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Abstract

Accurate branch prediction is essential for modern microprocessors in order to maintain high in-

struction throughput. Neural networks have shown great promise in branch prediction. However,

digital implementations require complex circuitry leading to low cycle times, which have precluded

the use of these predictors in actual microprocessor designs.

This paper evaluates the potential for leveraging analog circuitry to efficiently implement neural

network branch predictors. In particular, we propose to implement a perceptron branch predictor

using simple analog blocks including a resistor network for the synaptic multiply/add function and

a comparator for the non-linear output function. We have simulated this circuit using a C model

embedded into SimpleScalar that calculates circuit voltages and currents. We have found that the

prediction accuracy of the analog branch predictor is highly tolerant to resistor mismatch and noise.

In the presence of realistic resistor matching and noise conditions, it achieves virtually the same

accuracy as a digital implementation. The simplicity of the analog perception should enable it to

operate at several GHz with lower power consumption than a digital implementation.

1 Introduction

Modern microprocessors depend on speculative execution to hide control flow dependencies and

their associated latencies. High performance and high-frequency designs call for deeper pipelines,
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which lead to costly misprediction penalties. Fast and accurate branch predictors are essential to

avoiding these expensive penalties.

Some of the most promising work in branch prediction use artificial neural networks to predict

branch outcomes. The use of these predictors has the potential for substantial performance gains

over traditional counter- and history-based designs [11, 9, 10].

Unfortunately, digital logic is poorly suited to emulate neural networks, which require large

synaptic multiply/add functions that are too complex to implement in a single cycle. Pipelining

this addition is not an acceptable option either, because a delay in the branch prediction will lead

to performance degradation.

The neurons and synapses, which make up our brains are not built of digital logic gates, but

instead use a process of chemical transmission. The input signals to a neuron are weighted by the

synapse’s ability to conduct neurotransmitters. This behavior of biological neural networks is very

similar to charge transfer through resistors. As branch predictors only provide microarchitecture

hints, which are by their very nature subject to error, the use of analog circuitry, which is relatively

sensitive to noise, is an interesting possibility for achieving high clock frequency at the possible

expense of lost instruction per cycle performance.

Analog artificial neural networks have been studied and implemented before [19], including some

very similar to what we propose here [5], but have not been considered for use in a high-performance

branch predictor. In this paper we assess the feasibility of an analog circuit to perform the synaptic

multiply/add function in the context of branch prediction. We propose a design and simulate it

using a C model embedded into the SimpleScalar toolset. Because this circuit mainly consists of

a resistor network and a comparator, this predictor should be capable of operating substantially

faster than a purely digital implementation.

In Section 2, we discuss related work on neural network branch prediction and artificial neural

networks. In Section 3, we describe the design of an analog perceptron. In Section 4, we explain

our simulation methodology. We present our results in Section 5, then conclude in Section 6 with

final thoughts and topics for further research.

2 Related Work

In this section we will discuss other work related to artificial neural networks and neural network

branch prediction.
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2.1 Perceptron Branch Predictor

The earliest proposal for using neural networks to predict branches we are aware of was by Vin-

tan [20]. However, the prediction mechanism Vintan proposed, which was based upon an artifical

neural network algrithm known as Learning Vector Quantization [13] achieved poorer accuracy

than state-of-the-art branch predictor designs. Subsequently, Jimnénez and Lin proposed a neural

network branch predictor based upon a single-layer Perceptron [17], which they demonstrated could

achieve better prediction accuracy than prior branch prediction mechanisms [11]. The perceptron

uses a neural network to compute the dot product between inputs and a trained weight vector,

the result of which is passed through a nonlinear step function. The perceptron branch predictor

is widely regarded as one of the most accurate branch predictors [12, 2, 7], but the summation

in the dot product results in a long critical path, substantially lowering clock frequency making a

straightforward digital implementation impractical.

2.2 Alternate Neural Network Predictors

In the search for a practical alternative to the perceptron branch predictor, Jimnénez proposed a

neural path-based branch predictor which pipelines the perceptron in advance over multiple cycles

to generate predictions in a single cycle [9]. The neural path-based predictor suffers decreased

prediction accuracy relative to a single cycle version (it uses different information to make predic-

tions) Further extending the concept of neural network branch prediction, Jimnénez combined the

neural path-based predictor and the perceptron into a generalized piecewise linear branch predic-

tor [10]. The piecewise linear predictor offers superior performance when large resource budgets

are available, but still requires complex logic that may result in long critial paths and lower clock

frequencies. We believe the technique we propose in this paper could be used to improve the circuit

timing of piecewise linear branch prediction however an exploration of this possibility is beyond

the scope of this work.

2.3 Artificial Neural Networks

Neural network based branch predictors are relatively new to high-performance computing, but

artificial neural networks have been implemented and studied for years. Examples of artificial

neural networks can be found from as far back as the 1950’s [15] when the simple single-layer

network perceptron model was first proposed [17, 18, 1]. Artificial neural networks using analog
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Figure 1: The Mixed-Signal Perceptron Branch Predictor

electronics were a topic of a significant amount of research in the 1980’s and early 1990’s [19], but

the pace of research in this field has slowed in recent years. In 2001, Camboni and Valle proposed

a VLSI analog perceptron cell using current multipliers [5]. Their test circuit was implemented in

0.6 µm CMOS and was able to reach 125MHz with a small number of inputs. An analog neural

network implementation in VLSI was demonstrated by Tarassenko [19]. Haikonen describes an

analog artificial neural networks implementing a weighted sum function [8].

2.4 FPGA Perceptrons

Recently, Cadenas et al. implemented a perceptron branch predictor on a field programmable gate

array (FPGA) [4, 3]. They suggest an interesting approach to reducing the critical path length of

the overall prediction logic by grouping weights into blocks resulting in a cycle time improvement

by a factor of 1.7 on an FPGA implementation [3].
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Figure 2: Weighted Average Resistor Network

3 Mixed-Signal Perceptron Design

Figure 1 shows a high-level view of the mixed-signal perceptron predictor. The details are described

in the remainder of this section along with comments on the many design issues we considered.

Artificial neural networks typically implement a “synaptic” multipy/add function to weight and

sum the input signals. This operation can be thought of as a vector dot-product operation between

a vector of input signals and a vector of weights. The forumla for this multiply/add function is:

y =
∑

wixi (1)

In the context of the perceptron branch predictor [11, 12], the wi are weights trained based

upon the past history of branch outcomes, and the xi are the recent history of branch outcomes

encoded as −1 for not-taken branches, and 1 for taken branches. The perceptron branch predictor

algorithm predicts taken when y is greater than zero, and not-taken otherwise.

Each pair of terms can be multiplied together in parallel, performing the summation requires

a large number of dependent additions which increase with the number of terms. While a tree

structured network would have a critical path that grows as the logarithm of the number of terms,

it is important to recognize that one of the strengths of the perceptron predictor is its ability to

make effective use of long global branch histories (implying many terms). However, if we shift focus

from the digital domain to the analog domain, we can effectively implement the addition with a

resistor network assuming signals are voltage mode. If signals were current mode, then addition is
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accomplished by simply joining signal branches together as per Kirchhoff’s Current Law (KCL). In

this paper we focus on the prior approach.

Since the xi take on values of {-1,1}, the multiplication in Equation (1), simply requires inverting

the value of wi when xi is -1. The circuit in Figure 1 implements this by forming the 1’s complement

of the weight vectors using XOR gates. To implement the summation the circuit in Figure 1

computes the average of wixi in the analog domain. Note that since the average is over a fixed

number of terms there is no information gained by multiplying the average by the (constant) number

of terms to recover the actual sum.

3.1 Analog Summation

To understand how the analog circuit in Figure 1 implements the summation, consider the resistor

network shown in Figure 2. Note that this circuit is a bit more general than we require as it

computes a weighted average of the voltages vi. The output voltage, vout, is the average of the

input voltages weighted by the conductance of their resistors (1/Rn = Gn).

iout =
∑

in =
∑ (vn − vout)

Rn

= 0 (2)

∴ vout =

∑
Gnvn∑
Gn

(3)

If we take the resistor values in this diagram to correspond to the fixed output impediance of

the Digital to Analog (D/A) converters in Figure 1 that in our design do not contain output buffers,

then we can use this circuit to compute the required summation. Assuming all D/A converters in

Figure 1 have the same output impedance, R, then setting Gn = 1/Rn = 1/R in Equation (3),

yields:

vout =

∑
( 1

R
vn)

∑
( 1

R
)

=
1

R

∑
vn

N
R

=

∑
vn

N
(4)

Where N is the number of inputs. A prediction is then made by comparing vout to a reference

voltage. Normally, a perceptron performs decisions by checking the sign of the final sum. However,

a typical D/A converter cannot produce a negative voltage. To effect negative values we simply

add a reference value (labeled C in Figure 1) to the signed value to create an unsigned quantity and

input it to the D/A. The sign of the sum can then be checked by comparing the output voltage to

a reference voltage corresponding to our original offset.
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3.2 Offset Compensation

No analog circuit can ever be fabricated perfectly, factors such as resistor tolerances, temperature

dependence, and leakage can alter the reference reference voltage. Because the reference voltage is

used to make predictions, errors in the reference voltage can bias the predictions, and in extreme

cases will render the perceptron useless.

To compensate for errors in the bias network, we add a compensator circuit, as shown in

Figure 1. The compensator circuit consists of an additional D/A converter and a compensator

register. The compensator register continually adjusts itself to try and correct for any errors in the

reference voltage.

The compensator circuit checks the reference voltage by inputting a test pattern into the per-

ceptron and generating a prediction. If the prediction is incorrect the compensation register is

adjusted accordingly. Because the compensator circuit is essentially a form of feedback control,

the compensator circuit should be also able to compensate for time-varying changes in the resistor

networks (e.g., temperature dependency of resistors).

3.3 Analog Designs Issues

Unlike digital circuitry, issues such as resistor matching, temperature dependence, noise, leakage

current, and circuit dynamics can distort or corrupt an analog signal. We will attempt to quantify

the effects of these issues on the accuracy of the mixed-signal perceptron branch predictor.

Not all resistors can be manufactured with perfect precision. Natural variations in the silicon

and lithography process, among other factors, can create variations in expected resistor values.

VLSI resistors are typically manufactured using a thin film of doped polysilicon. Using this tech-

nology, absolute resistances typically have tolerances of 20%, or worse, but relative tolerances can

be 2% or better [14, 16, 6]. Fortunately, the accuracy of D/A converters depends on the relative

matching of its resistors and not the absolute accuracy.

The Temperature Coefficient of Resistance (TCR) for doped silicon is between -200 ppm/C

and -700 ppm/C. Assuming a maximum T of 40C, this corresponds to at most a 2% change in

resistor matching [14, 6]. We will not simulate temperature depenancies in this paper, but their

effect should be similar to resistor mismatching.

There are two soures of noise in analog electronics: thermal noise, and interference noise.

Thermal, or inherent, noise is a result of thermal agitation of charge carriers in the resistor. The
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magnitude of thermal noise depends on the capacitance present in this circuit, and is independant

of it’s resistance. Equation 5 relates the variance and magnitude of thermal noise to the circuit

capacitance. Inherent noise is unwanted signals coupled into the circuit from nearby noise sources.

σ2 = V 2

rms =
kT

C
(5)

We found that the capacitance of our circuit is dominated by the input capacitance of the

comparator, and we estimate that a high-speed comparator would have an input capacitance of

approximately 200 fF, adding interference noise, the overall amount of nose in the circuit is given

by Equation 6, where Vinterference is the RMS value of the interference noise.

σ2 =
∑

V 2

rms =
kT

C
+ V 2

interference (6)

3.4 Perceptron Speed

Because the analog perceptron is merely a large resistor network, the speed of operation is based

off of the RC delay. Based on 0.18 µm technology, we found that the parasitic capacitances are

negligable compared to the input capacitance of the comparator.

We assume an operating frequecy of 4GHz is possible and size our resistors for five τ settling

time of 250 ps. Based upon our noise measurements, we expect this will be sufficient settling time

to provide accurate branch predictor operation.

4 Simulation

In this section we describe the methodology used to simulate the mixded-signal perceptron branch

predictor.

The analog circuitry is simulated using a C model embedded int the SimpleScalar toolset,

and computes the voltages at every node on a cycle-by cycle basis. Noise is generated using a

normal distribution based off of expected circuit parameters, and injected into the mixed-signal

perceptron. Using this model, we are able to determine prediction accuracy, power consumption,

and noise levels which are highly dependant on the inputs to the circuit, and could not be simulated

with a traditional circuit simulator.
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2Bc-gshare 6kB gshare predictor table.
8kB 2-bit counter table.
8kB 2-bit meta predictor.

Digital Perceptron 1024 table entires.
24-bits global history.
8-bits local history.
8-bit weights.

Static Predictor Always Taken.

Analog Perceptron 1024 table entries.
24-bits global history.
8-bits local history.
8-bit weights.
8-bit compensation register.

Table 1: Simulated Branch Predictors

Using this C model to simulate the mixed-signal perceptron, we tested the circuit using 10 of

the SPECint2000 bechmarks compiled for the PISA instruction set and run on the SimpleScalar

branch predictor simulator, sim-bpred. Table 1 describes the branch predictors simulated.

The impact of resistor matching was tested by running the simulator across a wide range of

resistor matching values and recording the prediction accuracy. Every test point was simulated 25

times to generate an average result and calculate yeild estimates.

Noise is generated from two sources: thermal, or inherent, noise is a product of the resistors

and other elements which make up the circuit, while interference noise is coupled into the circuit

from surrounding noise sources. The amount of thermal noise in an R-C circuit is a product of

the capacitance, and is independent of the resistance. Equation 5 relates the variance of the

thermal noise to the temperature and capacitance of the circuit. We found that the capacitance of

the comparator dominates the circuit parameters, and we estimate that a high-speed comparator

would have an input capacitance of approximately 200 fF.

Noise is simulated by injecting gaussian white noise into the comparator. The amplitude of this

noise model is derived from Equation 5, and includes both thermal noise and interference noise

coupled in from other circuits. Random resistors are generated using a normal distribution with

1-σ tolerances 1.

1Typically stated tolerances are 3-σ values, meaning the tolerance value is equal to 3 standard deviations. We

choose 1-σ values as a worst-case parameter.
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5 Results

In this section we describe the performance of the analog perceptron branch predictor when faced

with a variety of noise and tolerance parameters.

The digital perceptron and static predictor are included for comparison as best and worse-case

performances of the analog perceptron and the 2Bc-gshare predictor is included as a ’competing

design.’

5.1 Resistor Tolerance
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Figure 3: Robustness of Prediction Accuracy to Resistor Matching (Average)

Figure 3 plots the arithmetic mean prediction accuracy against resistor matching over all the

simulated benchmarks. The horizontal lines plot the baseline predictors. With resistor matching

as bad as 5% there is no noticeable difference between the analog and digital perceptrons. At 10%

matching accuracy drops below the 2Bc-gshare predictor, and performance becomes unacceptable

at 15%.

Figure 4 shows the same same data as Figure 5, but for individual benchmarks. The same
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Figure 4: Robustness of Prediction Accuracy to Resistor Matching (per Benchmark)

trend can be seen in each of the benchmarks: there is no noticeable performance loss for resistor

matching of up to 5%. Performance falls off sharply at 10-15%, and quickly becomes unacceptable.

With mismatched resistors it is possible that some chips may be produced with errors too great

for the branch predictor to operate correctly. To quantify this effect we define the yield as the

number of simulation runs which performed better than the baseline 2Bc-gshare predictor. In most

benchmarks this means only those chips performing extremely close to the ideal perceptron will

pass.

Figure 5 plots the yield vs. resistor matching. For expected matching (2-5%), the yield is over

98%. Even at 15% matching where the average performance was very poor, the yield still is over

50%. Despite terrible average accuracy, the majority of chips still perform nearly identical to the

ideal perceptron.

5.2 Noise Sensitivity

Figure 6 shows the arithmetic mean prediction accuracy vs. injected noise power measured in

dBm for individual benchmarks. Prediction accuracies fall as noise power is increased. For even

most intolerant benchmarks, noise levels less than 15dBm have no noticeable effect on prediction

accuracy.
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Figure 6: Prediction Accuracy vs. Signal-to-Noise Ratio.
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5.3 Power

Figure shows the static power consumed by the mixed-signal perceptron. Although power con-

sumption varies per benchmark, the power consumption scales linearly resistance. We find that for

all resistance values, the total static power is reasonable (less than 1 Watt).
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Figure 7: Static Power Consumption vs. D/A Impedence.

Dynamic power consumption, which is caused by capacitive loading, is a product of the capaci-

tance, operating frequency and voltage swings. Equation 7 is used to calculate the dynamic power

consumption.

Pdynamic =
Cf(∆V )2rms

2
(7)

We measured the worst-case (∆V )rms to be 63mV. By using our estimated capacitance, 200 fF,

and a typical high-frequency, we can use Equation 7 to calculate our dynamic power consumption:

Pdynamic =
Cf(∆V )2rms

2
= (200fF )(4GHz)(63mV )2 = 72µV (8)
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6 Summary

We have simulated a perceptron implemented using analog circuits in a mixed-signal IC and sub-

jected our model to a wide range of noise and resistor accuracies. With expected resistor matching

(2-5%) an analog perceptron performs nearly identical to a digital perceptron. Interference noise

of less than 15 dBm is required for correct operation.

Based on 0.18 µ m technology, we expect that our mixed-signal perceptron will be capable of 4

GHz operation, while consuming less than 100 mW of power.

A topic for future research is investigating the relative merits of a perceptron predictor based

upon current mode D/A converters which may provide better noise tolerance than the voltage mode

converters we explored in this paper.
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