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Abstract—In the single-instruction multiple-threads (SIMT)
execution model, small groups of scalar threads operate in
lockstep. Within each group, current SIMT hardware implemen-
tations serialize the execution of threads that follow different
paths, and to ensure efficiency, revert to lockstep execution as
soon as possible. These constraints must be considered when
adapting algorithms that employ synchronization. A deadlock-
free program on a multiple-instruction multiple-data (MIMD)
architecture may deadlock on a SIMT machine. To avoid
this, programmers need to restructure control flow with SIMT
scheduling constraints in mind. This requires programmers to
be familiar with the underlying SIMT hardware.

In this paper, we propose a static analysis technique that
detects SIMT deadlocks by inspecting the application control
flow graph (CFG). We further propose a CFG transformation
that avoids SIMT deadlocks when synchronization is local to a
function. Both the analysis and the transformation algorithms
are implemented as LLVM compiler passes. Finally, we propose
an adaptive hardware reconvergence mechanism that supports
MIMD synchronization without changing the application CFG,
but which can leverage our compiler analysis to gain efficiency.
The static detection has a false detection rate of only 4%–
5%. The automated transformation has an average performance
overhead of 8.2%–10.9% compared to manual transformation.
Our hardware approach performs on par with the compiler
transformation, however, it avoids synchronization scope limita-
tions, static instruction and register overheads, and debuggability
challenges that are present in the compiler only solution.

I. INTRODUCTION

The single-instruction multiple-thread (SIMT) programming
model was introduced and popularized for graphics processor
units (GPUs) along with the introduction of CUDA [1]. It has
seen widespread interest and similar models have been adopted
in CPU architectures with wide-vector support [2]. Arguably,
a key reason for the success of this model is that it largely
abstracts away the underlying SIMD hardware. In SIMT-like
execution models, scalar threads are combined into groups
that execute in lockstep on single-instruction multiple-data
(SIMD) units. These groups are called warps by NVIDIA [1],
wavefronts by AMD [3], and gangs by Intel [2]. The pro-
gramming model divides the burden of identifying parallelism
differently than traditional approaches of vector parallelism.
The programmer, who is armed with application knowledge,
identifies far-flung outer-loop parallelism and specifies the
required behaviour of a single thread in the parallel region.

On current hardware the SIMT model is implemented via
predication, or in the general case using stack-based mask-
ing of execution units [2], [4]–[7]. This mechanism enables
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Fig. 1: SIMT-Induced Deadlock

threads within the same warp to diverge (i.e., follow different
control flow paths). However, they achieve this by serializing
the execution of different control-flow paths while restoring
SIMD utilization by forcing divergent threads to reconverge
as soon as possible (typically at an immediate postdominator
point) [2], [5], [8]. This in turn creates implicit scheduling
constraints for divergent threads within a warp. Therefore,
when GPU kernel code is written in such a way that the
programmer intends divergent threads to communicate, these
scheduling constraints can lead to surprising (from a program-
mer perspective) deadlock and/or livelock conditions. Thus,
a multi-threaded program that is guaranteed to terminate on
a MIMD architecture may not terminate on machines with
current SIMT implementations [9]1.

Figure 1 shows a typical MIMD implementation of a spin
lock guarding a critical section. On a SIMT machine, this
code deadlocks. In particular, a thread that acquires the lock
is indefinitely blocked at the loop exit waiting to reconverge
with lagging threads from the same warp. However, lagging
threads never exit the loop because they wait for the lock
to be released by the leading thread. Similar scenarios occur
with fine-grained synchronization. We refer to a case where
the forward progress of a diverged thread is prevented due
to the implicit SIMT scheduling constraints as SIMT-induced
deadlock or briefly SIMT deadlock.

The possibility of SIMT-induced deadlocks is a challenge,
given the increasing interest in using SIMT architectures for
irregular applications [10]–[12]. Moreover, parallel algorithms
developed for MIMD execution can serve as starting points
for GPU kernel development provided SIMT deadlock can be
avoided. For complex applications writing functionally correct
code can be challenging as programmers need to reason about
how synchronization interacts with the SIMT implementation.
Further, the code is vulnerable to compiler optimizations
that may modify the control flow graph (CFG) assumed

1We use the term “MIMD machine” to mean any architecture that guar-
antees loose fairness in thread scheduling so that threads not waiting on a
programmer synchronization condition make forward progress.978-1-5090-3508-3/16/$31.00 © 2016 IEEE



by programmers. SIMT deadlocks also present challenges to
emerging OpenMP support for SIMT architectures [13]–[17]
and to the transparent vectorization of multi-threaded code on
SIMD CPU architectures [2], [18].

In this paper, we propose a static analysis technique that (1)
detects potential SIMT-induced deadlocks and (2) identifies
safe locations for delayed reconvergence that allow for inter-
thread communication. The static analysis information is lever-
aged by two different proposed solutions for SIMT deadlocks
(1) a compiler-based solution that alters the CFG of the
application to adhere to the recommended safe reconvergence
points and (2) a hardware-based solution that implements
a SIMT reconvergence mechanism with the flexibility to
delay reconvergence without changing the application’s CFG.
We implemented both the compiler analysis and the CFG
transformation algorithms as compiler passes in LLVM 3.6
and evaluated them using a large set of GPU kernels. We
also implemented and evaluated our proposed hardware SIMT
reconvergence mechanism using a cycle level simulator.

To the best of our knowledge, this is the first paper to
propose techniques to execute arbitrary MIMD code with inter-
thread synchronization on vector hardware. The contributions
of this paper are:
• A static analysis technique for detecting potential SIMT-

induced deadlocks in parallel kernels.
• A code transformation algorithm that modifies the CFG

to eliminate SIMT-induced deadlocks.
• A SIMT-reconvergence mechanism that avoids some

limitations of the compiler-only approach.
• A detailed evaluation of both approaches.

Codes to implement both approaches are available online [19]

II. SIMT MODEL CHALLENGES

Conceptually, in a stack-based SIMT implementation, a per-
warp stack is used to manage divergent control flow. Each
entry contains three fields that represent a group of scalar
threads executing in lock-step: (1) a program counter (PC)
which stores the address of the next instruction to execute,
(2) a reconvergence program counter (RPC) which stores the
instruction address at which these threads should reconverge
with other threads from the same warp and (3) an active
mask that indicates which threads have diverged to this path.
Initially, the stack has a single entry. Once a divergent branch
is encountered, the PC field of the divergent entry is replaced
with the RPC of the encountered branch and the branch
outcomes’ entries are pushed onto the stack. Only threads at
the top of the stack entry are eligible for scheduling. Once
executing threads reach reconvergence, their corresponding
entry is popped out of the stack. In some implementations the
stack is implemented and/or manipulated in software [4]–[7].

Figure 2 illustrates two examples of how the reconvergence
stack changes after executing a divergent branch. Next, we
briefly describe these changes, however, more in depth ex-
planation for the stack operation on similar examples can be
found in [20]. In Figure 2, bit masks (e.g., “1111”) inside
the CFG basic blocks indicate active threads executing a
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Fig. 2: Stack-Based Reconvergence

basicblock. Bit masks at the CFG edges indicate which threads
diverged to which path. In Figure 2a, an if-else branch is
executed at the end of basic block A (BBA) 1 . The PC of the
first stack entry changes to the RPC of the branch (i.e., BBD),
and two new entries are pushed onto the stack representing
the branch taken and not-taken paths 2 . Only the top of the
stack (TOS) entry is eligible for scheduling. Therefore, this
warp starts executing threads that diverged to BBC 3 . After
these threads reach the reconvergence point (i.e., BBD), their
entry is popped from the stack and the execution of BBB starts.
Eventually, all threads reconverge at BBD 4 . This sequence
allows the stack to track multiple reconvergence points in
case of more complex CFGs that contain nested branches. In
Figure 2b, a loop branch is executed at the end of BBB 1 . One
thread exits the loop while others continue iterating. Similar to
the first example, the PC of the first stack entry changes to the
RPC of the branch (i.e., BBC). Only a single entry is pushed
onto the stack representing threads that diverged to the loop
header 2 . The warp keeps iterating through the loop until all
threads eventually exit the loop and start executing BBC. This
mechanism enables the GPU to reconverge diverged threads
improving SIMD units utilization. However, it imposes thread
scheduling constraints which we discuss next.
A. SIMT-Induced Deadlocks

Conventionally, in MIMD environment, programmers do not
worry about specifics of thread schedulers to write functionally
correct code. It is assumed that the hardware guarantees
“loose” fairness in thread scheduling [9]. SIMT programming
models attempt to provide similar guarantees [1]. However,
current SIMT implementations fail to do so. In current SIMT
implementations, thread scheduling is constrained by the CFG
of the executed application such that: if a warp W encounters
a branch BRT,NT7→R with two possible successor basic blocks
T and NT and reconvergence point R, it may diverge into two
splits [21]; WPT7→R and WPNT 7→R . WPT7→R contains threads that
diverge to the taken path and WPNT 7→R contains threads that di-
verge to the not-taken path. On current SIMT implementations
execution respects the following:

Constraint-1: Serialization. If WPT7→R executes first then
WPNT 7→R blocks until WPT7→R reaches R (or vice
versa)

Constraint-2: Forced Reconvergence. When WPT7→R reaches
R, it blocks until WPNT 7→R reaches R (or vice versa).



1. done = false;
2. *mutex = 0;
3. while(!done){
4. if(atomicCAS(mutex,0,1)==0){
5. //Critical Section
6. atomicExch(mutex,0);
7. done = true;
8. }
9. }

Fig. 3: Modified SIMT compliant Spin Lock

Collectively we refer to these two constraints as the reconver-
gence scheduling constraints.

A SIMT-induced deadlock occurs when a thread is in-
definitely blocked due to cyclic dependency between either
of these constraints and a synchronization operation in the
program. We categorize SIMT-induced deadlocks into two
types according to their cause:

Conditional Loops: In Figure 1, all threads attempt to
acquire the same lock (mutex). To acquire the lock, each
thread repeatedly executes an atomic compare and swap.
The loop condition evaluates to false for the single thread
that successfully acquires the lock. We call this the leading
thread. The remaining threads fail to acquire the lock. We call
these lagging threads. The lagging threads continue to iterate
through the loop waiting for the leading thread to release
the lock by executing atomicExch(...). However, in current
SIMT implementations the leading thread never reaches atom-
icExch(...) as it is blocked by Constraint-2 (i.e., the leading
thread is forced to wait for lagging threads at the loop exit
reconvergence point). The lagging threads, on the other hand,
cannot make forward progress because the leading thread
owns the lock. This issue is known among GPU application
developers [9], [22]–[26], and can be avoided by restructuring
the CFG of the spin lock code as shown in Figure 3 (assuming
that the compiler maintains the intended CFG unchanged).

Barriers: Following MIMD execution semantics, a pro-
grammer may place two barrier instructions in diverged code
with the intention that every thread reaches either the first
or second barrier before any thread continues. However, if
divergence happens within a single warp, such code will either
lead to a deadlock due to the serialization constraint (if barrier
arrival is counted per scalar thread) or lead to hard to predict
and/or implementation dependent behaviour (if barrier arrival
is counted per warp [27]). Prior work studied detection of
SIMT deadlocks due to barrier divergence [28]–[30].

B. Programmability Challenges

Figure 3 shows a well-known workaround to implement a
spin lock on current SIMT implementations [24]. The while
loop body includes both the lock acquisition and release.
Hence, the reconvergence point of the while loop does not pre-
vent the required communication between threads. However,
besides not having a general solution, there are key downsides
to solely relying on programmer intervention to work around
current SIMT implementations’ constraints:
Programming Practice: The CUDA Programming Guide [1]

states that “For the purposes of correctness, the programmer
can essentially ignore the SIMT behaviour, ...” and suggests
that SIMT behaviour is primarily relevant for performance
tuning purposes. In current SIMT implementations, dealing
with SIMT deadlocks is the exception. SIMT deadlocks are
also fundamental obstacles to the adoption of higher level pro-
gramming models such as OpenMP 4.0 [31]. For example, the
implementation of omp set lock(...) in the OpenMP 4.0 GPU
library [17] generates code like that shown in Figure 1 and a
general, correct and efficient implementation that considers
current SIMT constraints is not clear as it is dependent on the
omp set unlock(...) locations.
Unstandardized SIMT Behavior: Different GPU vendors
have their own implementation of the SIMT execution model.
As a consequence, the order in which divergent paths are
executed and the locations of reconvergence points is not
standardized and often undocumented. One reason a pure
compiler or hardware solution is preferable is that programs
dependent on undocumented behaviour may lack forward
compatibility and portability.
Vulnerability to Compiler Optimizations: The manual
workaround provided in Figure 3 assumes the compiler main-
tains the same control flow described by the high level
language. However, optimizations that either modify the CFG
or move statements across basic blocks can conflict with the
intended manual transformation. For example, optimizations
such as jump-threading and simplifycfg [32] transform the
code in Figure 3 back to the code in Figure 1 as they
eliminate redundant branches. Both are enabled with -O1
in LLVM 3.6. LLVM is used for the standard CUDA and
OpenCL compilation flow on several platforms [33], [34].
Thus, without a compiler that is aware of SIMT deadlocks,
manual transformations are not reliable 2.

In this paper, we argue that the compiler and the hardware
should be capable of abstracting away SIMT implementation
nuances when necessary. Thus, the choice of conventional
high level MIMD semantics versus emerging low level SIMD
semantics (e.g., vote and shuffle operations in CUDA and
subgroups in OpenCL 2.0) can be made by the programmer,
rather than dictated by the underlying implementation.

III. SIMT DEADLOCK STATIC ANALYSIS

This section proposes a static analysis that (A) detects
potential SIMT deadlocks and (B) identifies safe locations for
delayed reconvergence that allows for otherwise blocked inter-
thread communication. The static analysis results are used by
SIMT deadlock elimination techniques in Section IV.

A. SIMT-Induced Deadlock Detection

This section presents a static analysis technique that con-
servatively detects SIMT deadlocks due to conditional loops.

2We observed this problem in NVCC but less frequently. Test codes [19]
that use variations of Figure 3 code terminate when compiled with device
optimization disabled (i.e., with -Xcicc -O0 -Xptxas -O0) but deadlocks with
default optimizations. This was tested with NVCC 7.5 on GTX1080 (Pascal).
Online discussions also report this problem on other compilers (e.g., OpenCL
on Xeon CPU [35] and GLSL on Nvida GTX 580M [36]).



Listing 1 Definitions and Prerequisites for Algorithms 1, 2, 3
-BB(I): basic block which contains instruction I (i.e., I ∈ BB(I)).
-PBB17→BB2 : union set of basic blocks in execution paths that connect BB1 to BB2.
-IPDom(I) : immediate postdominator of instruction I. For non-branch instructions,
IPDom(I) is the instruction immediately follows I. For branch instructions, IPDom(I)
is defined as the immediate common postdominator for the basic blocks at the branch
targets BBT and BBNT.
-IPDom(arg1,arg2) is the immediate common postdominator for arg1 and arg2;
arg1 and arg2 could be either basic blocks or instructions.

-LSet: the set of loops in the kernel, where ∀ L ∈ LSet:
-BBs(L): the set of basic blocks within loop L body.
-ExitConds(L): the set of branch instructions at loop L exits.
-Exits(L): the set of basic blocks outside the loop that are immediate successors
of a basic block in the loop.
-Latch(L): loop L backward edge, Latch(L).src and Latch(L).dst are the edge
source and destination basic blocks respectively.
-Basicblock BB is reachable from loop L, iff there is a non-null path(s)
connecting the reconvergence point of Exits(L) with basic block BB without
going through a barrier.

ReachBrSet(L,BB) is a union set of conditional branch instructions in all
execution paths that connects the reconvergence point of Exits(L) with BB.
-Basicblock BB is parallel to loop L, iff there is one or more conditional branch
instructions where BBs(L) ⊂ PT 7→R and BB ∈ PNT7→R or vice versa, where R is
the reconvergence point of the branch instruction. ParaBrSet(L,BB) is a union
set that includes all branch instructions that satisfy this condition.

In the remainder of this section, we consider the case of
a single kernel function K with no function calls (either
natively or through inlining) and with a single exit (e.g., by
merging return statements). We assume that K is guaranteed
to terminate (i.e., is deadlock and livelock free) if executed
on any MIMD machine. We also assume that K is barrier
divergence-free [28] (i.e., for all barriers within the kernel, if
a barrier is encountered by a warp, the execution predicate
evaluates to true across all threads within this warp) 3. This
assumption excludes the possibility of SIMT deadlocks due to
barriers in divergent code (whose detection techniques have
been extensively studied in prior work [28]–[30]). We refer to
memory spaces capable of holding synchronization variables
as shared memory (i.e., including both global and shared
memory using CUDA terminology). Listing 1 summarizes
definitions used in Algorithms 1, 2, 3 which we discuss as
we explain each algorithm.

Under barrier divergence freedom, the only way to prevent
forward progress of a thread is a loop whose exit condition
depends upon a synchronization variable. Forward progress is
prevented (i.e., SIMT deadlock occurs) if a thread enters a
loop for which the exit condition depends on the value of a
shared memory location and that location will only be set by
another thread that is blocked due to Constraint 1 or 2. For
each loop, Algorithm 1 finds all shared memory reads that the
loop exit could depend on (ShrdReads). Then, it finds all shared
memory writes that could be blocked due to SIMT constraints
(ShrdWrites). It then checks if any of the ShrdWrites could
affect any of the ShrdReads values. If so, blocking these writes
could result in a SIMT deadlock. This technique conservatively
reports potential SIMT deadlocks. In practice it has a small
false detection rate (more details in Section V-B1).

To determine ShrdReads, we consider the static backward

3In section IV-B, we propose a hardware mechanism that is capable of
supporting MIMD code with divergent barriers.

Algorithm 1 SIMT-Induced Deadlock Detection
1: for each loop L ∈ LSet do
2: ShrdReads(L) = /0, ShrdWrites(L) = /0, RedefWrites(L) = /0
3: for each instruction I, where BB(I) ∈ BBs(L) do
4: if I is a shared memory read ∧ ExitConds(L) depends on I then
5: ShrdReads = ShrdReads ∪ I
6: end if
7: end for
8: for each instruction I do
9: if BB(I) is parallel to or reachable from L then

10: if I is a shared memory write then
11: ShrdWrites(L)= ShrdWrites(L) ∪ I
12: end if
13: end if
14: end for
15: for each pair (IR,IW), where IR ∈ ShrdReads(L) and IW ∈ ShrdWrites(L) do
16: if IW does/may alias with IR then
17: RedefWrites(L)= RedefWrites(L) ∪ IW
18: end if
19: end for
20: if RedefWrites(L) 6= /0 then Label L as a potential SIMT-induced deadlock.
21: end if
22: end for

slice of the loop exit condition. If the loop exit conditions do
not depend on a shared memory read operation that occurs
inside the loop body then the loop cannot have a SIMT-
induced deadlock. If a loop exit condition does depend on
a shared memory read instruction IR, we add IR in the set
of shared reads ShrdReads on lines 4-7. A potential SIMT-
induced deadlock exists if any of these shared memory reads
can be redefined by divergent threads. The next steps of the
algorithm detect these shared memory redefinitions.

Lines 8-14 record, in set ShrdWrites, all shared memory
write instructions IW located in basic blocks that cannot be
executed, due to the reconvergence scheduling constraints, by
a thread in a given warp as long as some of the threads within
that warp are executing in the loop. These basic blocks fall
into two categories (Listing 1): The first category we call
reachable. In a structured CFG, the reachable blocks are those
blocks that a thread can arrive at following a control flow
path starting at the loop exit. The second category we call
parallel. The parallel blocks are those that can be reached
by a path that starts from a block that dominates the loop
header but avoids entering the loop. The detection algorithm
requires that reconvergence points can be precisely determined
at compile time. In our implementation, reconvergence is at
immediate postdominators. We limit reachable basic blocks
to those before a barrier due to our assumption of barrier-
divergence freedom. Lines 15-20 check each pair of a shared
memory read from ShrdReads and write from ShrdWrites for
aliasing. If they do or “may” alias, then the write instruction
might affect the read value and hence affect the exit condition.
If such a case occurs, the loop is labeled as a potential SIMT-
induced deadlock and we add the write to the redefining writes
set (RedefWrites).

For example, consider the application of Algorithm 1 to
the code in Figure 1 and 3. In Figure 1, the loop exit is
data dependent on the atomicCAS instruction. There is one
shared memory write that is reachable from the loop exit,
the atomicExch instruction. The two instructions alias. Hence,
SIMT-induced deadlock is detected. In Figure 3, although the



Algorithm 2 Safe Reconvergence Points
1: SafePDom(L) = IPDom(Exits(L)) ∀ L ∈ LSet
2: for each loop L ∈ LSet do
3: for each IW ∈ RedefWrites(L) do
4: SafePDom(L) = IPDom(SafePDom(L), IW)
5: if BB(IW) is reachable from L then
6: for each branch instruction IBR ∈ ReachBrSet(L,BB(IW)) do
7: SafePDom(L) = IPDom(SafePDom(L), IBR)
8: end for
9: end if

10: if BB(IW) is parallel to L then
11: for each branch instruction IBR ∈ ParaBrSet(L,BB(IW)) do
12: SafePDom(L) = IPDom(SafePDom(L), IBR)
13: end for
14: end if
15: end for
16: end for
17: resolve SafePDom conflicts()

loop exit is control dependent on the atomicCAS instruction,
there are no shared memory write instructions that are parallel
to, or reachable from, the loop exit. Therefore, no SIMT
deadlock is detected.

B. Safe Reconvergence Points Identification

This stage identifies code locations where reconvergence
of loop exits should be moved to allow for inter-thread
communication that otherwise blocked by SIMT Constraints4.
The key idea is that we can choose any postdominator point
as the reconvergence point including the kernel exit. How-
ever, from a SIMD utilization perspective, it is preferable to
reconverge at the earliest postdominator point that would not
block the required inter-thread communication. We call these
postdominator points safe postdominators (SafePDoms).

The notion of delaying reconvergence to overcome SIMT-
induced deadlocks is intuitive when we consider the second
scheduling constraint (i.e., the forced reconvergence). A SIMT
deadlock, due to this constraint, happens when threads that exit
a conditional loop are blocked at the loop reconvergence point
indefinitely waiting for looping threads to exit, while looping
threads are waiting for blocked threads to proceed beyond the
current reconvergence point to set their exit conditions and
allow them to exit the loop. This cyclic dependency breaks if
the loop reconvergence point is delayed so that even if threads
were to pass the new delayed reconvergence point they could
not affect the loop exit conditions (i.e., they could not reach a
redefining write). Therefore, SafePDoms should be computed
so that they postdominate the loop exit branches and all control
flow paths that lead to redefining writes from the loop exits
(lines 4-9 in Algorithm 2).

It is less intuitive to think about how delaying reconvergence
helps with the first scheduling constraint (i.e., serialization). To
understand this, it is necessary to understand how SafePDoms
are used by the SIMT deadlock elimination technique. Due to
the serialization constraint, threads iterating in a loop could
be always prioritized over the loop exit path and/or other
paths that are parallel to the loop. A SIMT-induced deadlock

4Due to the serialization constraint, delaying reconvergence is necessary but
not sufficient to eliminate SIMT deadlocks on current SIMT implementations
(more in Section IV-A).
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Fig. 4: SIMT-induced deadlock scenarios

occurs if these indefinitely blocked paths must execute to
enable the exit conditions of the looping threads. To avoid this,
our compiler based SIMT deadlock elimination algorithm (ex-
plained in more details in Section IV-A) replaces the backward
edge of a loop identified by Algorithm 1 with two edges: a
forward edge towards the loop’s SafePDom, and a backward
edge from SafePDom to the loop header. This modification
combined with the forced reconvergence constraint, guarantees
that threads iterating in the loop wait at the SafePDom for
threads executing other paths postdominated by SafePDom
before attempting another iteration. Accordingly, SafePDom
should postdominate the original loop exits, the redefining
writes, and all control flow paths that could lead to redefining
writes that are either reachable from the loop (lines 4-9 in
Algorithm 2) or parallel to it (lines 10-14 in Algorithm 2).

However, conflicts in identifying SafePDoms for different
loops may exist. In particular, SafePDom(L) should postdom-
inate SafePDom of any loop in the path between the exits
of loop L and SafePDom(L). Otherwise, it is not a valid re-
convergence point. We resolve these conflicts by recalculating
SafePDom(L) for each loop to postdominate all SafePDom
of loops in the path between loop L exits and SafePDom(L).
The process is then iterated until it converges. Convergence
is guaranteed because in the worst case, the exit node of the
kernel is a common postdominator. We force a single exit
using a merge return pass that merges multiple return points
(if they exist) into one.

The application of Algorithm 2 to the code in Figure 1 is
straightforward. The initial reconvergence point of the loop is
the instruction that immediately follows its exit edge. However,
there is a redefining write (the atomicExch instruction) in a
basic block that is reachable from the while loop exit. Thus,
line 4 of Algorithm 2 updates SafePDom of the loop to be
the instruction that immediately follows the atomicExch. No
further updates to SafePDom by the rest of the algorithm.
Figure 4 shows the appropriate choice of SafePDom for
more complex scenarios. For example, the CFG to the right
resembles a scenario found in the sort kernel of BarnesHut
application [37] when compiler optimizations are enabled.
Threads iterating in the self loop are supposed to wait for
a ready flag to be set by other threads executing the outer
loop. Threads executing the outer loop may need more than
one iteration to set the ready flag of waiting threads. The
dark basic block is an appropriate choice of SafePDom as



Algorithm 3 SIMT-Induced Deadlock Elimination
1: SwitchBBs = /0
2: for each loop L ∈ LSet do
3: if L causes potential SIMT-induced deadlock then
4: if SafePDom(L) /∈ SwitchBBs then
5: SwitchBBs = SwitchBBs ∪ SafePDom(L)
6: if SafePDom(L) is the first instruction of a basic block BB then
7: Add a new basic block BBS before the BB.
8: Incoming edges to BBS are from BB predecessors.
9: Outgoing edge from BBS is to BB.

10: else
11: Split BB into two blocks BBA and BBB.
12: BBA contains instructions up to but not including SafePDom(L).
13: BBB contains remaining instructions including SafePDom(L).
14: BBS inserted in the middle, BBA as predecessor, BBB as successor.
15: end if
16: Insert a PHI node to compute a value cond in BBS, where:
17: for each predecessor Pred to BBS
18: cond.addIncomingEdge(0,Pred)
19: end for
20: Insert Switch branch swInst on the value cond at the end of BBS, where:
21: swInst.addDefaultTarget(BBS successor)
22: end if
23: BBS is the basic block immediately preceding SafePDom(L)
24: Update PHI node cond in BBS as follows:
25: cond.addIncomingEdge(UniqueVal,Latch(L).src) -unique to this edge
26: Update Switch branh swInst at the end of BBS as follows:
27: swInst.addCase(UniqueVal,Latch(L).dst)
28: Set Latch(L).dst = BBS.
29: end if
30: end for

it postdominates all reachable paths to the redefining writes
(i.e., leading threads may only wait for lagging ones after they
finish all iterations of the outer loop).

IV. MIMD EXECUTION ON SIMT MACHINES

This section proposes two techniques to enable the execu-
tion of MIMD code with inter-thread synchronization on SIMT
machines. The first technique is SSDE; a static SIMT deadlock
elimination algorithm. The second technique is AWARE; an
adaptive hardware reconvergence mechanism that overcomes
key limitations in SSDE. Both techniques leverage the static
analysis techniques proposed in Section III.

A. SSDE: Static SIMT Deadlock Elimination

To avoid SIMT-induced deadlocks, loose fairness in the
scheduling of the diverged threads is required. Constrained
by existing SIMT implementations, we achieve this by ma-
nipulating the CFG. Algorithm 2 picks the earliest point in
the program that postdominates the loop exit and all control
flow paths that could affect the loop exit condition if executed.
Algorithm 3 modifies the CFG by replacing the backward edge
of a loop identified by Algorithm 1 by two edges: a forward
edge towards SafePDom, and a backward edge from SafeP-
Dom to the loop header. This guarantees that threads iterating
in the loop wait at the SafePDom for threads executing other
paths postdominated by SafePDom before attempting another
iteration allowing for inter-thread communication. Algorithm 3
is a generalization and automation for the manual workaround
shown in Figure 3. We refer to this code transformation as
Static SIMT Deadlock Elimination.

Figure 5 shows the steps of our SSDE algorithm to eliminate
the SIMT deadlock in the code from Figure 1. The CFG
on the left is the original and the one to the right is after

the transformation. According to Algorithm 2, the SafePDom
of the self loop at BBB 1 is the first instruction after the
atomicExch 2 . Accordingly, a new basic block BBS is added
3 as described in lines 11-14. A PHI node and switch branch

instructions are added to BBS 4 according to lines 16-26.
Finally, destination of the loop edge is modified to BBS 5
on line 28. Thus, the end result is that the backward branch
of the loop is replaced by two edges: a forward edge to BBS
and a backward edge to the loop header. The new added basic
block acts as a switch that redirects the flow of the execution to
an output basic block according to the input basic block. The
PHI node is translated by the back-end to move instructions
at predecessors of BBS. The switch instruction is lowered
into branches such that it diverges first to the default not-
taken path. This guarantees that BBS remains the IPDOM of
subsequent backward branches forcing (potentially) multiple
loops to interleave their execution across iterations.

Algorithm 3 preserves the MIMD semantics of the original
code because the combination of the PHI node and branch in
BBS guarantees the following: (1) each control flow path in the
original CFG has a single equivalent path in the modified CFG
that maintains the same observable behaviour of the original
path by maintaining the same sequence of static instructions
that affect the state of the machine (e.g., update data registers
or memory), for example, the execution path (BBC1-BBS-
BBC2) in the transformed CFG is equivalent to the path (BBC)
in the original CFG. The loop path (BBB-BBB) is equivalent
to (BBB-BBS-BBB) and (2) control flow paths in the modified
CFG that have no equivalent path in the original CFG are fake
paths and would not execute, for example, the path (BBC1-
BBS-BBB) in the modified CFG would not execute because
the PHI node in BBS controls the switch condition such that
if a thread is coming from BBC1 it branches to BBC2. The
elimination algorithm does not reorder memory instructions or
memory synchronization operations and therefore it does not
impact the consistency model assumed by the input MIMD
program. Formal proof outlines can be found in [38].

Algorithm 3 ensures a SIMT-induced deadlock free exe-
cution. For example, threads that execute the branch at the
end of BBB wait at the beginning of BBS for other threads
within the same warp to reach this reconvergence point. This
allows the leading thread that acquired the lock to execute the
atomicExch instruction and release the lock before attempting
another iteration for the loop by the lagging threads.

1) Compatibility with Nvidia GPUs: There is no official
documentation for Nvidia’s reconvergence mechanism; how-
ever, a close reading of Nvidia’s published patents [5], [6]
and disassembly [39] suggests that for a branch instruction to
have a reconvergence point at its immediate postdominator,
the branch must dominate its immediate postdominator, and
for loops, the loop header must dominate the loop body (i.e.,
the loop must be a single-entry/reducible loop). We account
for the additional constraints as follows: first, in Algorithm 1,
reconvergence points of divergent branches are not necessarily
their immediate postdominators. If the branch’s immediate
postdominator is not dominated by the branch basic block
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Fig. 5: SIMT-Induced Deadlock Elimination Steps

then the reconvergence point of the branch is considered the
same as the immediate dominating branch that dominates
its immediate postdominator. Second, in Algorithm 3, we
have to guarantee that the new added basic block is a valid
reconvergence point. We guarantee this by forcing the new
created loop to be a single entry loop.

2) SSDE Limitations: SSDE has some limitations that mo-
tivated the exploration of a combined hardware and compiler
approach. These limitations include the following:
Inter-procedural Dependencies: We assumed a single kernel
function with no function calls to other procedures. This only
detects SIMT deadlocks when synchronization is local to a
function. It is possible to extend our detection algorithm to
handle function calls with an inter-procedural analysis that
tracks dependencies across function calls [40], [41]. However,
extending the elimination algorithm is less straightforward.
CFG Modifications: To avoid SIMT-induced deadlocks,
the elimination algorithm modifies the original application’s
CFG. This could make debugging the original code a harder
task [42], [43]. The modified CFG adds more instructions that
do not do useful work except to work-around the constraints of
the current reconvergence mechanisms. These added instruc-
tions increase the static code size and dynamic instructions
count. Finally, the modified CFG could result in increased
liveness scope for some variables.
False Detections: Since we rely upon alias analysis it is
possible to flag a loop causing SIMT deadlock where a
programmer may reason such a deadlock cannot occur.
Indirect Branches: The static analysis can be extended to
deal with indirect branches with known potential targets (as
supported in Nvidia’s PTX 2.1). Without clues about potential
targets, the analysis would be conservative in labeling potential
SIMT-induced deadlocks including indirect branches as they
might form loops. This leads to significant overheads due to
excessive potential false detections.
Warp-Synchronous Behaviour: Some GPU applications rely
on implicit warp synchronous behaviour. For such applica-
tions, it is necessary to disable our transformation possibly
using pragmas.

B. AWARE: Adaptive Warp Reconvergence

This section presents our proposal for an adaptive hardware
warp reconvergence mechanism which we refer to as AWARE.
AWARE is a MIMD-Compatible reconvergence mechanism

that avoids most limitations inherent in a compiler-only ap-
proach. It extends the Multi-Path (MP) execution model [44].
The goal of MP is to impose fewer scheduling constraints
than stack-based reconvergence to improve performance. To
achieve this, MP decouples the tracking of diverged splits
from their reconvergence points using two tables as shown
in Figure 6. The warp Split Table (ST) records the state
of warp splits executing in parallel basic blocks, which can
be scheduled concurrently. The Reconvergence Table (RT)
records reconvergence points for the splits. ST and RT tables
hold the same fields as the SIMT stack with RT holding
an extra field called the Pending Mask. The Pending Mask
represents threads that have not yet reached the reconvergence
point. This decoupling enables MP to not serialize divergent
paths up to the reconvergence point. However, as described
by ElTantawy and Aamodt [44], it still forces threads to wait
at immediate postdominator reconvergence points. AWARE
modifies MP as follows:
Warp Splits Scheduling: MP applies changes to the score-
board and instruction buffer designs to maximize thread level
parallelism. On the contrary, AWARE starts from a simplified
version that limits the architectural changes to the divergence
unit. In contrast to MP, AWARE allows only one warp split to
be eligible for scheduling at a time; thus limiting interleaving
of warp splits. AWARE also conservatively respects register
dependencies on a warp granularity. Thus, it does not require
changes to the current scoreboard design5.

AWARE switches from one warp split to another only
after encountering divergent branches, reconvergence points,
or barriers. A warp split is selected for greedy scheduling in
FIFO order with respect to the ST. A warp split is pushed
into the FIFO when it is first inserted into the ST as an
outcome of a branch instruction or as a reconverged entry.
It is scheduled when it reaches the output of the FIFO. It is
popped out of the FIFO when its entry in ST is invalidated after
encountering a branch instruction or reaching a reconvergence
point. This scheduling replaces the depth-first traversal of
divergent control-flow paths imposed by the reconvergence
stack with a breadth-first traversal. This guarantees fairness
in scheduling different control paths. Greedy scheduling of
the output entry ensures good memory performance [46].
Handling Barriers: In AWARE, we support barriers in diver-
gent code by adding a field in the FIFO queue to mark warp
splits that reach the barrier as blocked. The PC of the blocked
split is updated in both the ST and the FIFO to point to the
instruction after the barrier. When a blocked entry is at the
FIFO output, it is pushed to the back of the FIFO without
being scheduled for fetch. Splits are released when all threads
reach the barrier.
Delayed Reconvergence: MP restricts reconvergence to IP-
DOM points, which can lead to SIMT deadlocks. For any
loop that Algorithm 1 reports as being the potential cause
of a SIMT deadlock, AWARE uses the reconvergence points

5Current GPUs use a per-warp scoreboard mechanism to track pending
writes to registers on warp granularity [45].



FIFO  BL 

A1111 0 

A B C C` 

Splits Table 

PC RPC Active Mask 

B C` 0111 

C C` 1000 

Reconvergence Table 

PC RPC Pending Mask Active Mask 

C` - 1111 1111 

FIFO  BL 

C1000 0 

B0111 0 

 0111  

A 

  B  1111  

C 
  

C` 
unlock() 

lock() 

Splits Table 

PC RPC Active Mask 

A - 1111 

Reconvergence Table 

PC RPC Pending Mask Active Mask 

- - - - 

B 

1 

2 

3 

4 
5 

 1000  

(a) Delayed Reconvergence

Splits Table 

PC RPC Active Mask 

B C 0111 

Reconvergence Table 

PC RPC Pending Mask Active Mask 

C - 0111 1111 

FIFO  BL 

B0111 0 

Splits Table 

PC RPC Active Mask 

B C 0111 

C - 1000 

Reconvergence Table 

PC RPC Pending Mask Active Mask 

C - 0111 0111 

FIFO  BL 

B0111 0 

C1000 0 A B C B 

Skip 
Reconvergence 

1 

2 

4 
5 

3 6 

 0111  

 1000  

A 

  B  1111  

C 
  unlock() 

lock() 

TimeOut 

(b) Timed-out Reconvergence
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computed using Algorithm 2. Since AWARE does not have
the serialization constraint, Algorithm 2 can be simplified to
consider only redefining writes that are reachable from the
loop reconvergence points (removing lines 10–14). It is nec-
essary to recalculate reconvergence points of other branches
to guarantee that the reconvergence point of any branch post-
dominates the reconvergence points of all branches on the path
from the branch to its reconvergence point. Figure 6a illustrates
the operation of AWARE with delayed reconvergence. The
reconvergence point of the loop is modified from the IPDOM
point (i.e., C) to SafePDom (i.e., C’) 1 . Once the loop branch
instruction is encountered, the RPC field of RT and ST are
updated to C’ 2 . The FIFO queue has two valid entries with
priority given to the not-taken path 3 . Hence, the thread that
diverged to BBC (i.e., exited the loop) executes first 4 . It
releases the lock and waits at the reconvergence point (C’).
Eventually all threads exit the loop and reconverge at C’ 5 .
Timed-out Reconvergence: To avoid the limitations of the
compiler approach we extend AWARE with a timeout mech-
anism. Figure 6b shows how the timed-out reconvergence
mechanism operates on the code snippet in Figure 1. In this
case, we assume that reconvergence points are set to the
IPDOM points (i.e., delayed reconvergence is off). Initially,
there is a single entry in the ST 1 representing threads that
are iterating through the loop attempting to acquire the lock
whereas the thread that exits the loop keeps waiting at the
reconvergence point 2 . This state continues 3 until the
reconvergence timeout logic is triggered. Once the waiting
time of threads at the reconvergence point exceeds the TimeOut
value, a new entry is added to the ST with the same PC and
RPC of the entry in the RT and an active mask that is the
subtraction of the Active Mask and the Pending Mask from
the RT entry 4 . The new entry is added to the FIFO queue
5 . The new entry C1000 is guaranteed to be executed as entry

B0111 gets to the tail of the FIFO queue once the loop branch is
executed 6 . In a nested control flow graph, threads that skip
reconvergence at a certain point are still able to reconverge
at the next reconvergence point because the RT tracks nested
reconvergence points. The TimeOut value could be empirically
determined by profiling a large number of GPU kernels. It
should be large enough not to impact reconvergence behaviour

of regular GPU applications.
AWARE Basic Implementation: With 32 threads per warp,

ST and RT tables have maximum theoretical size of 32 entries
per warp (max splits is 32 and RT entries added only when
a split diverges which implies a maximum of 32 RT entries).
Thus, AWARE can be realized using RAMs by adding a 5-bit
field to the FIFO, ST and RT tables. Upon insertion of an entry
into the ST, the 5-bit index of this ST entry is stored in the
corresponding FIFO queue entry. Upon insertion of an entry
in the RT table, the RT entry index is stored in a field in its ST
entries. Look ups into ST and RT tables use these indices with
no need to search the contents of the tables. We keep track of
invalid entries in a free queue implemented with a small (32
x 5-bits) stack. To insert an ST or RT entry the next index
from the associated free queue is used. We model insertion
and lookup latency to be 1 cycle. A warp split inserted into
ST needs to wait for the next cycle to be eligible for fetch.

AWARE Virtualized Implementation: The basic imple-
mentation has a large area overhead (about 1 KB storage
requirement per warp). This is because the implementation
has to consider the worst case scenario (i.e., 32 ST and RT
entries). However, typical occupancy of ST and RT tables is
much lower. Therefore, we study the impact of virtualizing
ST and RT tables by spilling entries that exceed their physical
capacity to the memory system and filling them when they are
to be scheduled (for ST entries) or updated (for RT entries).

Figure 7 illustrates our virtualized AWARE implementation.
A branch instruction of a warp is scheduled only if both the
ST and RT Spill Request Buffers of this warp are empty. Also,
instructions from a warp are eligible for scheduling only if the
warp Reconverged Entry and Pending Mask Updates Buffers
are empty. When a new entry is required to be inserted into
a full ST or RT table, an existing entry is spilled to their
respective Spill Request Buffers. We use a FIFO replacement
policy for the ST and an LRU replacement polciy for the RT 6.
When an entry is spilled its corresponding entry in the FIFO is
labeled as virtual. When a virtual entry is at the FIFO output,
a fill request for this entry is sent and the entry is labeled as
transient. This is to avoid sending multiple fill requests for

6This is essentially to leverage the existing FIFO for the ST and the age
bits used for Timeout calculation in the RT.
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Fig. 7: AWARE Virtualized Implementation
TABLE I: Evaluated Kernels

Kernel Language Description
HT [25] CUDA Chained Hash Table of 80K entries and 40K threads

ATM [25] CUDA ATM 122K transactions, 1M accounts, 24K threads
CP-DS [25], [47] OpenCL Distance Solver in Cloth Physics simulation
BH-TB [37], [48] CUDA & OpenMP Tree Building in BarnesHut (30,000 bodies)
BH-SM [37], [48] CUDA & OpenMP Summarization kernel in BarnesHut
BH-ST [37], [48] CUDA & OpenMP Sort kernel in BarnesHut
BH-FC [37], [48] CUDA & OpenMP Force Calculation in BarnesHut

TL [49] OpenMP Test Lock microbenchmark
AM [50] OpenMP Find Array Max from 133K entries in an array

the same entry. Also, the entry is pushed to the back of the
FIFO. When a pending mask update is required for a virtual
RT entry, a fill request is sent for this entry and the pending
mask update buffer remains occupied until a response to the
fill request is received and the entry is inserted in the RT table.
Further, a fill request is sent when an RT entry reconvergence
is timed-out. ST spill requests is 12 bytes and RT spill requests
is 16 bytes. Conveniently, a global memory address space
of 32× 32 = 1KB bytes per warp is reserved for virtual ST
and RT Tables. The FIFO and free queues use virtual entry
IDs (between 0 and warp-size-1) that are used along with the
warp id to decide the address of spill and fill requests. These
virtual IDs are stored as new fields to the physical ST and
RT entries. Age bits for RT entries are not virtualized. Each
buffer in Figure 7 is sized to queue only one entry. As we
discuss in Section V-B2, the physical sizes of ST and RT
can be set to 4 and 2 entries respectively with limited impact
on performance (see Figure 12). This effectively reduce the
storage required per warp by a factor of 5× compared to the
basic implementation which makes the storage requirement
comparable to the reconvergence stack.

V. IMPLEMENTATION AND EVALUATION

A. Implementation and Methodology

We implemented both the detection and the elimination
algorithms as two passes in LLVM 3.6 [32]. For alias analysis,
we used the basic alias analysis pass in LLVM [51] 7. We ran
passes that inline function calls and lower generic memory
spaces into non-generic memory spaces before our detection
and elimination passes. We used the approach described in [52]
to identify irreducible loops. We disabled optimizations in the
back-end compilation stages from LLVM-IR to PTX and later
to SASS to guarantee that there are no further alternation in

7We did not observe lower false detection rates using other LLVM alias
analysis passes as they focus on optimizing inter-procedural alias analysis.

TABLE II: Code Configuration Encoding

Code Configuration XYZ
X: Original code format Y: Compiler optimizations Z: Our Analysis/Transf.
M MIMD 0 -O0 S Elimination

S SIMT
2 -O2

D Delayed Rec.2* -O2 without jumpthreading
and simplifycfg

our generated CFG. This could be avoided if the elimination
algorithm is applied at the SASS code generation stage. We
also implemented AWARE in GPGPU-Sim 3.2.2 [53], [54].
We use the TeslaC2050 configuration released with GPGPU-
Sim. However, we replaced the Greedy Then Oldest (GTO)
scheduler with a Greedy then Loose Round Robin (GLRR)
scheduler that forces loose fairness in warp scheduling as
we observed that unfairness in GTO leads to livelocks due
to inter-warp dependencies on locks 8. Modified GPGPU-Sim
and LLVM codes can be found online [19].

We use CUDA, OpenCL and OpenMP applications for
evaluation. OpenCL applications are compiled to LLVM In-
termediate Representation (LLVM-IR) using Clang compiler’s
OpenCL frontend [55] with the help of libclc library that
provides LLVM-IR compatible implementation for OpenCL
intrinsics [56]. For CUDA applications, we use nvcc-llvm-
ir tool [57]. This tool allows us to retrieve LLVM-IR from
CUDA kernels by instrumenting some of the interfaces of
libNVVM library [58]. OpenMP compilation relies on recent
support for OpenMP 4.0 in LLVM [15]. For hardware results,
we use a Tesla K20C (Kepler). Our benchmarks include
OpenCL SDK 4.2 [59], Rodinia 1.0 [60], KILO TM [25],
both CUDA and OpenMP versions of BarnesHut [37], [48],
and two OpenMP microbenchmarks [49], [50]. OpenCL SDK
and Rodinia applications do not have synchronization between
divergent threads, however, kernels from [25], [37], [48]–[50]
require synchronization between divergent threads. Table I
describes briefly all the kernels that are affected by our
elimination algorithm.

Table II shows the encoding we use in the results discussion.
The first character encodes whether the code accounts for the
reconvergence constraints (S for SIMT) or not (M for MIMD).
The second encodes the level of the optimization performed on
the code before we run our passes. The last character encodes
the type of analysis or transformation performed, it could be
either applying the elimination algorithm (S), calculating the
delayed reconvergence points without CFG transformations
(D) or neither (-).

B. Evaluation

1) Static SIMT Deadlock Elimination Evaluation:
Detection Algorithm Evaluation: First, we ran our de-

tection on the CUDA and OpenCL applications mentioned in
Section V-A. These applications were written to run on current
GPUs, so they are supposed to be free of SIMT-induced

8For kernels under study that do not suffer livelocks with GTO, the impact
of GLRR on L1 miss rate is minimal compared to GTO with the exception
of BH-ST (in Table I) which suffers 7% increase in L1 cache misses [46].
The study of “fair” and efficient warp schedulers is left to future work.



TABLE III: Static Overheads for the Elimination Algorithm

Kernel
Tf. Loops SASS-Static Inst. SASS-Used Reg. + Stack Size (bytes)
-O0 -O2 M0- S0- M0S M2- S2*- M2S M0- S0- M0S M2- S2*- M2ST F T F

HT 1 - 1 - 408 436 422 184 177 198 12+128 12+128 12+128 16+0 16+0 18+0
ATM 1 1 1 - 506 506 527 233 247 394 11+168 11+168 11+168 20+0 21+0 30+0

CP-DS 2 - 2 - 624 631 617 631 631 632 31+0 37+0 37+0 31+0 39+0 46+0
BH-TB 1 3 1 3 1871 1836 1899 534 891 1164 17+344 17+336 17+344 40+0 38+24 40+296
BH-SM - 2 - 1 1983 1983 2011 933 996 1192 36+176 36+176 36+176 55+0 55+0 72+0
BH-ST 1 - 1 1 520 485 541 219 226 261 16+96 16+88 16+96 22+0 22+0 24+0
BH-FC - 3 - 1 1549 1549 1591 765 765 891 36+272 36+272 36+272 48+40 48+32 48+56

TABLE IV: Detection Pass Results

Opt. Level Krnls N. Brs N. Lps Detections T. Det. F. Det. F. Rate
O0 159 2751 277 14 0 14 5.05%
O2 1832 242 14 4 10 4.13%

deadlocks. Table IV summarizes the detection results from
159 kernels. With default compiler optimizations in LLVM 3.6
enabled, four true detections in four different kernels (ATM,
HT, CP-DS and BH-ST) were successfully detected (See
Vulnerability to Compilers’ Optimizations in Section 2.2) 9.
True detections were confirmed by both manual inspection
of the machine code and by verifying that the code does
not terminate when executed. False detections include four
detections that occur in the histogram256 kernel from the
OpenCL SDK and one false detection in the bucketsort kernel
in MGST from Rodinia. In both cases, kernels are dependent
on warp synchronous behaviour to implement an atomic
increment operation (because atomics were not supported
in earlier CUDA versions). Both kernels will not produce
their expected results with either our compiler or hardware
approaches (see IV-A2). This issue is left to future work.
Other false detections exist in applications that involve inter-
thread synchronization [25], [37]. No false negatives were
observed (i.e., after using SSDE, no deadlocks were observed
at runtime). As an additional check, we ran the detection pass
on the transformed kernels after applying the elimination pass
which yielded no detections.

Besides alias analysis, main reasons for false detection
include conservative reachability and dependence analysis that
relies on the static CFG layout and instruction dependencies
without considering the dynamic behaviour. For example, one
of BH-FC loops is control dependent on a shared array.
However, the conditional check on this shared array uses the

all() CUDA intrinsic that evaluates the same for all threads
within a warp forcing all threads within the same warp to
exit at the same iteration. This motivates leveraging runtime
information and elaborate static analysis as a future work.
Elimination Algorithm Evaluation: We rewrote CUDA and
OpenCL kernels that require inter-thread synchronization as-
suming the simpler MIMD semantics. Table III compares
six different code versions in terms of static instructions,
register and stack storage per thread. The M0- and M2-
versions deadlock on current GPUs. Enabling default compiler
optimizations in S2- led all our four applications to deadlock.
In configuration S2*-, we selectively enabled passes that

9Using Nvidia’s NVCC compiler, only Cloth Physics deadlocks after
turning on compiler optimizations.
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were empirically found not to conflict with the manual code
transformation. Specifically, we excluded -simplifycfg and -
jumpthreading passes.

For the non-optimized versions (i.e., S0- and M0S), Table III
shows that static instruction overhead is small in both manual
and compiler based transformations (S0- and M0S are compa-
rable to M0-). Also, they have little to no overhead in terms
of registers (e.g., CP) compared to the MIMD version when
we consider the non-optimized versions. Turning on compiler
optimizations generally reduces stack usage and increases the
number of registers. This has a negative impact on kernels
with false positives. For example, in BH-TB kernel for M2S,
there is an increase in both registers and stack usage. This is
due to increased register spills resulting from increased register
liveness scopes after applying SSDE.

We evaluated run-time overheads using performance coun-
ters. Figure 8 shows accumulated GPU time for all kernel
launches averaged over 100 runs. HT and ATM have a single
kernel, CP has four kernels and BH has 6 major kernels. M0S
has a 10.9% overhead on average compared to S0-. M2S leads
to a speedup of 44.7% compared to S0-. M2S is 8.2% slower
compared to S2*-. For HT, the benefit of enabling all compiler
optimizations overcomes automated transformation overheads
leading to improvement compared to S2*-. Figure 9 breaks
down the results of kernels that are affected by our transfor-
mation. As shown in Figure 9a, some of the kernels that exhibit
no false detections still suffer from considerable overheads due
to conservative estimation of safe postdominator points (e.g.,
CP-DS and ST), which reduces both SIMD utilization (e.g.,
ST in Figure 9c)10 and increases dynamic instruction (e.g.,
CP-DS and ST in Figure Figure 9b).

For kernels with false detections, the overhead is dependent
on the run-time behaviour. For example, although BH-FC has
3 false detections in its M0S version, this hardly impacts
its performance. This is mainly because the kernel has very
high utilization which indicates low divergence rate. Thus,
delaying reconvergence does not impact its SIMD utilization.
In other cases (e.g. BH-TB and BH-SM), false detections
lead to significant performance overheads. We attribute these
overheads to both the reduced SIMD utilization (Figure 9c)
and increased dynamic instruction count (Figure 9b). In BH-

10Nvidia profiler does not measure SIMD efficiency for OpenCL applica-
tions. Thus, SIMD utilization for CP is not reported.
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TABLE V: SSDE Evaluation on OpenMP Kernels

Kernel C-4T
-O2

G-OMP
M2-

G-OMP
M2S

G-CUDA
S2*- Kernel C-4T

-O2
G-OMP

M2-
G-OMP

M2S
G-CUDA

S2*
TL-FG 1 D 3.41 N/A BH-TB 1 D 0.28 9.66
TL-CG 1 D 0.01 N/A BH-SM 1 3.78 1.72 3.54
AM-FG 1 D 32.58 N/A BH-FC 1 0.70 0.73 1.25
AM-CG 1 D 17.87 N/A BH-BB 1 0.44 0.44 9.00
BH-ST 1 D 2.97 3.17 BH-IN 1 1.21 1.21 7.53

TB, with compiler optimizations enabled, there is also a
significant increase in memory traffic due to excessive register
spills. The Nvidia profiler reports an increase of 3.4× in
the DRAM requests per cycle for M2S versus S2*- on BH-
TB. Finally, although M2S performs poorly for both BH-TB
and BH-SM, the overall impact on performance is not severe
because BH-FC dominates execution time for BH.

OpenMP support: The OpenMP 4.0 standard supports
the offloading of a parallel region to an accelerator (e.g., a
GPU). The OpenMP programming model is appealing because
of both its abstraction and portability across architectures.
Thus, it helps accelerators reach to a broader set of de-
velopers [61]. Currently, there is a co-ordinated effort by
many technology companies to add OpenMP 4.0 support for
accelerators in LLVM [15], [17], [62]. Programs written in
OpenMP 4.0 can suffer from SIMT deadlock. Specifically,
current support generates code for a spin lock with back-off
delay for omp set lock(...). Hence, a valid OpenMP program
that executes properly on CPUs may not terminate on GPUs
due to SIMT deadlocks

We addressed this by modifying the OpenMP compilation
chain to include our detection and elimination passes. Due
to the recency of OpenMP support for accelerators, few
applications make use of it. Therefore, we modified eight
existing OpenMP kernels to enable offloading parallel regions
to Nvidia GPUs [48]–[50]. Six of these kernels are for an
OpenMP BarnesHut implementation that uses an algorithm
similar to the CUDA version except for some GPU specific
optimizations. We also modified TL and AM kernels to
emulate fine-grained and coarse-grained synchronization.

Table V shows the speed up of four different configurations
that run on Tesla K20C GPU compared with using 4 threads
on Intel Core i7-4770K CPU. Compilation with current LLVM
support for GPUs in OpenMP 4.0 deadlocks in many cases
(labeled ‘D’). However, with our detection and elimination
passes all kernels run to termination with correct outputs main-
taining portability between the CPU and the GPU. Numbers
in bold show instances where the GPU code achieved a speed

up compared to the CPU without performance tuning. For
other cases, the developer may choose either not to offload
the kernel to a GPU or to performance tune the code for
GPUs starting from functionally correct (MIMD) code. Due to
false detections in BH-SM and BH-FC, OMP M2S performs
worse than OMP M2- with a 2.2× slowdown for BH-SM.
As expected, the GPU performs poorly compared to the CPU
with high contention on locks (e.g., TL-CG where 3K threads
are competing for one lock) while performing better with fine-
grained synchronization (e.g., TL-FG). In AM, a non-blocking
check (whether the current element is larger than the current
maximum) happens before entering the critical section. This
significantly reduces the contention over the critical section
that updates the maximum value. Thus, the execution is highly
parallel and achieves a large speed up versus the CPU. AM-
FG finds multiple maximum values within smaller arrays,
thus reducing contention even further. Table V also compares
the performance of the OpenMP version of BH with the
CUDA version. In most cases, the CUDA version significantly
outperforms the OpenMP version due to various GPU-specific
optimizations. Efforts to reduce this performance gap are in
progress [63], [64] and they are outside the scope of this paper.

2) Adaptive Warp Reconvergence Evaluation: We limit our
evaluation of AWARE to CUDA and OpenCL applications
because current OpenMP support relies on linking device code
at runtime to a compiled OpenMP runtime library [63]11 which
is not straightforward to emulate in GPGPU-Sim. We compare
executing the M2D version on AWARE against executing
S0- and M2S on the stack-based reconvergence baseline.
We configure AWARE to enable delayed reconvergence and
with the TimeOut mechanism disabled. Figure 10a shows the
normalized average execution time for individual kernels. On
average, executing the MIMD version on AWARE is on par
with executing the M2S version on the stack-based reconver-
gence baseline 12. However, for some kernels such as BH-TB,
M2D on AWARE achieves better performance than M2S run
on stack-based reconvergence. This is mainly because AWARE
does not introduce static instruction overheads. Executing the
MIMD version on AWARE often leads to a reduced number of
dynamic instructions with the exception of BH-ST (Figure 10).

11We only linked OpenMP library calls for synchronization at compile time.
Enabling general link time optimizations for OpenMP runtime library requires
an engineering effort that is beyond the scope of this paper.

12We simulate the PTX ISA on GPGPU-Sim because SASS is not fully
supported. Note that PTX uses virtual registers rather than spilling to local
memory diminishing some of the advantage of AWARE over SSDE.
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Fig. 10: Evaluation of the Adaptive Warp Reconvergence Mechanism using GPGPU-Sim
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Fig. 11: Sensitivity to the TimeOut value (in cycles)

BH-ST behaves similar to a spin lock; the AWARE FIFO-
based scheduling mechanism allows a warp split that did not
acquire a lock to attempt acquiring it again even before it
is released by the other split. This repeats according to the
number of dynamic branch instructions executed along the not-
taken path before the lock is released. Manual transformation
eliminates this behaviour, and our compiler elimination algo-
rithm also reduces this behaviour.

Figure 11 illustrates AWARE sensitivity to TimeOut val-
ues. Kernels that suffer SIMT deadlocks (e.g., BH-ST) favor
smaller TimeOut values as they allow blocked threads to
make forward progress and release other threads attempting
to enter a critical section. For kernels that do not suffer SIMT
deadlocks (e.g., BH-SM), smaller TimeOut values reduce
SIMD utilization and lower performance. On average, delayed
reconvergence with TimeOut disabled achieves the best results.
This suggests applying delayed reconvergence whenever a
SIMT deadlock is detected and setting TimeOut to a large
value such that it is only triggered when there is a high
likelihood of an undetected SIMT deadlock.

Figure 12 illustrates the impact of AWARE virtualization
on the overall performance. We can see that in the worst case
execution time increases by only 16% when we use 4 and
2 physical entries for ST and RT respectively instead of 32
entries; the average is only 5%. Our analysis suggests that the
performance overhead is mainly due to the extra traffic caused
by the fill and spill requests. For example, using a single entry
for both ST and RT with CP-DS kernel increases memory
requests by 21% and 15% of this extra traffic miss in L1 cache.
Congestion on the miss queues increases MSHR (Miss Status
Holding Register) reservation failure rate by a factor of 2.5×.
This leads to an increase in the stalls due to structural hazards
by 51%. A potential solution that can further reduce the
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Fig. 12: Effect of AWARE Virtualization on Performance

performance overhead is a dedicated small victim cache that
is shared among warps to cache recently used spilled entries.
A central storage across warps is motivated by the observation
of a disparity in the ST and RT occupancy requirement across
different warps at a given execution window. In depth study
for this solution is left for future work.

VI. RELATED WORK

Branch Divergence on GPUs: There are many research
papers that recognize performance implications of branch
divergence in GPUs [20], [21], [44], [65]–[69]. However,
less attention has been paid to the functional implications.
Temporal-SIMT is a hardware proposal that enables more
flexible placement of barriers [70] but the use of explicit
reconvergence points in Temporal-SIMT can still cause SIMT
deadlocks. Dynamic Warp Formation (DWF) [20] enables
flexible thread scheduling that could be exploited to avoid
SIMT-deadlocks, however, it has higher hardware complexity.

GPU kernel verification: In [9], the authors provide formal
semantics for NVIDIA’s stack-based reconvergence mecha-
nism and a formal definition for the scheduling unfairness
problem in the stack-based execution model that may lead to
valid programs not being terminated. However, they do not
attempt to provide ways to detect or to prevent this problem.
There is also some recent work on verification of GPU kernels
that focuses on detecting data-races and/or barrier divergence
freedom in GPU kernels [28]–[30], [71]. However, none of the
verification tools considered the problem of SIMT deadlocks
due to conditional loops. Our SIMT deadlock detection is
complementary to these efforts.

Code Portability between CPUs and GPUs: There are
efforts to make GPU programming accessible through differ-
ent well-established non-GPU programming languages. These



efforts include source-to-source translation [13], [14] as well
as developing non-GPU front-ends [15] for language and ma-
chine independent optimizing compilers such as LLVM [72].
However, these proposals do not handle SIMT deadlocks.
MCUDA [73] is an opposite approach that translates CUDA
kernels into conventional multi cores CPU code.

Synchronization on GPUs: In [24], the author attempts
to provide a hardware that modifies the behaviour of the re-
convergence stack when executing lock or unlock instructions
to avoid possible deadlocks. However, the proposed solution
fails if the locking happens in diverged code [24]. It is limited
to mutexes and it applies only in very restricted cases. Both
hardware and software transactional memory support has been
proposed [25], [26] to enable easier synchronization on GPUs.
In [74], the authors propose hardware support for a blocking
synchronization mechanism on GPGPU. Using their proposed
synchronization APIs, SIMT deadlocks could mitigated in
restricted cases (similar to [24]). In [75], Li et al. propose
a fine-grained inter-thread synchronization scheme that uses
GPUs shared memory. However, it is left to programmers
to use their locking scheme carefully to avoid SIMT-induced
deadlocks [75]. Recently, software lock stealing and virtualiza-
tion techniques were proposed to avoid circular locking among
GPU threads and to reduce the memory cost of fine-grain
locks [76]. As acknowledged in [76], one of their limitations is
that “locks are not allowed to be acquired in a loop way” due
to deadlocks (i.e., SIMT deadlocks using our terminology).
Our work adopts a distinct approach that aims to change the
SIMT execution model to be functionally compatible with the
more intuitive MIMD execution model. Fully achieving this
goal saves programmers the trouble of adapting MIMD code
to a target specific SIMT implementation.

VII. CONCLUSION

In this paper, we argue that the compiler and the hardware
should be capable of abstracting away SIMT implementation
nuances. To this end, we propose techniques that enable
the execution of arbitrary MIMD code with inter-thread
synchronization on SIMT/SIMD-like hardware. We propose a
compile-time algorithm that detects potential SIMT deadlocks
with a false detection rate of 4%-5%. Next, we proposed a
CFG transformation that works around the deadlock problem
on the current hardware. The automated transformation has
an average overhead of 8.2%-10.9% compared to the manual
transformation with the same level of compiler optimization.
Finally, we propose microarchitectural modifications to the
SIMT branch handling unit to avoid key limitations in the
compiler-only approach. Both techniques can be disabled if
a programmer is interested in low level optimizations that
are dependent on predefined reconvergence locations. Future
directions of this work include designing tools that leverage
runtime information to detect SIMT deadlocks, compilers
that restrict valid transformations according to the SIMT
behaviour, and efficient hardware-based MIMD-compatible
reconvergence mechanisms.
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