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Abstract
Wire energy has become the major contributor to energy in

large lower level caches. While wire energy is related to wire
latency its costs are exposed differently in the memory hierar-
chy. We propose Sub-Level Insertion Policy (SLIP), a cache
management policy which improves cache energy consump-
tion by increasing the number of accesses from energy efficient
locations while simultaneously decreasing intra-level data
movement. In SLIP, each cache level is partitioned into sev-
eral cache sublevels of differing sizes. Then, the recent reuse
distance distribution of a line is used to choose an energy-
optimized insertion and movement policy for the line. The
policy choice is made by a hardware unit that predicts the
number of accesses and inter-level movements.

Using a full-system simulation including OS interactions
and hardware overheads, we show that SLIP saves 35% energy
at the L2 and 22% energy at the L3 level and performs 0.75%
better than a regular cache hierarchy in a single core system.
When configured to include a bypassing policy, SLIP reduces
traffic to DRAM by 2.2%. This is achieved at the cost of
storing 12b metadata per cache line (2.3% overhead), a 6b
policy in the PTE, and 32b distribution metadata for each
page in the DRAM (a overhead of 0.1%). Using SLIP in a
multiprogrammed system saves 47% LLC energy, and reduces
traffic to DRAM by 5.5%.

1. Introduction
Last level caches (LLCs) have become a significant source
of both static and dynamic energy consumption in modern
processors, consuming up to 17% of total core energy [28].
In these large caches, data movement over wires consumes
the bulk of the energy (over 90% for a 2 MB LLC according
to our simulations). This paper presents Sub-Level Insertion
Policy (SLIP), a class of data insertion and movement policies
for wire energy dominated lower-level caches, which aims to
improve data access plus movement energy.
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Figure 1: Lines broken down according to number of reuses
(NR) before eviction
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Figure 2: In SLIP, each cache level is partitioned into sublevels
each with similar access energy, and sublevels are merged
into chunks tailored to each line according to that line’s re-
cently observed reuse behavior

Large caches are implemented by connecting smaller
SRAM banks. This can lead to significant differences in access
energy and latency of the different locations where a line may
be mapped. Section 2.1 discusses how cache organizations in
modern processors demonstrate this energy asymmetry.

Non-Uniform Cache Access (NUCA) tackles the problem
of minimizing the average access latency in a system with vari-
ations in access latencies of cache locations by aggressively
moving data near to the core. Prior research has examined
how to lower the cache access latency through intelligent
insertion and movement of data [5, 11, 17, 24], data replica-
tion [4, 8, 18, 31], and replacement policies within NUCA
banks [29]. However, we show that aggressively moving lines
increases the cache energy consumption significantly.

Line movements affect average cache access latency and
cache energy differently. To move a line from one location to
another, at least one read and one write needs to be performed.
If the movement is performed when a line receives a hit, the
movement cost is equal to the read access latency cost of ser-
vicing the request. The write happens off the critical path of
data servicing, and thus does not impose a direct penalty on
cache access latency. Hence, line movements are almost “free”
in terms of latency. However, both the read and write oper-
ations impose an energy penalty for line movements. Thus,
NUCA policies optimized for latency can afford to aggres-
sively move lines to nearer locations, while a policy optimized



for cache energy will avoid doing unnecessary movements.
The effect of movement on cache energy consumption is

exacerbated due to the fact that a major fraction of lines do
not see a significant number of reuses in the LLC [10]. Fig-
ure 1 shows the distribution of number of reuses for each line
brought into a 2MB LLC for various SPEC-CPU2006 bench-
marks [2]. It can be observed that, on an average, more than
70% of lines do not receive any hits after being brought into
the cache. Out of the 30% lines that do receive hits, 21%
receive only a single hit. If such lines are moved to closer
cache locations upon receiving a hit, more energy is wasted
in moving them than is saved by subsequent accesses being
from a nearby energy efficient location. For energy efficiency,
it is better to initially place a line into a location tailored to its
access pattern, rather than promoting it upon receiving hits.

In this paper, we propose SLIP, a class of insertion and
movement policies that directly minimizes the total access
and movement energy in wire-energy-dominated caches. SLIP
policy views each cache level as being composed of a few (typ-
ically 3) sublevels, a group of ways with similar cache access
energy. The sublevels are merged to form chunks according
to the reuse distance distribution of a given line. The chunks
dictate how that line is inserted and moved in the cache. An
energy optimized SLIP for a line is determined at runtime by
estimating the access plus movement energy consumption for
competing SLIPs, and choosing the SLIP predicted to con-
sume the least energy. An example of such a partitioning is
shown in Figure 2. In this case, sublevel 0 consists of the 4
cache banks nearest to the processor, the next further 4 banks
form sublevel 1, and the furthest 8 banks are lumped into sub-
level 2. The SLIP for the shown line consists of two chunks,
one consisting of only sublevel 0, and the other with sublevels
1 and 2. Further, we also show that SLIP policy, despite be-
ing less aggressive with respect to moving lines, has latency
comparable to NuRAPID [11] and LRU-PEA [29], two repre-
sentative NUCA policies, while achieving much lower access
energy.

Using reuse distances to manage data insertion and move-
ment, SLIP reduces total energy by 35% for the L2 cache and
22% for the L3 cache. Reuse distance has previously been
utilized for making cache replacement decisions [13, 25, 36].
This body of earlier work uses reuse distance to reduce cache
misses. In contrast, SLIP employs reuse distance to reduce
cache access energy by selecting a set of locations for a line to
be inserted or moved into. The decision of which line to evict
upon such an insertion or movement is left to the underlying
replacement policy, and thus SLIP is orthogonal to the choice
of a replacement policy.

A wide body of literature on NUCA [4, 8, 9, 12, 18, 20, 23,
24, 31] has focused on how to effectively balance private and
shared capacity in a NUCA cache for a CMP platform, and
placement, replication and movement schemes for shared data.
In this paper, we show that even in the simpler case of unipro-
cessor or multiprogrammed workloads with low or no data

416 j = r o r i g [ c ] ;
f o r ( i = c ; i < r ; ++i )

418 r o r i g [ i ] = r o r i g [ i + 1 ] ;
r o r i g [ r ] = j ;

420 f o r ( i = c ; i <= r ; ++i )
rperm [ r o r i g [ i ] ] = i ;

422
j = co r i g [ c ] ;

424 f o r ( i = c ; i < r ; ++i )
c o r i g [ i ] = co r i g [ i + 1 ] ;

426 c o r i g [ r ] = j ;
f o r ( i = c ; i <= r ; ++i )

428 cperm [ c o r i g [ i ] ] = i ;
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Figure 3: Different classes of access patterns in soplex, the
color coding in different source lines show the access pattern
class it belongs to.

sharing, there exists a significant opportunity for improve-
ment in terms of energy consumption. The more complex
case of placement and movement of shared data for energy
optimization is outside the scope of this paper.

This paper makes the following contributions.
• It proposes a class of policies called SLIP, which can be

used to dictate the placement and movement of lines among
cache sublevels.

• It proposes a simple analytical model suitable for low cost
implementation in hardware which, given the reuse distance
distribution of a cache line, can approximate the energy
consumed by a particular SLIP when applied to that line.

• It proposes an online scheme to collect reuse distance dis-
tributions by using low overhead hardware counters, and
proposes an efficient hardware unit that computes an opti-
mized SLIP for a given line based upon that line’s reuse
distance distribution. This scheme requires only 12b (2.3%
overhead) of metadata per line in the cache, and storing 32b
of distribution metadata (0.1% overhead) per page in the
DRAM. The SLIP is stored in 6 unused PTE bits.

• It evaluates SLIP on memory intensive SPEC benchmarks
and shows a reduction in total energy of 35% and 22% for
the L2 and L3 respectively for single processor workloads.
In the case of multiprogrammed workloads with a shared
L3 cache, we show an energy reduction of 47% energy at
the L3 level.

2. Motivation
In this section, we look at some example access patterns that
arise in SPEC workloads, and discuss how an energy efficient
policy can improve the cache energy consumption for those
access patterns.

Figure 3 show three example reuse distance distributions
from the soplex benchmark in SPEC-CPU2006, and the code
fragments which give rise to those reuse distance distributions.
All the code is taken from the file forest.cc in the soplex
source code. We discuss the behavior of this code in a system
with a 256KB, 16 way L2 cache (thus, each way is 16KB),
where different ways have different access energies. Contem-
porary cache designs which present such way access energy



asymmetry are discussed in Section 2.1.
The for loop body in line 418 rotates the rorig array, and

does a streaming access of the array elements from c to r.
These array elements are then immediately used in the loop
body in line 421. Thus, the temporal locality of these lines will
depend on how close the parameters c and r are to one another.
Figure 3 shows that either the parameters are very close to
one another, and the stream fits within a 64KB L2 cache (this
happens in 18% of cases), or the parameters are so far that the
stream can not be fit inside the 256KB L2 cache. The behavior
of the loop body in line 425 is the same for accesses to corig.

Given the varying locality characteristics described above,
it is desirable to insert the lines belonging to the rorig array
in a 64KB energy efficient “chunk” of the cache consisting of
the 4 nearest ways to the cache controller, and evict these lines
out of the L2 cache when they are evicted out of this chunk.
This policy achieves two goals: i) it serves all the hits to these
lines from the energy efficient location, without resorting to
an energy expensive promotion policy upon hit as employed
in NUCA policies, and ii) it avoids pollution of the cache with
these lines when there is insufficient locality to the accesses.

The loop body in line 421 also reads the locations
rperm[rorig[i]]. Thus, the access characteristics of the
rperm array depend on the values stored in the rorig array.
Figure 3 shows that these accesses almost always miss in the
cache due to the random nature of the rorig array. Thus, it is
better to bypass these lines entirely.

On the other hand, due to locality present in the corig

array, 66% of the accesses to the cperm array at line 428
could be served from a 64KB cache. Another 10% of accesses,
however, require a larger 256KB cache, and the remaining
24% of accesses do not fit in the cache.

Thus, for lines holding data from cperm, it is better to
initially place these lines in an energy efficient 64KB chunk
of the cache consisting of the nearest 4 ways of the cache.
However, unlike the case of lines holding data from rorig

or corig, here there are a significant number of hits possible
from the full cache capacity. To take advantage of the full
cache capacity, one can move these lines into the remaining
12 ways of the cache when they are evicted from the more
energy efficient first four ways. This mechanism is similar to
having two exclusive caches of capacities 64KB and 192KB,
and thus should lead to approximately the same number of
hits to these lines as a 256KB cache. This policy serves most
of the references from the energy efficient 64KB portion of
the cache, while also not degrading the hit rate of the line.

Different insertion and movement policies are suited to
different cache lines within the same program. Also, the
decision of which policy to follow can be made by estimating
the amount of hits to a line given a particular cache capacity.
Prior work, such as Berg and Hagersten [6], has observed that
reuse distances can be used to accurately estimate the hit rates
of programs at different cache capacities. We use the reuse
distributions of lines collected using a low overhead hardware
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Figure 4: Various cache topology and interleaving schemes.
Different shades are different ways. 4a has non-uniform en-
ergy access, adopted by Intel [19] and SRAM macro by Sam-
sung [35]. 4b and 4c have uniform energy access.

counter mechanism to determine the number of accesses to a
line that can be expected to be serviced by differently sized
“chunks”. These access frequencies are then used to determine
an energy efficient insertion and movement policy for a line.

2.1. Cache Organizations
Large caches are constructed by joining smaller cache banks.
In such a cache, a line can be located in several locations,
e.g., due to the cache’s associativity. SLIP exploits the energy
difference between different cache ways to intelligently insert
and move lines across the cache hierarchy.

There are two design decisions that impact the energy varia-
tion between the different locations where a cache line may be
located. The first factor is the topology of the cache, i.e., how
the smaller cache banks are connected by the interconnect.
The second factor is the interleaving, i.e. how the cache ways
are distributed among the SRAM banks. Below, we discuss
a few cache topology and interleaving schemes, and discuss
how those designs affect decision making of SLIP.

Hierarchical Bus: Figures 4a and 4b show this topology
for two different interleaving schemes. A topology similar to
Figure 4a was adopted for the design of an LLC slice in the
Intel R© Xeon R© E5 family of processors [19] and a proposed
SRAM macro design by Samsung [35]. In such a topology, if
the ways of the cache are interleaved across the various SRAM
banks, there can be a significant energy difference between
the various line locations. Hence, insertion and movement
decisions impact the energy consumption of caches employing
such a topology and interleaving scheme. A different inter-
leaving scheme, where all the ways belonging to the same set
are mapped to the same SRAM bank, is shown in Figure 4b.
In this interleaving scheme, all possible locations where a line
can reside consume exactly the same wire energy, and hence
there is no incentive to do any data movement.

H-Tree: [32] Figure 4c shows an H-Tree topology where
reading any location consumes the same energy as reading the
furthest location. Since there is no difference in access energy
between cache locations, there is no reason to move a line in
such a topology. While this topology provides the same access
time to each bank, in wire energy dominated caches it can lead
to significantly higher energy consumption compared with
other interconnects that use smaller wires to access the nearer
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Figure 5: SLIP Overall Block Diagram: The reuse distance of a
line is obtained from the reuse distribution storage described
in Section 4.1. The EOU, described in Section 4.4, finds an
energy-optimized SLIP for that distribution using an analyti-
cal model described in Section 3.2 in a random subset of TLB
misses. This SLIP is then used to make placement and move-
ment decisions as described in Section 3.1.

banks. We have observed that using an H-tree interconnect
increases the cache energy consumption by 37% for the L2
cache and by 32% for the L3 cache compared to the baseline
system (similar to Figure 4a) that we have considered, while
performance is the same. A discussion on how SLIP can be
applied to caches connected using a ring or mesh interconnect
is given in Section 7.

3. Sub-Level Insertion Policy (SLIP)
For energy efficient cache accesses, it is desirable that the
insertion and movement of a line across energy-asymmetric
cache ways be customized to its reuse distance characteristics.
We observe that the three energy efficient policies presented
in Section 2 all follow this general pattern: initially, insert the
line into a “chunk” consisting of a certain number of cache
ways, once it is evicted from that chunk, insert it into another
chunk. We call any policy with this general form a Sub-Level
Insertion Policy (SLIP). Section 3.1 discusses how SLIPs are
used to determine the insertion and movement of a line in
a cache level. The procesure to use SLIPs for cache energy
reduction is shown in Figure 5.

First, the cache controller creates a reuse distance distri-
bution for each line using a low overhead hardware counter
based mechanism. Section 4.1 discusses the details of how the
reuse distances are represented.

Second, using this reuse distance distribution, a specialized
hardware unit finds a SLIP that minimizes the estimated total
access and movement energy for a particular line. This unit is
called Energy Optimizer Unit (EOU). Section 3.2 discusses
the analytical model employed by the EOU, and Section 4.4
describes how the EOU uses this model to find a suitable SLIP
for a given reuse distance distribution.

Finally, the SLIP of a line is used to insert and move the
line among the cache ways. Details of how this is done can be
found in Section 3.1.
3.1. SLIP Description
The SLIP for any particular line partitions the cache ways into
a few chunks. Figure 6 shows the state diagram for line inser-
tion and movement using SLIP. When the line is inserted into
the cache, a victim candidate is chosen from the chunk nearest
to the processor (denoted by C0) using the underlying cache
replacement policy (LRU in our case; Section 7 discusses how
state-of-the-art replacement policies such as DRRIP [22] and

C0 C1 CM

Miss

Hit

Evict

Insert
into C1

choose
LRU
victim
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into C0

choose
LRU
victim

Hit Hit

. . .
Evict

Writeback
if dirty

Figure 6: SLIP State Diagram: Online reuse distance is used
to select state diagram for line upon initial insertion. A line is
initially inserted into chunk C0, and upon eviction from chunk
Ci is inserted into chunk Ci+1. During each insertion, the un-
derlying cache replacement policy is used to choose a victim
candidate

SHiP [39] can be adapted to support SLIP). This victim can-
didate is moved to a new location according to its own SLIP.
When a line is evicted from a way in chunk Ci, it is inserted
into a way from the next chunk Ci+1 defined by that line’s
SLIP. When the line is evicted from the last chunk CM , it is
written back to the next cache level if it is dirty.

In this paper, we describe a SLIP by listing out the ways in
each of the chunks in that SLIP. Thus, for example, the third
policy in Section 2: “insert into the 4 nearest ways, and on
eviction from those ways, insert into the next 12 ways, and
upon eviction from them evict the line entirely”, is denoted by
{[0,1,2,3], [4,5,6,. . .,15]}. The second policy which bypasses
the cache altogether, is denoted by {}. The first policy which
inserts the line into the nearest 4 ways and bypasses the other
ways is denoted by {[0,1,2,3]}.

Explosion in number of SLIPs: As the number of ways
in a cache increases, the number of possible SLIPs increases
dramatically. It can be shown that for a cache with W ways,
there are 2W possible SLIPs. For example, for a 3-way cache,
all possible SLIPs are: {}, {[0]}, {[0,1]}, {[0],[1]}, {[0,1,2]},
{[0,1],[2]}, {[0],[1,2]}, and {[0],[1],[2]}1. For a 16-way cache,
there can be 65,536 SLIPs. Finding the energy optimal policy
among so many policies at runtime would be challenging.

To solve this problem, we lump multiple cache ways with
similar access energies into a sublevel. Subsequently, the ways
in the same sublevel are always used together in a chunk. Thus,
the number of possible SLIPs is reduced to 2S, where S is the
number of sublevels. For example, in Figure 4a, each row of
4 cache ways can be considered to be a sublevel. This brings
down the number of possible SLIPs from 65,536 to 16.

Representation and Storage: There are 2S SLIPs that ap-
ply to a cache level with S sublevels. Thus, the SLIP for a
level with S sublevels can be represented in S bits. Since our
implementation uses 3 sublevels for both L2 and L3, both
these SLIPs can be represented in 3 bits each. As explained
in Section 4.1, for reducing storage overhead we use a single
SLIP per cache for all cache lines in the same page. Thus, 6b
need to be stored per page (3b for L2 and 3b for L3), which

1{[1]}, {[2]}, {[0,2]}, etc. are not considered since “skipping” ways leads
to < 1% energy savings, and requires more bits to represent all SLIPs.



can fit in the ignored bits of a 64 bit page table entry (PTE)2.
Next, we discuss two special SLIPs, which are equivalent

to already known policies.
The Default SLIP: When the reuse distribution of a line

is not known (during warmup), or when the reuse distance
distribution is close to uniform, it is preferable that the line
should treat the cache exactly as it would without SLIP. In
these cases, a replacement candidate should be chosen from
all the ways. The SLIP which has only one chunk consisting
of all the ways does this, and is called the Default SLIP.

The All-Bypass Policy (ABP): As discussed in Section 2,
in cases where a line almost always misses in the cache, it is
preferable to bypass the line. This policy is the same as a SLIP
with no chunks.
3.2. SLIP Energy Optimization
As shown in Figure 5, the Energy Optimizer Unit (EOU) de-
termines an energy-optimized SLIP given a particular reuse
distance distribution. The reuse distance distribution of a line
is the probability Pd

x that the line x has the reuse distance d. As
discussed in Section 4.3, for a random subset of TLB misses,
the EOU estimates the access + movement energy for all pos-
sible SLIPs given the Pd

x of the line. It then assigns the SLIP
with the minimum energy to the line x. An efficient hardware
implementation of the EOU is discussed in Section 4.4.

The total access, movement, and replacement energy of a
line x when using a SLIP with M chunks is

Ex = ∑
0≤i<M

Eaccess
x,i + ∑

0≤i<M−1
Emove

x,i +Emiss
x (1)

Here, Eaccess
x,i denotes the average access energy of the line x

from chunk i, Emove
x,i denotes the average energy required to

move line x from chunk i to chunk i+1, and Emiss
x denotes the

average miss energy consumed by the line x.
Access Energy: To find the average access energy of a line,

we estimate how many accesses are made to x from chunk
i. To find this quantity, note that the SLIP state machine
inserts a line into chunk i after being evicted from the chunk
i−1. Thus, the chunks act as exclusive caches to one another.
The total fraction of accesses served from chunks ≤ i can be
approximated by the fraction of times the reuse distance of the
line is less than the cumulative capacity of all the chunks ≤ i.3

This implies that the fraction of accesses to line x, served from
chunk i is

f access
x,i = ∑

CCi−1<d≤CCi

Pd
x

Here, CCi denotes the cumulative capacity of all chunks ≤ i.
Thus, the average access energy of line x from chunk i is

Eaccess
x,i = Ēi× f access

x,i = Ēi ∑
CCi−1≤d≤CCi

Pd
x (2)

2The Intel Software Developer’s Manual [1] states that there are at least
14 such bits in the default 64 bit paging mode of x86-64.

3Here we use the approximation that a cache can only serve references
that have a reuse distance less than its capacity. This is true for reuse distance
defined as stack distance, LRU replacement and fully associative caches.

Here, Ēi denotes the average access energy from chunk i,
which is obtained offline by averaging the access energies of
all the sublevels belonging to that chunk.

Movement Energy: We approximate that a line is evicted
from chunk Gi and inserted into Gi+1 whenever the reuse
distance of the line is greater than CCi. A movement incurs a
read from Gi and a write to Gi+1, so the movement energy is
equal to the sum of Ēi and Ēi+1. Thus, total movement energy
of line x from chunk Gi to chunk Gi+1, Emove

x,i is

Emove
x,i = (Ēi + Ēi+1) ∑

d>CCi

Pd
x (3)

Miss Energy: The last component of energy is the miss
energy, i.e. data access energy from the next level of the cache.
We model the number of misses as the number of references
that have reuse distance greater than CCM , where M is the
total number of chunks in the SLIP. CCM is simply the sum
of capacities of all the sublevels in a SLIP, and since SLIP
may bypass SLIP some sublevels, CCM may not be equal to
the total capacity of the level. For example, for the SLIP
[[0,1],[2,3]], CCM is equal to the total size of the first 4 ways.
We approximate the energy per miss to be equal to average
access energy of all the cache ways in the next level, ENL. This
approximation is correct if all accesses to the next level hit
and are uniformly distributed across the cache ways. Thus, the
miss energy is

Emiss
x = ENL ∑

d>CCM

Pd
x (4)

4. Implementation
In this section, we discuss a practical implementation of SLIP.
First, we discuss the representation of the reuse distance dis-
tribution (Pd

x ). Then, we discuss the details of how the reuse
distance distributions are stored and accessed. Finally, we
discuss the details of the SLIP energy optimizer unit (EOU).

4.1. Reuse Distance Distribution Quantization
To optimize the SLIP of a particular line, we need to store the
reuse distance distribution of a line. In our work, we use a
compressed form of reuse distance distribution that consumes
only 16b, and store a single distribution per page (4KB) for
each lower level cache (total of 32b for L2 and L3).

To evaluate Equations 2, 3, and 4, one needs to know the
probability values Px(CCi ≤ d <CCi+1), and the Px(d >CCK),
where CCi is the cumulative capacity of sublevel i. For exam-
ple, if the sublevels are of size 64KB, 64KB, and 128KB, we
only store the terms Px(d < 64KB), Px(64KB≤ d < 128KB),
Px(128KB ≤ d < 256KB), and Px(d ≥ 256KB). Thus, for a
level partitioned into K sublevels, K +1 counts are stored. In
our evaluation, each of L2 and L3 are split into 3 sublevels,
thus requiring 4 counts for each distribution.

To represent each of these counts, we use a low precision
integer (4 bits in our case). To avoid saturation, we halve
all the counters once any counter overflows. For example, if
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the previous bin counts were [4, 15, 0, 12], and a new access
is made whose reuse distance lies in the bin which currently
contains 15, the new counts are [2, 8, 0, 6]. Halving counters
to prevent saturation also helps ensure that statistics reflect
recent program behavior. Thus, the reuse distance distribution
for each level consumes 16 bits (= 4 bits/bin × 4 bins).

To further reduce the storage overhead, we only store reuse
distance distributions for a contiguous chunk of memory,
called the reuse distance block (hereby referred as rd-block).
In our evaluation, we assume a rd-block to be equal to a page
(4KB) for simplicity, although this need not be the case.

We assume that all references that do not hit in the cache
have a reuse distance larger than the cache size, and thus
misses are counted in the last distribution bin. To collect the
reuse distances of references that hit in the cache, a times-
tamp is associated with each cache line (TL in Figure 7). This
timestamp is derived from a few MSBs (6 in our case) of a
counter associated with the cache level (T in Figure 7). T
counts the number of accesses to that level and wraps around
every 4C accesses, where C is the number of cache lines in the
level. Whenever a cache hit occurs, the difference T −TL is
used to calculate the reuse distance bin for this access. Subse-
quently, the counter corresponding to the reuse distance bin in
the online reuse distance profile of the line L is incremented.

With the implementation of SLIP described so far, we ob-
served that for some workloads with high TLB miss rates (e.g.,
soplex, mcf, xalancbmk, astar, and omnetpp), distribution
metadata traffic from the lower-level caches and DRAM can
be significant (Xalancbmk is the worst, with 27% increase in
L2 traffic and 6% increase in DRAM traffic). This metadata
traffic adversely affects energy consumption.

Also, some workloads (e.g., mcf) have phases, where the
reuse behavior of lines change over time. Lines that previously
caused misses and were bypassed can start to cause hits. If
the bypassing SLIP is used to collect the reuse distance dis-
tribution, these hits occurring later in the program will not be
observed. To solve both the problems mentioned above, we
introduce the notion of time-based sampling.

4.2. Time-Based Sampling

In a time based sampling approach, a page is in one of two
states: sampling or stable. The reuse distribution of a page is
collected only when the page is in a sampling state. The reuse

distribution for a sampling page is loaded into the TLB upon
each TLB miss, and all lines in that page are inserted with the
Default SLIP. On the other hand, when a page is in the stable
state, the reuse distance distribution is not sampled, and the
SLIP stored in the PTE is used to make insertion decisions.
The state information is stored in an additional bit in the PTE.
The SLIP is recalculated whenever the page becomes stable.

State transitions for each page are made randomly. A sam-
pling page becomes stable with a probability 1/Nsamp and a
stable page becomes sampling with probability 1/Nstab. Thus,
on an average, the distribution data is fetched with a probability
Nsamp/(Nsamp +Nstab). Our implementation uses Nsamp = 16,
and Nstab = 256, thus 6% of TLB misses need fetch distri-
bution data. In Section 6, we observe that as a result, the
DRAM traffic overhead is never more than 1.5%. The L2
traffic overhead is also reduced to below 2% of the baseline.

In the following sections we show a area- and energy-
efficient hardware design to calculate the SLIP of a page from
its reuse distance distribution.

4.3. SLIP Hardware

We outline the modifications required in the various parts of
the memory hierarchy to implement SLIP in Figure 7. We
discuss caches and TLBs in a system with SLIP below.

On a TLB miss, the PTE for the requested page is read
from the memory hierarchy Ê. As discussed in Section 3.1,
the L2/L3 SLIPs for a page are stored in the PTE itself. If
the state stored in the PTE indicates that the page is in the
sampling state, the reuse distance distribution for the page is
also loaded Ë. The new state (sampling/stable) of the page is
determined randomly Ì, and upon a transition to stable state,
the SLIP of the page is recalculated Í. During an L1 miss, the
SLIPs are sent to the lower-level caches along with the miss
request so that they are available in the event of a lower-level
miss. If the page is in the sampling state, the Default SLIP is
sent instead, as outlined in Section 4.2.

On a lower level cache hit, if the page is in a sampling state
and the access hits in a cache level, the difference between the
timestamp of the cache level (T ) and the last access timestamp
of the cache line (TL) is used to obtain the reuse distance of
the access, and T is copied back to line timestamp TL. Recall
that T counts the number of accesses to a level. This reuse
distance is sent back to the core which then increments the



corresponding distribution bin Î.
On a lower level cache miss, the SLIP of the line is used

to determine the chunk into which the line is inserted Ï. A
victim is then chosen from the cache ways belonging to that
chunk using the underlying cache replacement policy (we use
LRU for evaluation). During insertion, the SLIP for both
cache levels (a total of 6b) is sent along with the cache access
request and is copied alongside the line as metadata Ð. This
copying ensures that the SLIP of evicted lines is available
without having to probe the TLB. If the incoming line is in
sampling state, the last distribution bin for it is incremented
in a similar fashion as for a lower-level cache hit Î, and the
cache timestamp T is copied to TL.

When a line is evicted from a chunk, the SLIP of the line
is consulted to find if there is a next chunk where this line can
be moved to Ñ. If there is such a chunk, a victim candidate
is chosen from the ways contained in that chunk using the
underlying replacement policy. Subsequently, the line and its
SLIP are moved to the location of the victim Ñ. This can,
in turn, lead to a cascade of evictions, and we model such
cascades in our evaluation. If such a chunk does not exist,
the line is evicted from the level completely and a writeback
request is sent to the lower cache level if the line is dirty.

For looking up cache lines, the lookup mechanism of the
underlying cache organization is used. SLIP only performs
line movements and insertions during a cache miss, and leaves
the cache lookup mechanism almost unchanged. The only
difference to the lookup mechanism is that cache lines which
are being moved by SLIP from one way to another also need to
be probed to ensure correctness. In order to probe lines being
moved, SLIP maintains a movement queue that holds lines that
are being moved until they are written to their destination way.
A queue for lines in movement is necessary since a moving
a line can take multiple clock cycles, and can be overlapped
with other cache accesses. In our implementation, we assume
a 16 entry movement queue.

For invalidating cache lines, again the internal invalida-
tion mechanism of the cache is used. An invalidation request
also needs to probe the movement queue for presence of the
line being invalidated.

Cache coherency with SLIP: Maintaining cache coher-
ence in a cache with SLIP only requires the addition of the
movement queue (discussed above), since cache coherence
only requires the implementation of a lookup and an invalida-
tion mechanism. Also, in cases where an inclusive last-level
cache is used to simplify coherence, using the all bypass policy
(ABP) is not desirable. A line which is bypassed from the
last-level cache using the ABP cannot be inserted into any
higher level in an inclusive hierarchy, leading to significant
performance degradation.

4.4. Energy Optimization Unit (EOU)

The Energy Optimization Unit is a simple and energy efficient
hardware unit that uses an array of Energy Evaluation Units

α01 . . . α31 α02 . . . α32 α0P . . . α3P

px
0

. . . px
3

. . .

EEU1 EEU2 EEUP

Min Policy

Ex
1 Ex

2 Ex
P

: Dot Product Unit

Reuse Distance Distribution

Figure 8: Energy Optimizer Unit Implementation: Each energy
optimizer unit is built out of an array of EEUs, each EEU per-
forms a dot product of the reuse distance distribution with the
vector of coefficients corresponding to its SLIP according to
Equation 5. Here, P = total number of SLIPs.

(EEU) to compute the energy for every possible SLIP given
a particular reuse distance distribution. A schematic for the
overall optimization unit is shown in Figure 8.

Given a particular reuse distance distribution and a SLIP,
an EEU uses Equation 1 to compute an approximate energy
per access. Equation 1 is a sum of the terms in Equations 2, 3,
and 4. Note that in these equations, the quantities in boldface
(Ēi,ENL) are only dependent on hardware parameters and the
SLIP itself. Ēi is the average access energy of all the sublevels
in chunk i, and thus depends only on the chunk itself and
the access energies of the sublevels within that chunk. ENL,
defined in Section 3.2, is the average access energy of the
cache ways in the next level and is a constant. Thus, given
a particular reuse distance distribution, all the three terms
in Equation 1 are linear combinations of the reuse distance
probabilities. Thus, Ex

j , the average total access, movement
and miss energy consumed when using SLIP j for line x,
can be expressed as a linear combination of reuse distance
probabilities:

Ex
j = ∑

i
αi j px

i (5)

Since αi j are constants given the actual hardware and the
SLIP, each EEU corresponding to a SLIP is preprogrammed
with the coefficients αi j. Given a particular reuse distance
distribution px

i , an EEU performs a dot product between the
coefficients and the reuse distance distribution to arrive at
an energy estimate. Sunsequently, the EOU picks the lowest
energy SLIP out of all the alternatives.

5. Methodology
We use MARSSx86 [33], a full system simulator for x86 ISA.
The system parameters used in the simulation are shown in
Table 1. The system runs Ubuntu 11.04 over Linux 2.6. In the
simulation, less than 0.1% were OS instructions.

The cache organizations are assumed to be similar to Fig-
ure 4a. The SRAM banks were modeled as being similar to
that of the Intel R© Xeon R© E5 processor LLC design [19]. The
L2 is modeled as a 2 (wide) ×4 (high) array of 32KB SRAM
banks. Each SRAM bank is assumed to contain two complete
ways of the L2. The L3 is modeled as a 16 × 4 array of 32KB



Core parameters
Core 4-way OoO, 128 ROB en-

tries, 2.4 GHz
L1 I/D cache 32 KB, 8 way, 4 cycle
L2 cache 256 KB, 16 way, 7 cycles
L3 cache 2 MB, 16 way, 20 cycles
DRAM latency 100 cycles

SLIP parameters
L2 Sublevel sizes 64 KB, 64 KB, 128 KB
L2 Sublevel latency 4, 6, 8 cycles
L3 Sublevel sizes 512 KB, 512 KB, 1 MB
L3 Sublevel latency 15, 19, 23 cycles
RD-vectors 4 bits × 4 bins × 2 vectors
Timestamp accuracy 6 bits

Table 1: System parameters

Technology node 45 nm
Wire energy per transition 0.16 pJ/bit/mm
Wire delay 0.3 ns/mm
L2 Baseline access 39 pJ
L2 Sublevel access 21 pJ, 33 pJ, 50 pJ
L2 Metadata access 1 pJ
L3 Baseline 136 pJ
L3 Sublevel access 67 pJ, 113 pJ, 176 pJ
L3 Metadata access 2.5 pJ
DRAM energy 20 pJ/bit

Table 2: Energy parameters

SRAM banks. Each row of the array is assumed to contain a
single way of the L3.

For both L2 and L3, the nearest 4 ways to the cache con-
troller comprise the first sublevel, the next nearest 4 ways
comprise the second, and the furthest 8 ways comprise the
third sublevel. To model the cache port contention due to line
movements, the cache port is blocked while performing the
read and write operations for line movement. A fully associa-
tive 16 entry movement queue is used for the correctness of
lookup mechanism. A synthesized RTL model of the queue
requires 0.3pJ per lookup, which is included in the results.

The energy and latency per access of the caches and the sub-
levels, obtained with HSPICE simulations using PTM CMOS
and wire models [7], are shown in Table 2. In this table, meta-
data includes the policies for both the levels (3b each) and the
timestamp (6b), for a total of 12b of data per line. DRAM
energy was obtained as the sum of Idd4 and Idd7RW energies
reported by Vogelsang [38].

To evaluate the energy consumption of the EOU, we synthe-
sized and verified a RTL design in TSMC 45nm technology.
The latency for each operation (evaluating the energy of all the
SLIPs and finding the minimum energy SLIP) was found to be
2 processor cycles at a processor clock rate of 2.4GHz and the
throughput is one computation per cycle. The EOU occupies
0.00366 mm2 (< 0.1% of LLC area), and each optimization

operation consumes 1.27 pJ (< 0.5% of LLC access energy)
including pipeline registers. To model the policy update over-
head, the TLB is blocked for one cycle whenever an update
of the SLIP for a page takes place. The EOU computation
occurs while updating the SLIP of a page, which is off the
data read/write critical path. Since the EOU is fully pipelined,
there is no extra queuing occurring at the EOU.

For this study, we used memory intensive SPEC-CPU2006
benchmarks, identified by Jaleel [21], since non-memory in-
tensive benchmarks do not have opportunity to save energy at
L2 and L3 levels. For each workload, we simulate up to 10
simpoints of 500M instructions each that account for over 90%
of the overall execution, obtained by using PinPoints [34].

We simulate NuRAPID and LRU-PEA policies and com-
pare them against SLIP, both with and without ABP policy.
For a fair comparison with NuRAPID and LRU-PEA, we take
the d-group sizes and bankcluster sizes to be same as the SLIP
sublevel sizes.

6. Results
Energy: Figure 9 shows the energy reductions achieved by
the various policies at the L2 and L3 cache levels respectively.
SLIP without ABP saves 21% energy at L2 and 13% at L3.
Adding ABP to the pool of SLIPs increases the energy savings
to 35% and 22% respectively. With ABP many insertions
are bypassed entirely, reducing insertion energy. On average,
NuRAPID consumes 84% more energy at L2 and 94% more
energy at L3 compared to the baseline cache, while LRU-PEA
consumes 79% more energy at L2 and 83% more energy at L3.
We omit NuRAPID and LRU-PEA in these figures, as these
two policies consume more energy than the baseline.

The higher energy savings in L2 can be attributed to the fact
that a higher number of insertions are bypassed in L2. This
happens because the access energy differential between the
L2 and the L3 is much lower than that between the L3 and
the DRAM. Thus, SLIP is more aggressive in bypassing lines
from L2 since the energy penalty for a miss is low. Figure 14
shows that 27% of the lines are bypassed at L2 and 14% are
bypassed at L3.

We also obtained full system dynamic energy savings (core
+ all caches + DRAM) for SLIP and SLIP+ABP. The results
are shown in Figure 10. SLIP reduces full system energy by
0.73%, while SLIP+ABP reduces it by 1.68%.

In order to evaluate the benefits of SLIP in different tech-
nology nodes, we also simulated SLIP on a 22nm technology
node using the same parameters as Table 1. In this technology,
SLIP+ABP saves 36% of L2 energy, and 25% of L3 energy.

Access and movement energy breakdown: Figure 11
shows the normalized access and movement energies for L2
and L3 caches. Movement energy includes inter-sublevel
movement energy, insertion energy, and writeback energy.
The figure shows that movement energy dominates the energy
of lower-level caches. Both LRU-PEA and NuRAPID achieve
lower access energy than SLIP, but consume excessive move-
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Figure 9: Energy savings over regular cache hierarchy by various policies at different cache levels. NuRAPID and LRU-PEA are
omitted here, since they both increase energy consumption at both the cache levels. NuRAPID increases L2 and L3 energy by
84% and 94% respectively. LRU-PEA increases them by 79% and 83% respectively.
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Figure 10: Full-system energy savings
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Figure 11: Energy breakdown into access and movement en-
ergy. The bars in each group show the energy for baseline,
NuRAPID, LRU-PEA, SLIP and SLIP+ABP respectively. Move-
ment energy includes inter-sublevel movement energy, inser-
tion energy, and writeback energy.

ment energy. SLIP optimizes the sum of access and movement
energy rather than targeting them individually.

Cache Hit Rates: Figure 12 shows the relative miss traffic
broken down into demand misses and metadata for the L2 and
L3 levels for SLIP and SLIP+ABP. It can be observed that,
even including metadata, SLIP and SLIP+ABP decrease the
total miss traffic by avoiding cache pollution. On average, they
decrease the miss traffic by 1.7% and 2.4% for L2, and 1%
and 2.2% for L3 respectively.

It can also be observed that the number of L2 misses due
to metadata overhead can be significant in some cases such as
soplex. However, most metadata requests get serviced from the
L3, and thus the metadata traffic to DRAM is low. NuRAPID,
being a movement-only policy, does not change the number
of DRAM accesses. Our simulations show that LRU-PEA
reduces the DRAM traffic by 0.8%, due to its prioritizing
evicting demoted blocks.

Speedup: NuRAPID, LRU-PEA, SLIP, and SLIP+ABP
have average speedups of 0.06%, 0.16%, 0.24%, 0.75% re-
spectively, shown in Figure 13. The higher speedup achieved
in SLIP+ABP policy (up to 3%) over other policies is due
to higher hit rates from cache bypassing. The difference in
our measured performance for LRU-PEA and that reported in
[29] is due to the difference in workload (SPEC vs PARSEC)
and in latency to the different levels of memory. The hit rates
of SPEC workloads in L2 and L3 are low. Thus, the average
memory access time is dominated by DRAM access time.

Classification of insertions according to SLIPs: SLIPs
can be classified into four classes: a) the All Bypass
Policy, b) policies apart from the ABP which bypass
one or more sublevels, e.g., {{S0}}, {{S0},{S1}} etc.
which we call “Partial Bypass” policies, c) the Default
policy, i.e., {{S0,S1, . . . ,SK−1}}, and, d) other policies
which do not bypass any levels but are not Default, e.g.,
{{S0},{S1, . . . ,SK−1}}. As shown in Figure 7, a SLIP is as-
signed to a line upon insertion to a cache level. Figure 14
shows the fraction of insertions with each category of SLIP
described above. We can observe that a significant fraction of
inserts are either fully or partially bypassed, and that partial
bypassing, full bypassing and Default constitute more than
95% of all insertions. Thus, we conclude that the SLIPs with
all levels are not too useful and used more in L3 than in L2.

Sublevel Access Fractions: Figure 15 shows the average
fraction of accesses from different sublevels for NuRAPID,
LRU-PEA, SLIP, and SLIP+ABP. It can be observed that all
the policies increase the number of references to the most en-
ergy efficient sublevel – sublevel 0. NuRAPID and LRU-PEA
aggressively promote lines to nearer locations and thereby
have a much higher fraction of accesses from those sublevels.
However, as we can see from Figure 11, this higher fraction
is achieved at the cost of a significant increase in movement
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Figure 12: Relative miss traffic from L2 and L3 broken down into demand misses and overheads, for SLIP and SLIP+ABP policies
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Figure 13: Speedups of policies vs. regular memory hierarchy
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Figure 14: Breakdown of insertions according to optimal SLIP

energy, which adversely impacts cache energy.
Impact of distribution accuracy: We varied the bit width

of each distribution bin. We obeserved that with an accuracy of
4 bits the energy savings were within 1% of larger bit widths.
There is a sharp drop in energy efficiency when 2 bit wide
bins are used, as a smaller number of hits rounded off to zero
increases line bypassing, hence increasing LLC and DRAM
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(a) L2 sublevel access fractions
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(b) L3 sublevel access fractions

Figure 15: Fractions of accesses served from different sub-
levels for NuRAPID, LRU-PEA, SLIP and SLIP+ABP
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Figure 16: Multicore results

accesses. We omit detailed results due to space constraints.
Evaluation for multicore workloads: We evaluated the

SLIP+ABP strategy for a two core system with 2 MB shared
LLC and 256 KB private L2 caches. We used 8 randomly
selected multiprogrammed workload mixes, each simulated
for a total of 500M instructions, after fast forwarding 3B
instructions. We collect statistics only for the duration that the
executions of the benchmarks overlap.

In this case, the energy savings in L2 are identical to that
of the single core scenario since the L2s are private. The
total energy reductions the L2 and L3 caches for each of the
mixes are shown in Figure 16. It can be observed that on
average SLIP saves 47% of energy at the L3 level. Also, the
DRAM traffic is reduced by 5.5% on average. The worst
case degradation in DRAM traffic (2%) is experienced by the
leslie3D and soplex mix. We also simulated NuRAPID and
LRU-PEA for these workload mixes. NuRAPID and LRU-
PEA increase the L3 energy by 97% and 85% on an average
respectively. In a shared multicore LLC, the reuse distance of
each reference is higher. Thus, more references cause misses
and end up being completely bypassed from the cache. This
leads to less insertions and thus more energy savings in a
multicore system as compared to a single-core system.

7. Discussion
Applicability of different replacement policies: To choose
a replacement candidate for a line from a chunk, SLIP needs to
choose a victim line from any subset of ways. State-of-the-art
replacement policies such as DRRIP [22], SHiP [39] can be
adapted for this form of replacement in the following way.

Each sublevel can have its own replacement policy metadata.
To choose a victim candidate from a chunk, a random sublevel
can be chosen from the sublevels contained in the chunk in



the ratio of their sizes, and then a victim line chosen from that
sublevel. Below we show that this does not affect the scan and
thrash resistance of DRRIP.

The scan resistance of DRRIP depends on the scan length
being smaller than (2M−1)∗ (A−w), where M is the length
of the re-reference prediction value (RRPV), A is the cache
associativity and w is the working set size. Using a random
sublevel in the ratio of sublevel sizes preserves the scan re-
sistance of DRRIP since a) sublevels have proportional as-
sociativity, and, b) randomly distributing lines into sublevels
in the ratio of their sizes distributes proportional amounts of
scan and working set lines into the different sublevels. The
thrash resistance of DRRIP works by inserting a random small
fraction of lines with a long RRPV. Randomly inserting the
lines into the sublevels should insert the same fraction of lines
with a long RRPV. Thus, the scan and thrash resistance of DR-
RIP is preserved and the miss rates using such a randomized
insertion mechanism should not be affected significantly.

Extension to larger page sizes: In this work, we have con-
sidered 4 KB page sizes, and we have assumed that the access
properties of lines in a page are homogeneous. However, this
assumption may not hold true for larger page sizes. In such
situations, the rd-block size can be made to be smaller than
a page size, and a SLIP and distribution can be stored per
rd-block. This design will require a SLIP-cache to cache the
SLIPs for each rd-block, which can be managed like a TLB.

SLIP for CMPs using ring/mesh interconnect: In a large
chip multi-processor system, smaller per-core cache slices are
joined by ring or mesh interconnect. In such a system, there
are two more problems in addition to insertion and movement
policy for private data: i) how to partition the capacity of the
cache between the different cores, and ii) how to place and
migrate shared data. Several works (e.g., [5, 8, 17, 20]) have
dealt with the first problem. Given a partitioning of the cache
among the various cores, one can apply SLIP to minimize the
access energy within each partition. Thus, SLIP is orthogonal
to such cache partitioning approaches.

Several authors have also dealt with the second problem
(e.g., [4,17,31]). Hardavellas et al. [17] have shown that even
placing the shared data in a random slice according to a hash
of the data address works near optimally. They also showed
an OS based mechanism to classify data into one of shared,
private or instruction. In case of applying SLIP to a CMP
platform, one can utilize such a classification mechanism and
apply SLIP only to the core private data. SLIP is agnostic to
the placement and migration policies of shared data.

8. Related Work
NUCA techniques: To address the growing contribution of
wire delay in modern caches, Non-Uniform Cache Access
(NUCA) schemes have been proposed. Kim et al. [26] propose
the Static NUCA (S-NUCA) and the Dynamic NUCA (D-
NUCA) schemes. In the S-NUCA scheme, each cache line is
mapped to exactly one location in the cache banks, making the

insertion policy simple but causes energy inefficient accesses
to frequently accessed lines placed in distant bank. In the
D-NUCA, scheme hotter lines are moved to nearer banks by
generational promotion leading to excessive movement energy.

Chishti et al. [11] propose the NuRAPID scheme, where a
large cache is partitioned into a few distance groups (d-groups)
of banks with similar delay. Lines are initially placed in the
nearest d-group. A line is demoted by being evicted from a
d-group and promoted upon receiving hits. Lira et al. [29] pro-
pose the LRU-PEA policy that preferentially evicts demoted
lines, based on the observation that lines which receive a sin-
gle hit tend to receive more hits. Incoming lines are mapped
to a random bank, and lines are promoted upon receiving hits.
Both these policies increase energy consumption due to ex-
cessive line movements. In contrast, SLIP intelligently inserts
lines to an initial location based on the reuse distance history
of the line, and avoids excessive line movement.

In order to reduce energy for NUCA architectures, Udipi
et al. [37] and Gracia et al. [15] show how to improve the
network energy consumption. Udipi et al. propose using low
swing wires and bus based interconnects instead of expensive
on-chip networks. SLIP can be employed in caches using
such interconnects to further reduce the energy consumption.
Bardine et al. [3] propose a NUCA organization where the
workload footprint is estimated and unnecessary ways are
turned off to save leakage energy. SLIP, being a dynamic
energy reduction technique, can be used in conjunction with
such static energy reduction techniques.

Cache Bypassing: A wide body of work [14, 16, 27, 30]
has explored how to perform cache bypassing to improve LLC
hit rates. A central theme of such work is to determine when
an incoming cache block is less likely to be reused than the
already present blocks in the cache. SLIP can adopt such
sophisticated policies, further reducing movement energy.

Reuse Distance Based Replacement: Keramidas et
al. [25] propose a cache replacement policy based on reuse
distance prediction, in which they predict the Estimated Time
to Access (ETA) of every cache line based on their past reuse
distances, and replace the line with the highest ETA. This
scheme and other cache replacement proposals [22, 39] are
orthogonal to SLIP and can be used to determine a victim
candidate during a line insertion or movement.

9. Conclusion
In this paper, we have proposed and evaluated SLIP, a class of
insertion and movement policies that uses reuse distance dis-
tributions to minimize the total access and movement energy.
An energy-optimized SLIP is assigned to each page at runtime
based on the reuse distance distribution of the lines in the page.
In a single core system, SLIP reduces L2 and L3 cache energy
by 35% and 22% respectively, and reduces DRAM traffic by
2.2%. It is also applicable without any modifications to a
multicore scenario, saving 47% energy for a shared L3, and
reducing DRAM traffic by 5.5%.
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