identified in the
single-threaded application, a set of corresponding spawn
points are found that can serve as trigger points for initi-
ating the execution of a helper thread for prefetching in-
structions beginning at the target. Once a spawn-target
pair is identified, a helper thread is generated and attached
to the original program binary (i.e., the main thread). At
run time, when a spawn point is encountered in the main
thread, a helper thread can be spawned to begin execution
in an idle thread context. The execution of the helper thread
effectively prefetches for anticipated I-cache misses along a
control flow path subsequent to the target.

Figure 2 illustrates these concepts by highlighting a pro-
gram fragment containing three distinct control-flow regions.
In particular, the region following the target is called the
postfix region, and is assumed to suffer significant instruc-
tion cache misses. The region before the spawn is called the
prefix region, and the region between the spawn and target
the infix region. The postfix region is limited to instructions
within a short distance from the target.

In general, the helper thread may need to precompute
some live-in values before starting to execute the program
code in the postfix region. Since effective instruction prefetch
requires accurate resolution of branches in the postfix re-
gion, the precomputation consists of the backward slice of
these branches. A register, or memory location is said to
be ‘live-in’ to a region, if its value is read before being writ-
ten in that region. As shown in Figure 2(b), helper thread
execution consists of two phases. The first phase, live-in
precomputation, reproduces the effect of the code skipped
over in the infix that relates to the resolution of branches in
the postfix. We refer to these precomputation instructions
as the infix slice. Instructions in the infix region that are
not related to any branch instruction in the postfix region
are not executed. This is the key aspect that allows the
helper thread to run faster and reach the target point ear-
lier than the main thread does. In the second phase, the
helper thread executes the same code in the postfix region
that the main thread will when the main thread reaches the
target. The computation in the second phase both resolves
control-flow for the helper thread in the postfix region, and
effectively prefetches instructions for the main thread. The
helper thread is terminated after it finishes executing the
postfix region, or when the main thread catches up with it.

The prescient instruction prefetch mechanism differs from
traditional branch predictor based instruction prefetch mech-
anisms, such as that proposed by Reinman et al. [18], in that
it uses a global view of control-flow gained from program

E

b

x

d

a

exit1

A prob. = 0.98

prob. = 0.10 B

 C

D prob. = 0.90

F prob. = 0.999

exit2

e

foo()

Figure 3: Control flow graph fragment with edge
profile information. Block e calls subroutine foo().

profile and is thus able to anticipate potential performance
degrading regions of code from a long-range (e.g. the dis-
tance between spawn and target could be thousands of dy-
namic instructions). The key challenges are two-fold: One,
identification of an appropriate set of distant yet strongly
control-flow correlated pairs of spawn-target points; and
two, accurate resolution of branches in the postfix region.

To highlight the challenges and motivate intuitive insights,
we consider a brief example.

Example: Spawn-Target Selection Tradeoffs
Figure 3 depicts a control-flow graph fragment. Nodes

represent basic blocks, and edges represent potential control
flow transfer between two basic blocks. The shaded block
labeled x is known from cache profiling to suffer many in-
struction cache misses. Each edge is labeled with the proba-
bility that the main program will make the respective control
flow transfer unless the value is exactly one. Block e calls
subroutine foo(). The questions of interest are: (1) which
locations are the best places to spawn a helper thread to
prefetch x, and (2) what should the target be?

Note that, starting from any location, the program is very
likely to reach x, because every iteration the probability of
exiting the loop (i.e., from block d) is much smaller than the
probability of transitioning to x (i.e., from node b). Even
though any choice of spawn is roughly as “good” as any
other in this particular sense, as we show next, not all spawn
points are necessarily as effective as others.

For instance, consider the impact the size of subroutine
foo() has on spawn-target pair selection. If foo(), together
with blocks b, d, e, and x fit inside the instruction cache,
then initiating a prefetch of block x starting at block a is
effective, because the loop will likely iterate several times
before the main thread branches from b to access x. On
the other hand, if foo() together with of its callees (if any)
require more instruction storage than the cache capacity,
then there is no point in spawning a prefetch thread to target
x from any block. The reason is that instructions prefetched
by the helper thread will almost certainly be evicted by an
intervening call to foo() before the main thread can access
them due to the low probability of branch b transitioning
to x. A better target in this situation would be block b,
because evaluating the branch at the end of block b, would
cause the helper thread to prefetch x only when it is about
to be executed by the main thread. A good set of spawn

points targeting b in this case might include the beginning
of blocks a, and d.

In the latter case, if we can choose only one spawn location
from a or d, due to resource limitations, the more profitable
choice is d, because a would only cover misses at x in the
event control goes directly from a to b to x, while d would
cover the cache misses at x in all other cases.

As this example demonstrates, it is important to accu-
rately predict the run time properties of helper threads when
selecting spawn-target pairs. To help tackle the type of chal-
lenges illustrated in this example, Section 3 formulates an
analytical framework for rigorously quantifying the tradeoffs
involved in spawn-target pair selection.

3. ANALYTICAL FRAMEWORK
To be effective, spawn-target pairs should meet the fol-

lowing necessary conditions: One, the corresponding helper
thread must run ahead of the main thread, but not so far
ahead as to evict instructions soon to be used by the main
thread. Two, the spawn and the target should be highly
control-flow correlated during the main thread’s execution.
In other words, when the main thread reaches the spawn
point, it will very likely see the target soon thereafter. Three,
the helper thread should follow the same postfix path that
the main thread will execute after it reaches the target.

In this section an analytical framework that models pro-
gram behavior as a Markov chain is introduced. This frame-
work consists of a set of key statistical quantities character-
izing the first two necessary conditions, and is thus essential
to the selection of effective spawn-target pairs. In addition,
a novel technique for transforming the computation of these
quantities to Tarjan’s classic path expression algorithm[23]
is described, thus leveraging the latter’s efficiency. The re-
sulting framework is used as the foundation for a simple
spawn-target pair selection algorithm described in Section 4
(see Figure 6).

Time (cycles)

In
st

ru
ct

io
ns

slack(i, s, t)z}|{

d(t, i)max
d(t, i)

d(s, t)

o(s, t)

b

i

t

s

A

B

Figure 4: Illustration of Equations 1 and 2.

3.1 Single Helper Thread Instance
To characterize the distance that a helper thread runs

ahead of the main thread, we model the prefetch slack of
an instance of instruction i, targeted by a helper thread
spawned at s with target t, using the following expression
(illustrated in Figure 4):

slack(i, s, t) =

Az }| {
(CPIm(s, t) · d(s, t) + CPIm(t, i) · d(t, i))

−CPIh(t, i) · d(t, i)| {z }
B

−o(s, t)
(1)

where CPIm(s, t) represents the average cycles per fetched
instruction for the main thread when traversing the infix re-
gion between this particular instance of s and t; CPIm(t, i)
represents the average cycles per fetched instruction for the
main thread in the postfix region between t and i; CPIh(t, i)
represents the average cycles per fetched instruction for the
helper thread between t and i; d(x, y) denotes the distance
between instructions x and y, measured in number of in-
structions executed; and o(s, t) represents the overhead, in
cycles, incurred by the helper thread of spawning at s and
performing precomputation for live-ins at t. A given in-
stance of a helper thread can reduce the I-cache miss latency
of an instruction access in the main thread if the prefetch
slack for this instruction is positive.

The amount of prefetching any helper thread can perform,
and therefore the maximum extent of the postfix region it
can target, are limited by two factors. First, prefetching will
improve the average IPC of the main thread, but not that
of the helper thread, leading to an upper bound on how far
ahead a helper thread can run before the main thread will
catch up to it. In particular, the main thread will catch up
with the helper thread when slack(i, s, t) = 0 in Equation 1
or,

d(t, i)max =
CPIm(s, t) · d(s, t) − o(s, t)

CPIh(t, i) − CPIm(t, i)
(2)

Figure 4 portrays a graphical representation of this concept
by plotting instructions executed versus time for a portion
of a program’s execution trace. The solid line indicates the
progress of the main thread, and the dotted line indicates
the progress of the helper thread after overhead o(s, t) due
to thread invocation and live-in precomputation. The slack
of one particular instruction i is shown. The helper thread
ceases to provide useful prefetch slack when the main thread
catches up to it. This point is where the dotted line inter-
sects the solid line. The distance computed in Equation 2
corresponds to the height of the shaded box in Figure 4.

The other factor limiting the postfix region is the size
of the infix slice required for target live-in precomputation.
The size of the infix slice depends upon the amount and
type of code skipped between the spawn and target, and the
number of branches in the postfix region. As the distance
between spawn and target grows, the number of operations
in the infix that may affect the outcome of a branch in the
postfix increases. On the other hand, given a fixed spawn-
target distance, increasing the size of the postfix requires
additional branches to be precomputed; some of these may
depend upon computation in the infix that is unrelated to
earlier postfix branches.

It is interesting to note that Equation 2 implies a lower
bound on the number of concurrent helper threads required
to prefetch all instructions. Assuming negligible precompu-
tation overhead (i.e., o(s, t) = 0),

helper threads for
full coverage ≥

‰
CPIh
CPIm

ı

where CPIm, and CPIh are the values assuming full coverage
is achieved. Lower CPIh reduces the number of concurrent
helper threads required. An exploration of techniques to
increase the efficiency of helper threads by decreasing CPIh

is beyond the scope of this paper.

3.2 A Statistical Model of Program Execution
For a control flow graph, where nodes represent basic

blocks, and edges represent transitions between basic blocks,
we model the intra-procedural program execution as a dis-
crete Markov chain [9]. A Markov chain is defined by a set
of states and transitions. The basic blocks in a procedure
represent the states of the Markov chain, and transitions
are defined by the probabilities of branch outcomes in the
control flow graph. These probabilities can be gleaned from
traditional edge profiling [2], which measures the frequency
that one block flows to another. For inter-procedural con-
trol flow, we summarize the effect of procedure calls when
necessary by computing summaries for subroutines, or sets
of mutually recursive functions. This is equivalent to re-
stricting transitions into and out of procedures so that a
callee must return to its caller. As it is based upon using
traditional edge profile data, this model ignores correlation
between branch outcomes.

To model the effects of instruction cache access, we assume
a two-level memory hierarchy composed of a finite-sized fully
associative instruction cache with LRU replacement, and
an infinite sized main memory so that all misses are either
cold misses or capacity misses. Note that the control-flow
path of program execution entirely determines the contents
of this cache independent of the program’s static code lay-
out; hence, by considering the probability of taking each
possible path through the program it is possible to deter-
mine the probability with which a given instruction resides
in the cache at any given point in the program execution.

The necessity of instruction prefetches can be assessed by
analyzing the instruction footprint distribution along paths
between the target and the spawn. The timeliness of prefetch-
es can be quantified by analyzing the distribution of slack
values in relation to the latency of the memory hierarchy
by viewing the distances in Equation 1 as statistical quan-
tities. Finally, the accuracy, and coverage of prefetches can
be gauged by analyzing the control flow correlation quan-
tified in the next section by the reaching probability, and
posteriori probability.

3.3 Computing Statistics via Path Expressions
In this section we define statistical quantities related to

spawn-target selection. These are the reaching probability,
posteriori probability, expected path length and variance,
and expected path footprint. We show how to transform
the evaluation of these quantities to the classic path expres-
sion problem (also known as an algebraic path problem),
which can be solved efficiently using Tarjan’s path expres-
sion algorithm [22, 23].

Given a sequence of branch outcomes, the path length be-
tween the starting block x and end block y is the number of
instructions executed along the associated path through the
program. Given the underlying statistical model of control
flow described above, the path length takes on a distribu-
tion of values resembling that seen by the actual program.
Determining the mean and variance of this path length dis-
tribution enables the estimation of the probability that the
path length is within a given range.

To avoid selecting spawn points that never perform useful
instruction prefetching because the instructions they prefetch
are either evicted before they are needed, or are likely to re-
side in the cache already, the concept of a path’s instruction
cache footprint is useful. The instruction cache footprint

is defined as the capacity required to store all the instruc-
tions along a given path assuming full associativity. The
expected path footprint between two points is determined by
computing the average instruction cache footprint between
two points in the program.

The reaching probability, RP (x, y), between basic blocks
x and y is defined as the probability that y will be encoun-
tered at some time in the future given the processor is at x.
In prior work [15], the point y is said to be control quasi-

independent of the point x if the reaching probability from
x to y is above a given threshold (for example 95%). Simi-
larly, the posteriori probability is defined as the probability
of having previously visited state x since the last occurrence
of y (if any), given the current state is y.

3.3.1 Path Expressions
A path expression [22] is simply a regular expression sum-

marizing all paths between two points in a graph. For ex-
ample, in Figure 3 the set of all paths from block a to block
x, start by following edge A, then going around the loop any
number of iterations along either control path inside the
loop, before finally taking edge B. This can be summarized
by the path expression:

P(a,x) = A · (((B · C) ∪ (D · E)) · F)∗ · B

Here the symbols ∪, ·, and ∗ denote the regular expres-
sion operators union, concatenation, and closure, respec-
tively, and parentheses are used to enforce order of evalua-
tion. These operators have the following interpretation: The
union operator is used to combine two distinct paths that
start and end at the same point, the concatenation opera-
tor joins one path ending at a particular point with another
one that starts there, and the closure operator represents
the union of all paths that make any number of iterations
around a loop. As the union operators defined later in this
paper are not idempotent, it is vital that the path expres-
sions we use are unambiguous in the sense that no path can
be enumerated in two, or more ways (informally, there is
no way to further simplify the path expression). For ex-
ample, “A ∪ A” enumerates A twice so this path expression
is ambiguous (for a more formal definition, see Tarjan [23,
Appendix B]).

We apply path expressions by interpreting each edge as
having some type of value, and the regular expression oper-
ators (union, concatenation, and closure) as functions that
combine and transform these values. We give an example of
this process in the next section. Tarjan’s fast path algorithm
produces unambiguous path expressions very efficiently. In
particular Tarjan’s algorithm solves the single source path
problem (one source many destinations) in O(mα(m, n))
time on reducible flow graphs, where n is the number of
nodes and m is the number of edges and α is a functional
inverse of of Ackermann’s function [23]. This means we get a
path expression for every pair of basic blocks in a procedure
in O(nmα(m, n)) time. To better utilize Tarjan’s algorithm,
a tree-like representation of path expressions is used to sup-
port on-demand updating when an edge weight is set to zero
(a requirement described later).

The mappings used for computing reaching probability,
expected path length and path length variance are summa-
rized in Table 1 and justified in the following sections. These
mappings are not arbitrary, but rather arise from a rigorous
analysis of the underlying probabilistic model. To the best of

Table 1: Path Expression Mappings

Reaching Expected
Path Length Variance

Probability Path Length

concatenation [R1 · R2] pq X + Y v + w

union [R1 ∪ R2] p + q
pX + qY

p + q

p(v + X2) + q(w + Y 2)

p + q
−

„

pX + qY

p + q

«

2

closure [R∗
1]

1

1 − p

pX

1 − p

p(v + X2)

1 − p
+

„

pX

1 − p

«

2

our knowledge, the mappings for expected path length, and
path length variance are novel to this work. The mapping
used for reaching probability also arises, for example, in the
solution of systems of linear equations [22], and dataflow fre-
quency analysis [17]. However our method of zeroing edges
to ensure the implied summation is over disjoint events ap-
pears to be novel. Note that the calculation of path length
variance, requires that of expected path length, which in
turn requires the reaching probability.

3.3.2 Reaching Probability
The reaching probability, RP (x, y), from x to y, for x 6= y,

may be computed as follows: Label all transitions in the
Markov model with their respective transition probability.
Set the probability of edges leaving y to zero, so that paths
through y are ignored (because setting these edges to zero
means these paths have zero probability). Then evaluate
RP (x, y) by recursively replacing the path expression in
square braces in the first column in Table 1, with the value
computed by the expression in the second column.

The validity of the mapping used for reaching probabili-
ties arises from several facts: First, probability theory states
that the probability of one event occurring out of a set of dis-
joint events is the sum of the individual probabilities of each
event. Thus, the probability of taking any path encoded
by the union of two path expressions is the sum because
the path expressions formed by Tarjan’s algorithm are un-
ambiguous. Second, the assumption of independent branch
outcomes implies that the probability of taking a particular
path is the product of the probabilities of all branch out-
comes along the path. This, combined with the fact that
multiplication distributes over addition, allows us to eval-
uate the concatenation of two path expressions simply by
multiplying their individual values because this is the same
as adding the probabilities of each individual path enumer-
ated by the combined path expression.

The closure mapping for a loop with probability p of re-
turning from the loop header back to itself can be found by
viewing the set of paths encoded by the closure operator as
an infinite sum of products, and applying the well known
formula for the geometric series:

∞X

i=0

p
i =

1

1 − p
, if | p | < 1

Note that the result of the closure mapping does not rep-
resent a probability, because the paths it combines are not
disjoint events. The path expression analysis is valid if the
profile data represents a program run to completion so that
there are no loops with a loop probability of one.

Example: The reaching probability from a to x.
Each path from a to x in Figure 3 must start with edge

A and end with edge B, however, in between there can be
any number of iterations around the loop taking the path
segment composed of edges DEF. The result of applying the
procedure outlined above is:

P(a,x) = A · (((B · C) ∪ (D · E)) · F)∗ · B

[P(a,x)] = 0.98 ·

„
1.0

1.0 − (0.1(0.0) + 0.9(1.0)) · (0.999)

«
· 0.10

u 0.97

The value underlined in the denominator represents edge C
and, as explained earlier must be set to zero to ensure paths
going through x are ignored.

This example provides an important and perhaps counter-
intuitive insight: The probability of reaching a block can
only be accurately (or reliably) determined by examining
global behavior. The probability of taking the path directly
from a to x is only 0.098, yet the probability of reaching x
at least once before control flow exits the region along the
edges marked x or y in Figure 3, is 0.97, which is much
higher. An intuitive explanation of this result is that the
probability of exiting the loop each iteration, 0.001, is much
lower than the probability of executing x each iteration, 0.1,
so that it is very likely for the program to execute x at least
once before the loop exits.

3.3.3 Posteriori Probability
To evaluate the posteriori probability x precedes y, re-

verse the direction of control flow edges, and re-label them
with the frequency a block precedes, rather than follows an-
other block. Then, setting the probability of edges from x

to successors of x, and from predecessors of y to y to zero
(referring to the new edge orientation), apply the mapping
for reaching probability.

3.3.4 Expected Path Length and Variance
Using path expressions, the expected path length, and

the path length variance from x to y (assuming the current
state is x), can be computed as follows. With each edge we
associate a 3-tuple. The first element represents the prob-
ability of branching from the predecessor to the successor
(set to zero for edges emanating from y), the second ele-
ment represents the length of the predecessor basic block,
and the third element represents the path length variance of
the edge, and is thus zero. Similarly, for path expressions R1

and R2 we associate 3-tuples < p, X, v > and < q, Y, w >.
The rules for computing the first, second, and, third ele-
ment are listed in the second, third, and fourth columns of

Table 1, respectively. In a manner similar to the relationship
between reaching probability and posteriori probability, we
may define the posteriori expected path length and variance.

These mappings arise by analyzing the expected value,
and variance of the path length given the probability of fol-
lowing a particular path, as determined by the edge profile
data. It can be verified that the mappings for concatenation
and union in Table 1 satisfy the distributive law, as required.
The mapping derivations for the expected path length is de-
scribed first, followed by a sketch of the derivation for the
path length variance.

p, X

(1 − p)

Figure 5: Analysis of the closure operator.

For a given path expression R, let σ(R) represent the set of
all paths enumerated by R. The correctness of the expected
path length mapping for concatenation follows immediately
from the fact that the expected value of the sum of a set
of independent random variables equals the sum of the ex-
pected values of those random variables. The correctness of
the formulation for the union operator follows immediately
from the fact that R1, R2 and R1∪R2 are unambiguous and
therefore:

[R1 ∪ R2] = E[R1|follow p ∈ σ(R1)] · Pr(follow p ∈ σ(R1)) +

E[R2|follow p ∈ σ(R2)] · Pr(follow p ∈ σ(R2))

To derive the formulation for closure we exploit the fact
that the sum of a set of independent random variables is the
sum of the expected values and focus on examining a loop
with expected path length per iteration of X and backedge
probability of p (see Figure 5). For the closure operator we
are interested in the expected path length upon entering the
loop up to, but not including the edge exiting the loop.

E[closure
length] =

X
E[length(pi)] · Pr(pi)

pi =path formed by iterating i times

= 0 · (1 − p) + X · p(1 − p) + 2X · p2(1 − p) + ...

The reason each term carries a factor of (1−p) is that we are
interested in the event that the loop iterates a specific num-
ber of times and then definitely exits. The above summation
can be expressed as:

E[closure
length] = p(1 − p)X

∞X

i=0

ip
i−1 =

pX

1 − p

The variance of the sum of two independent random vari-
ables is simply the sum of the variances, hence the concate-
nation operator for path length variance. As with the ex-
pected path length, the union and closure operators for path
length variance are derived by evaluating the conditional ex-
pectation, marginalized over the actually taken path using
the probabilities found with the reaching probability map-
ping. The detailed derivation is beyond the scope of this
paper.

3.3.5 Expected Path Footprint
Assuming x and y are in the same procedure, and ignor-

ing storage requirements of subroutine calls, the expected
path footprint between x and y, denoted F (x, y), can be
computed using the formula:

F (x, y) =
1

RP (x, y)

X

v

size(v) · RPα(x, v|¬y) · RPβ(v, y) (3)

where the summation runs over all blocks v on any path from
x to y for which y only appears as an endpoint1, size(v) is the
number of instructions in basic block v, and RPα(x, v|¬y)
is the probability of traversing from x, to v along any path
except those through y,

RPα(x, v|¬y) =

(
RP (x, v) s.t. no path thru y if x 6= v,

1 if x = v
(4)

This quantity is computed similar to RP (x, v), except that
edges leading from y are evaluated as having zero probability
(in addition to those leading from v). RPβ(x, y) is defined
as,

RPβ(x, y) =

(
RP (x, y) if x 6= y

0 if x = y
(5)

Equation 3 is significant because it allows us to evaluate the
expected path footprint in terms of values we know how to
compute efficiently. To take into account the code footprint
used by subroutine calls we weigh the size of each callee
basic block by the probability it is reached at least once.

The derivation of Equation 3, in particular the interpre-
tation of RPβ(x, y) and RPα(x, v|¬y), is as follows. The
expected path footprint from x to y is the sum of the frac-
tion of times we traverse from x to y following path p, times
the footprint of path p, over all paths from x to y such that
y only appears as the endpoint of any particular path:

F (x, y) =
X

p∈σ(Po(x,y))

freq(p|x, y) · f(p)

where Po(x, y) is the path expression enumerating all ways of
going from x to y such that y is encountered only once (a by-
product of the reaching probability computation), freq(p|x, y)
is the fraction of times starting from x and ending at y we
followed path p, and f(p) is the path footprint due to all
blocks along p except y. By expressing the fraction of times
we traverse from x to y following path p as the probabil-
ity of taking path p starting from x, Pr(p), divided by the
probability of reaching y from x, we can rewrite this as:

F (x, y) =
1

RP (x, y)
·

X

p∈σ(Po(x,y))

f(p) · Pr(p)

By expanding f (p) in terms of the sizes of the unique ba-
sic blocks encountered along the path p we can express the
latter equation as:

F (x, y) =
1

RP (x, y)
·

X

p∈σ(Po(x,y))

X

v∈p,v 6=y

size(v) · Pr(p)

!

We further transform this equation by exchanging orders of
summation to obtain:

F (x, y) =
1

RP (x, y)
·
X

v∈B

size(v) ·
X

p∈P
′

o

Pr(p) (6)

1This set can be found while evaluating the reaching probability.

where B is the set of all blocks except y, which are passed
through one or more times by at least one path in σ(Po(x, y)),

and P
′

o is the subset of paths in σ(Po(x, y)) passing through
v. Each path from x to y passing through v, such that y

appears only as an endpoint, can be expressed as the con-
catenation of two disjoint paths: Assuming x, and y are dis-
tinct from v, the first path goes from x to v without passing
through y such that v appears only as an endpoint, and the
second path goes from v to y such that y appears only as
an endpoint. If x equals v, the first path consists of the
single vertex x. When v is y, the second path consists of the
single vertex y. This decomposition defines two path sets.
The sum of the probabilities over all paths in the first set is
given by Equation 4, and the sum of the probabilities over
the paths in the second set is, given by Equation 5. Thus
we can express the sum of the probabilities of all paths from
x to y passing through v, such that y only appears as the
product of these factors:

X

p∈P
′

o

Pr(p) = RPα(x, v|¬y) · RPβ(v, y)

Substituting this result into Equation 6 yields Equation 3.
Note that RPα(x, v|¬y) ≤ RP (x, v). Thus, we may con-

servatively estimate path footprints by using RP(x, v) rather
than RPα(x, v|¬y). This approximation was used when gen-
erating the spawn-target pairs evaluated in Section 5.3 and
yields an O(n) reduction in the number of edge weight mod-
ifications (e.g., setting an edge weight to zero) that need to
be evaluated.

3.3.6 Eliminating Spawn-Point Redundancy
A spawn-point s1 implies another spawn-point s2 for a

given target t if any path from s1 to t passes through s2.
In other words, if s2 is reached along the path from s1 to
t, spawning when the main thread reaches s2 is redundant.
Two spawn-points are said to be independent with respect
to a common target if neither spawn-point implies the other.
By selecting a set of mutually independent spawn-points we
are assured that only one will execute for a given dynamic
instance of t. Furthermore, the reduction in execution time
due to independent spawn-points is additive. Path expres-
sions provide a convenient way to determine spawn-point
independence: given s1, s2 and t, we can determine whether
s1 implies s2 by checking whether any edge in the path ex-
pression from s1 to t starts or ends with s2 after eliminating
edges emanating from t. This can be performed efficiently
while evaluating the reaching probability.

4. SPAWN-PAIR SELECTION ALGORITHM
This section describes one particular spawn-target selec-

tion algorithm based upon the framework presented in Sec-
tion 3. We have implemented this algorithm for the Itanium �
architecture and the effectiveness of this algorithm is demon-
strated in Section 5. A high-level flow-chart of the algorithm
is shown in Figure 6.

The inputs to the algorithm are edge frequency and in-
struction cache-miss profiles, and the estimated main and
helper thread CPI. The output is a set of mutually indepen-
dent spawn-target pairs, and associated postfix region sizes.
Profile data is supplied via procedure control flow graphs an-
notated with basic-block and branch execution frequencies,
and total instruction cache misses per basic block. Control

 INPUT:

I-cache & edge profile data,
estimated helper thread &

main thread CPI

Summarize procedures

Partition large basic blocks

Select next block

Update estimated # running
helper threads, and I-cache

miss coverage

Select earlier target within
½ max prefetch distance

Select set of spawn-points
(compute I-cache footprint

on demand)

No suitable
points

No suitable
points

Next procedure in bottom-up
traversal of call graph

Coverage of
all basic blocks
acceptable or
no pair found

Use fast path algorithm to
get path expressions.

compute all RP, PP, path
length mean & variance.

Set of spawn
points found:
OUTPUT
spawn pts.,
target, max.
prefetch
distances.

Figure 6: Spawn-Target Selection Algorithm

flow graphs include information about procedure calls such
as the frequency a given subroutine is called from a given
site. For our purposes we consider a call site to be a basic
block boundary, and augment the graph with an edge from
the call instruction to the next instruction. This edge has
probability one minus the probability the call is predicated
false, and path length and variance computed by summariz-
ing subroutines.

The algorithm first splits control flow graph nodes that
represent large basic blocks into linear sequences of nodes,
each representing only a portion of the original basic block.
Spawn and target locations are constrained to the beginning
of basic blocks to reduce complexity—without performing
this step some instructions may not be prefetched as no ad-
missible target would be close enough. Next, the algorithm
computes procedure summary information. In particular,
the expected path length and variance from entry to exit,
and the reaching probabilities from the entry to each block
are computed. The latter is used for computing the expected
path footprint taking into account procedure calls.

Once summary information is computed, we rank the ba-
sic blocks by the absolute number of I-cache misses they
generate. We target basic blocks that account for the top
95% of all instruction cache misses. In each procedure vis-
ited, the reaching probability, expected path length and vari-
ance, posteriori probability, are computed between every

pair of basic blocks according to the method described in
Section 3.3. It may be possible to improve the algorithm’s
performance by pruning some of these evaluations.

We maintain an estimated number of instruction cache
misses remaining in each block given the spawn-target pairs
already selected. The initial value is the number of I-cache
miss found during profiling. Then, we iteratively select the
block in the current procedure with the highest estimated re-
maining I-cache misses, determine a target and correspond-
ing set of independent spawn points for this block, and up-
date the estimated remaining cache misses in all blocks that
may be prefetched by helper threads with these spawn-target
pairs. The latter update is based on estimating the amount

of coverage each block receives using the posteriori proba-
bility, and the probability the slack will be sufficient to hide
the memory latency. Similarly, we maintain an estimated
number of running helper threads at each point in the pro-
gram such that a spawn-point is not selected if this selection
leads to a high probability of attempting to concurrently run
more helper threads than available thread contexts.

For each selected block v, potential targets are earlier
blocks with high posteriori probability of being visited be-
fore v. Thus, the targets do not necessarily suffer heavy
I-cache misses themselves. It is often necessary to perform
this step to find targets with high reaching probability from
potential spawn points. The selection process for spawn and
target are coupled in the following way: A set of potential
targets with posteriori expected distance less than half the
(preset) maximum postfix distance we wish to allow2 is gen-
erated, and ranked in descending order by distance from the
selected block. By selecting the target to be an earlier block
in this way, we reduce the selection of spawn-target pairs
with overlapping postfix regions. For each potential target
in turn, a set of independent spawn points is found using
the following process.

For a given target t, a set of mutually independent spawn
points are selected among all blocks in the procedure with
reaching probability to t greater than a threshold3, by com-
puting a heuristic value indicating their effectiveness as spawn
points for the target. In particular, the merit of a given
spawn-point s is computed as the product of the follow-
ing factors: The first factor is the posteriori probability
that the spawn precedes the target. This factor along with
the expected path footprint quantify the fraction of I-cache
misses at the target that are covered by instances of the
helper thread. Furthermore, together with the restriction
on reaching probability it ensures the spawn and target
are control flow correlated. The second factor uses the ex-
pected path footprint to penalize those spawn points whose
average target-to-spawn footprints are less than the cache
size, because this condition implies a greater likelihood the
prefetched instructions are still in the I-cache (for target-to-
spawn footprints less than the cache size we reduce the value
by a factor of the cache size divided by the expected foot-
print size). Similarly, spawn points with expected spawn-
to-target path footprints larger than the instruction cache
capacity are given a value of zero. The third factor is the
size of the postfix region the helper thread can prefetch by
finding the maximum postfix length that always provides a
minimum threshold probability4 that the slack of the last
prefetch issued by the helper thread is still positive (for
simplicity we assume path lengths take on a Gaussian dis-
tribution). As spawn-target distance increases, this term
increases until the number of instructions the helper thread
can prefetch reaches the preset maximum postfix distance.
The number of instructions the helper thread is likely to
prefetch before getting caught by the main thread is also
output (and used to terminate the helper thread).

5. SIMULATION RESULTS
This section presents both an evaluation of the accuracy

2The latter was set experimentally to 100 Itanium � bundles.
Each bundle contains two, or (more usually) three instructions.
3Experimentally set to 0.95
4Experimentally set to 0.5

of our modeling framework compared to statistics collected
from actual program execution traces, and a performance
analysis of prescient instruction prefetch based upon cycle
accurate simulation. We examine the performance impact
of prescient instruction prefetch threads defined by spawn-
target pairs selected using the algorithm described in Sec-
tion 4.

5.1 Methodology
We select four benchmarks from Spec2000 and one from

Spec95 that incur significant instruction cache misses on
the baseline processor model. The application binaries were
built with the Intel Electron compiler, all, except for fpppp,
with profile feedback enabled. We profile the branch fre-
quencies and I-cache behavior by running the programs to
completion. The spawn-target generation algorithm selected
between 34 and 1348 static spawn-target pairs per bench-
mark as shown in Table 2, which also quantifies the num-
ber of dynamic occurrences of these spawn target pairs, and
the average distance between spawn and target (infix), and
the average number of instructions prefetched per dynamic
helper thread instance for a 4-way SMT (postfix). The small
number of static pairs implies small instruction storage re-
quirement for helper threads. The large infix size means
long memory latencies can be tolerated, while small postfix
indicates helper threads do run slower than the main thread.

Table 2: Spawn-Target Characteristics
benchmark # static # dynamic infix postfix

145.fpppp 62 378528 622 162

177.mesa 34 210519 1186 255

186.crafty 166 560200 573 129

252.eon 152 407516 691 120

255.vortex 1348 438722 1032 142

The baseline architecture is a cycle-accurate research in-
order SMT processor model for the Itanium � architecture
[11] based upon SMTSIM [25] with microarchitectural pa-
rameters as summarized in Table 3. The baseline uses a
hardware instruction prefetch mechanism that issues a prefet-
ch for the next sequential line on a demand miss, and sup-
ports Itanium � instruction stream prefetch hints tagged
onto branch instructions by the compiler. The rest of the
memory hierarchy organization models latencies resembling
an Itanium � 2 at 1.5GHz.

We evaluate the potential of prescient instruction prefetch
assuming values for all live-in register, and memory operands
to the postfix region are available at no cost as soon as the
helper thread spawns. A helper thread is spawned when the
main thread commits a spawn-point. If no free thread con-
texts are available the spawn-point is ignored. The helper
thread may begin fetching from the target the following cy-
cle and runs for its expected maximum postfix distance be-
fore exiting. If the main thread catches up with it before
that point the helper thread is killed and stops prefetching
instructions. Helper thread instructions contend for execu-
tion resources with the main thread, but have reduced fetch
and issue priorities relative to the main thread. We assume
store operations executed by helper threads do not commit
to memory, but that they correctly forward their values to
dependent loads within the same helper thread. Once a

helper thread is stopped and its instructions drain from the
pipeline, the thread context is available to run other helper
threads. As this is a limit study we do not simulate the effect
of a helper thread spawned when the target does not appear
(only the last spawn-point seen before a given instance of a
target-point initiates a helper thread) and we do not model
off-path fetching by helper threads.

Table 3: Processor Resources

Threading SMT processor with 2, 4, or 8 hardware threads.

Pipelining In-order: 12-stage pipeline.

Fetch 2 bundles from 1, or 1 bundle from 2 threads

prioritize main thread, helpers ICOUNT [24].

I-Prefetch next line prefetch (triggered on miss)

stream prefetcher (triggered by compiler hints)

max. 4 outstanding prefetches per context

Branch Pred. 2k-entry gshare. 256-entry 4-way assoc. BTB.

helper threads: oracle branch prediction

Issue 2 bundles from 1, or 1 bundle from 2 threads

prioritize main thread, helpers: round-robin.

Function units 4 int., 2 fp., 3 br., and 2 data mem. ports

Register files 128 int, 128 fp, 64 predicate, 8 br.

per thread 128 control registers.

Caches L1 (separate I&D): 16KB (each). 4-way. 1-cyc.

L2 (shared cache): 256KB. 4-way. 14-cycles

L3 (shared cache): 3072KB. 12-way. 30-cycles.

Fill buffer: 16 entries. caches have 64B lines.

helper threads: infinite store buffer 1-cyc.

Memory 230-cycles. TLB miss penalty: 30 cyc.

To evaluate the performance impact of prescient instruc-
tion prefetch we collect data for 100 million instructions after
warming up the cache hierarchy while fast-forwarding past
the first billion instructions.

5.2 Framework Accuracy: An Example
To assess the accuracy of the modeling framework, we

measure the reaching probability, expected path length, path
length variance, and expected path footprint for 25 spawn-
target pairs chosen by the selection algorithm for subroutine
Evaluate() in benchmark crafty by simulating a Markov
model of the subroutine, and by collecting statistics from
program traces. The Evaluate() subroutine accounts for
roughly one quarter of all I-cache misses in crafty, and
its control flow graph is non-trivial—containing 230 basic
blocks, 345 edges, and several loops. Figure 7(a)-7(d) com-
pare predicted statistics with a Monte Carlo simulation based
upon an idealized Markov chain with the exact same edge
probabilities used by the framework (“measured” in these
figures represents averages from 1 million trials per spawn-
target pair). The units in Figures 7(b), (c) and (d) are
Itanium � bundles, while Figure 7(a) plots relative frequency
versus probability both measured in percentage. Note that
path variation is reported as the standard deviation—i.e.,
the square root of the variance. The expected footprint
predictions are computed using Equation 3—i.e., without
substituting RP (x, v) for RPα(x, v|¬y). The strong correla-
tion present in Figures 7(a)-7(d) underscores the robustness
of the path expression based methodology described in Sec-
tion 3, and Table 1.

94%

96%

98%

100%

94% 96% 98% 100%
Predicted

M
ea

su
re

d

0

200

400

0 200 400
Predicted

M
ea

su
re

d

0

50

100

0 50 100
Predicted

M
ea

su
re

d

0

100

200

300

0 100 200 300
Predicted

M
ea

su
re

d

(a) reaching probability (b) expected path length

(c) path length variation (d) expected footprint

Figure 7: Monte Carlo Simulation vs. Framework.

40%

60%

80%

100%

94% 96% 98% 100%
Predicted

M
ea

su
re

d

0

200

400

0 200 400
Predicted

M
ea

su
re

d

0

50

100

0 50 100
Predicted

M
ea

su
re

d

0

100

200

300

0 100 200 300
Predicted

M
ea

su
re

d

(a) reaching probability (b) expected path length

(c) path length variation (d) expected footprint

Figure 8: Execution Trace Statistics vs. Framework.

Figures 8(a)-8(d) show a similar comparison for the same
spawn-target pairs, but with statistics from the 100 million
instruction segment used for performance evaluation. Both
the reaching probability, and path length variation exhibit
several outlying data points. However, note that 16 of the
25 data points are clustered within 1% of the upper right
corner in Figure 8(a) so that reaching probability is more
correlated than casual observation may suggest. The outly-
ing data points appear to result from two approximations in
the modeling framework: First, transition probabilities were
determined by profiling over the whole program execution,
which averages out behaviors unique to distinct phases of
execution. Second, even within a single phase of program
execution the correlation between branch outcomes is ig-
nored in the model. Both of these approximations can lead
to the existence of paths never executed by the program
having a finite probability in the model. Similarly, some
paths with a very small predicted probability of occurring
in the model may actually have a high probability of oc-
curring during execution due to strong branch correlation.
Imprecise path probability estimates can lead a weighting
of possible outcomes during path expression evaluation that
differs from real program execution. By separately modeling
program behavior in distinct program phases [21], and tak-
ing into account the impact of branch correlation (perhaps
by extending the current approach to use higher order Mar-

kov chain models) these quantities may be predicted with
greater accuracy, however such enhancements are beyond
the scope of this paper.

5.3 Results
Figure 9 illustrates the speedup of prescient instruction

prefetch compared to the baseline model. The first bar on
the left for each benchmark is the speedup if all instruc-
tion accesses hit in the first level cache, and shows speedups
ranging from 7% to 25% with a harmonic mean of 18%.
Thus the benchmarks we study do indeed suffer significantly
from instruction cache misses. The bars labeled 2t, 4t, and
8t represent the speedup of idealized prescient instruction
prefetch on a machine with 2, 4 and 8 hardware thread con-
texts respectively. In each case spawn-target pairs are gen-
erated assuming only one main thread will share processor
resources with the helper threads. Speedup improved with
increasing number of hardware thread contexts with har-
monic mean speedups of 5.5%, 9.8%, and 13% respectively,
with speedups of up to 4.8% to 17% on the 8 thread context
configuration. As might be expected, increasing the number
of concurrent helper threads lead to a reduction in the IPC
of individual helper threads due to resource contention. The
last two bars in this figure will be described below.

1

1.1

1.2

1.3

145.fpppp 177.mesa 186.crafty 252.eon 255.vortex avg

S
p

ee
d

u
p

ideal
2t
4t
8t
F
L

Figure 9: Limit study performance. “Perfect I � ”
speedup if all I-accesses hit. “n t” prescient instruc-
tion prefetch speedup for n thread contexts. “F”
spawn-target pairs selected assuming four thread
contexts and fast helpers (low CPIh), performance
modeled so that helpers do not block on an I-cache
miss. “L” 4t and spawn-target pairs selected with
low reaching probability threshold (0.75).

0%

20%

40%

60%

80%

100%

2t 4t 8t F L 2t 4t 8t F L 2t 4t 8t F L 2t 4t 8t F L 2t 4t 8t F L

145.fpppp 177.mesa 186.crafty 252.eon 255.vortex

M
is

s
B

re
ak

d
o

w
n

evicted

too-slow

no-context

no-spawn

no-target

Figure 10: Breakdown of remaining I-cache misses
relative to baseline.

Most applications see a substantial reduction in the num-
ber of I-cache misses that improves as additional thread con-

texts are made available with a reduction in I-cache misses
averaging 16% for 2t, 33% for 4t, and 42% for 8t. To better
understand how speedup is obtained, as well as the qual-
ity of the spawn-target selection algorithm, Figure 10 shows
the source of remaining I-cache misses normalized to the
number of baseline instruction cache misses. Each miss is
classified into one of five categories: “no target” means that
the cache miss is not preceded by an instruction selected
as a target, within that target’s maximum postfix distance;
“no spawn” means that although there is at least one tar-
get, none of them were preceded by a spawn since the last
occurrence of the target; “no context” means there was a
spawn-target pair that could have prefetched the I-cache
miss, but no SMT thread context was available when the
spawn committed; “too slow” means a helper thread was
running that could have prefetched the I-cache miss, but it
was caught by the main thread before it could do so (note:
partial misses are included in this chart); finally, “evicted”
means a helper thread did prefetch the accessed line, but the
line was evicted before being reached by the main thread.

Ideally, all components should be small, but especially the
“too slow” and “no contexts” should be low if our framework
is able to predict run time behavior well and the algorithm
is properly tuned. On average, for 4t, 32% of I-cache misses
remain because there was no target, 12% because there was
no spawn, 7% due to lack of SMT thread contexts, 6% be-
cause the associated helper threads ran too slowly, and 9%
because the prefetches were too aggressive and prefetched
instructions were evicted. The large “no target” compo-
nent results when the selection algorithm could not find a
spawn-target pair to target the miss, either due to resource
constraints, or because it could not find a early enough loca-
tion that was control flow correlated because we constrained
spawn-target pairs to be within the same function body.
Figure 10 indicates that increasing the number of thread
resources (and static spawn-target pairs) does not seem to
significantly impact “no target”. So it is more likely the lat-
ter cause is the culprit. To further corroborate this view, we
examine the bar labeled F in Figure 9 and Figure 10, which
represents the impact when spawn-target pairs are selected
assuming the helper thread progresses with the same CPI
as the main thread. For this to make sense, the execution
model is modified to allow helpers to prefetch instructions
without executing them, so that I-cache misses do not stall
a helper thread (although fetch contention still does). This
reduces the “no target” component to an average 7%, high-
lighting the importance of finding ways to improve helper
thread efficiency. Note that, except for F, vortex shows
significant speedups due to data prefetching.

For crafty, there was a large fraction of “no spawn”.
To reduce this, a seemingly straightforward approach is to
lower the threshold for reaching probability in hope to in-
clude more spawn candidates. To quantify this intuition,
the bars labeled L are for spawn-target pairs selected with
a reaching probability threshold of only 75%. However, this
lowered threshold does not seem to help significantly. De-
tailed inspection shows many targets associated with this
type of miss have spawns with low posteriori probability. Of-
ten these were the only remaining locations within the cur-
rent procedure that provided sufficient slack. Thus, lowering
selection threshold alone is not sufficient, further improve-
ments may come from a better (i.e., non-greedy) selection
algorithm.

6. CONCLUSION
In this paper we propose prescient instruction prefetch, a

technique for speeding up single-threaded applications suf-
fering from heavy instruction cache misses by leveraging
spare thread contexts to run helper threads to prefetch fu-
ture instructions. We introduce an analytical framework and
describe, implement and evaluate an optimization algorithm
for selecting prefetch helper thread spawn-target pairs. This
study shows potential speedups of 4.8% to 17% over an
Itanium � processor model with nextline and I-stream pre-
fetch, demonstrating the effectiveness of the framework, and
prescient instruction prefetch. Important topics for future
study are the impact of precomputation overhead and hard-
ware optimizations for prescient instruction prefetch.

7. ACKNOWLEDGEMENTS
We would like to thank Murali Annavaram, Bob Colwell,

Edward Grochowski, Steve (Shih-wei) Liao, James Psota,
Ronny Ronen, Lesley Shannon, Perry Wang, Craig Zilles,
and the anonymous referees for their valuable comments on
this work.

8. REFERENCES
[1] M. Annavaram, J. M. Patel, and E. S. Davidson. Data

Prefetching by Dependence Graph Precomputation. In
28th International Symposium on Computer Architec-

ture, pages 52–61, 2001.

[2] P. P. Chang, S. A. Mahlke, and W. Hwu. Using Pro-
file Information to Assist Classic Code Optimizations.
Software – Practice and Experience, 21(12):1301–1321,
1991.

[3] R. S. Chappell, J. Stark, S. P. Kim, S. K. Rein-
hardt, and Y. N. Patt. Simultaneous Subordinate Mi-
crothreading (SSMT). In 26th International Symposium

on Computer Architecture, pages 186–195, 1999.

[4] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt.
Difficult-Path Branch Prediction Using Subordinate
Microthreads. In 29th International Symposium on

Computer Architecture, pages 307–317, 2002.

[5] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen.
Dynamic Speculative Precomputation. In 34th Interna-

tional Symposium on Microarchitecture, pages 306–317,
2001.

[6] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F.
Lee, D. Lavery, and J. P. Shen. Speculative Precompu-
tation: Long-Range Prefetching of Delinquent Loads.
In 28th International Symposium on Computer Archi-

tecture, pages 14–25, 2001.

[7] M. Dubois and Y. Song. Assisted execution. Technical
Report CENG 98-25, Department of EE-Systems, Uni-
versity of Southern California, Oct. 1998.

[8] J. Emer. Simultaneous multithreading: Multiplying al-
pha’s performance. Microprocessor Forum, Oct. 1999.

[9] D. W. Hammerstrom and E. S. Davidson. Informa-
tion Content of CPU Memory Referencing Behavior.
In 4th International Symposium on Computer Archi-

tecture, pages 184–192, 1977.

[10] G. Hinton and J. Shen. Intel’s multi-threading technol-
ogy. Microprocessor Forum, Oct. 2001.

[11] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, and
R. Zahir. Introducing the IA-64 Architecture. IEEE Mi-

cro, 20(5):12–23, 2000.

[12] Intel Corporation. Special Issue on Intel Hyper-
Threading Technology in Pentium � 4 Processors. In-
tel Technology Journal. Q1 2002.

[13] S. S. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lav-
ery, and J. P. Shen. Post-Pass Binary Adaptation for
Software-Based Speculative Precomputation. In SIG-

PLAN 2002 Conference on Programming Language De-

sign and Implementation, pages 117–128, 2002.

[14] C.-K. Luk. Tolerating Memory Latency Through
Software-Controlled Pre-execution in Simultaneous
Multithreading Processors. In 28th International Sym-

posium on Computer Architecture, pages 40–51, 2001.

[15] P. Marcuello and A. Gonzlez. Thread-Spawning
Schemes for Speculative Multithreading. In 8th Interna-

tional Symposium on High-Performance Computer Ar-

chitecture, pages 55–64, 2002.

[16] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi.
Slice-Processors: An Implementation of Operation-
Based Prediction. In 15th International Conference on

Supercomputing, pages 321–334, 2001.

[17] G. Ramalingam. Data flow frequency analysis. In SIG-

PLAN 1996 Conference on Programming Language De-

sign and Implementation, pages 267–277, 1996.

[18] G. Reinman, B. Calder, and T. Austin. Fetch Directed
Instruction Prefetching. In 32nd International Sympo-

sium on Microarchitecture, pages 16–27, 1999.

[19] A. Roth and G. S. Sohi. Speculative Data-Driven
Multithreading. In 7th International Symposium on

High-Performance Computer Architecture, pages 37–
48, 2001.

[20] A. Roth and G. S. Sohi. A Quantitative Framework
for Automated Pre-Execution Thread Selection. In 35th

International Symposium on Microarchitecture, pages
430–441, 2002.

[21] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program be-
havior. In 10th International Conference on Architec-

tural Support for Programming Languages and Operat-

ing Systems, pages 45–57, 2002.

[22] R. E. Tarjan. A Unified Approach to Path Problems.
Journal of the ACM, 28(3):577–593, 1981.

[23] R. E. Tarjan. Fast Algorithms for Solving Path Prob-
lems. Journal of the ACM, 28(3):594–614, 1981.

[24] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting Choice: Instruc-
tion Fetch and Issue on an Implementable Simultaneous
Multithreading Processor. In 23rd International Sym-

posium on Computer Architecture, pages 191–202, 1996.

[25] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultane-
ous Multithreading: Maximizing On-Chip Parallelism.
In 22nd International Symposium on Computer Archi-

tecture, pages 392–403, 1995.

[26] M. Weiser. Program slicing. In 5th International Con-

ference on Software Engineering, pages 439–449, 1981.

[27] C. Zilles and G. Sohi. Execution-based prediction using
speculative slices. In 28th International Symposium on

Computer Architecture, pages 2–13, 2001.

[28] C. B. Zilles and G. S. Sohi. Understanding the back-
ward slices of performance degrading instructions. In
27th International Symposium on Computer Architec-

ture, pages 172–181, 2000.

