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Abstract

This paper discusses the emergence of graphics process-
ing units (GPUs) that contain architecture features for ac-
celerating non-graphics (or GPGPU) applications. It pro-
vides an introduction for those interested in undertaking
research at the intersection of manycore computing and
GPU architecture. First, the motivation for using GPUs for
non-graphics processing rather than developing specialized
hardware is outlined. Then, the features of GPU archi-
tectures and related programming models for non-graphics
computing on GPUs are briefly described. Finally, some re-
cent research and architecture challenges related to accel-
erating non-graphics workloads on GPUs are summarized.

1 Introduction

Trends in semiconductor scaling [5, 8] coupled with
increasing design complexity have encouraged hardware
manufacturers to once again explore parallel processing.
One class of single chip parallel processor growing in
prominence is the graphics processing unit (GPU). GPUs
dedicate far more silicon area to arithmetic logic units
(ALUs) than do general purpose processors. This can make
GPUs far more cost effective in terms of silicon area when
running highly parallel software.
In little over a decade, GPUs have rapidly evolved away

from fixed-function pipelines towards highly programmable
pipelines. In 2001 the first GPUs with programmable vertex
shaders appeared. The motivation for this programmability,
was not general purpose computing, but rather the increas-
ing complexity of supporting various operating modes as
graphics APIs evolved, along with the desire to enable ap-
plication developers to provide custom visual effects [30].
While it is possible to achieve programmability even on
fixed-function GPU pipelines by using multi-pass render-
ing techniques [40], directly enabling programmability in
hardware improves performance where programmability is
required.

The addition of programmability attracted the interests
of many researchers interested in accessing the comput-
ing power in GPUs for uses other than rasterization based
graphics (e.g., [41]). By 2002 programmable pixel shaders
were introduced into GPUs. By 2005 hardware appeared
(the Xbox 360) that unified the vertex and pixel shaders.
With the growing interest in using GPUs for non-graphics
computing, sometimes referred to as GPGPU (for General
Purpose computing on GPUs) [1] the GeForce 8800 GTX
introduced in November 2006 brought explicit hardware
support for general-purpose computing to the GPU. This
included the ability to write to arbitrary memory locations
in graphics memory and small on-chip shared memories to
reduce off-chip bandwidth demands and facilitate commu-
nication between threads [31].
The growing importance of GPUs is illustrated by an-

nounced plans to integrate GPU and GPU in future mul-
ticore architectures [6]. Moreover, the architecture of
general-purpose multicore processors and GPUs are con-
verging: Highly multithreaded GPUs are become more
general-purpose and multicore processors are supporting
ever-greater degrees of parallelism [34].
The rest of this paper is organized as follows: Sec-

tion 2 outlines some arguments for why computer architects
should be interested in influencing GPU architectures to be
more general purpose than they are today. Section 3 dis-
cusses contemporary GPU architectures focusing on their
support for non-graphics computing. Section 4 discusses
the usage of GPUs for non-graphics workloads. Section 5
describes some challenges and recent research on architect-
ing GPUs for non-graphics computing. Finally, Section 6
provides some suggestions for where to look for additional
information.

2 Why Architect GPUs for Computing?

An important principle affecting hardware development
is economy of scale. To recover the large non-recurring
costs of developing a chip of similar complexity as a GPU
(which today, can be over $0.5 billion), many chips must be



sold. For a specialized hardware design serving a relatively
small market to be competitive, it ought to offer signifi-
cantly better performance per unit of recurring cost (e.g., for
similar silicon area). For instance, the designers of the ap-
plication specific Anton supercomputer, developed for ac-
celerating molecular dynamics simulations, have presented
data indicating that their specialized architecture will de-
liver roughly two orders of magnitude higher performance
than a comparable cluster of 512 AMD Opteron cores [14].
While this result is impressive, many algorithms have

been shown to obtain similar performance improvements
over CPUs using GPUs [32]. It is too early to judge the
commercial success of Anton in particular, but parallel
computing has seen many commercial failures in the past.
On the other hand, the market for interactive entertainment
(i.e., video games) appears quite willing to repeatedly sub-
sidize the costs of developing massively parallel hardware
in the form of GPUs. Thus, if an application can be made
to effectively utilize the GPU then it can benefit from the
large investment in development costs underwritten by the
traditional market for these devices. In contrast a special-
ized processor must amortize development costs over a po-
tentially smaller market. On the other hand, a more gen-
eral purpose processor must provide as good performance
per unit cost as a GPU for interactive entertainment for it
to command a large share of that market. Finally, GPUs
are interesting to study simply because, given their highly
programmable and multithreaded nature, GPUs can provide
insight into how to design future manycore processors.
If one accepts the arguments above, the first question,

for any given application becomes, “Can this application
make effective use of existing GPUs?” Many applications
with abundant parallelism do not achieve the full benefit
of available GPU resources [10]. For such applications,
the question of interest to architects is, “Would changes
to the GPU architecture enable these applications to ben-
efit as well and also benefit, or at least not reduce perfor-
mance/cost of graphics?” In the next section we examine
contemporary GPU architectures.

3 GPU Computing Architectures

This section briefly reviews modern GPU architecture
features relevant to non-graphics applications. The fo-
cus is on features of current and announced commodity
GPUs [39, 9, 28].
Contemporary GPUs, such as the GeForce 200 Series

from NVIDIA or the ATI Radeon HD 4800 Series from
AMD, employ a unified shader architecture. GPUs with
unified shader architectures have programmable “cores”
that can alternate among several of the tasks (e.g., ver-
tex, geometry and pixel shading) in the graphics render-
ing pipeline of application programming interfaces such as

OpenGL [2] and DirectX [3]. In addition to providing this
flexibility, these GPUs also allow the same programmable
cores to be used for non-graphics applications.
In this paper, the term core refers to one single-

instruction, multiple data (SIMD) pipeline (equivalent to a
Streaming Multiprocessor in NVIDIA terminology [31]).
The use of SIMD hardware improves performance per
unit cost for data parallel applications. To support shader
programs containing data dependent control flow, modern
GPUs use a variant of SIMD execution sometimes called
single instruction multiple thread (SIMT) execution [31].
In SIMT execution, a set of individual threads are grouped
together into a SIMD unit called a warp (in NVIDIA termi-
nology) or a wavefront (in AMD terminology). The threads
in a warp (or wavefront) execute in lock step. When they en-
counter a branch, some threads may execute the branch as
“taken” while others execute the branch as “not-taken”. The
hardware has support to mask off the execution of threads
following one path while allowing threads following the
other path to complete until a control flow join point. Such
support can take the form of a stack of SIMD processing el-
ement activity masks plus special instructions for updating
the stack after a conditional branch [29, 7].
Each core employs fine-grained multithreading (also

known as barrel processing [44]) to interleave execution of
multiple warps (or wavefronts) on the SIMD pipeline on a
cycle by cycle basis. This enables threads to partly hide
long memory access and complex arithmetic operation la-
tencies [30]. Fine-grained multithreading also helps overlap
multiple memory requests to achieve a form of parallelism
called memory level parallelism [20].
One of the most valuable resources for GPUs is pin

bandwidth to off-chip DRAM. To make effective use of
this resource, GPUs reorder memory requests to reduce
delays due to DRAM page activate and precharge over-
heads [35, 16]. In graphics workloads for interactive en-
tertainment applications, a significant fraction of off-chip
memory accesses are for texture mapping. Texture map-
ping [13], used to “paint a decal” onto a 3D surface, is
an integral part of interactive graphics in contemporary
GPUs. A common technique for reducing off-chip band-
width demands is the use of a hardware structure known as
a cache [22]. The limited locality in the large volume of
texture data is captured by small caches [21], but leaves rel-
atively low hit rates (e.g., Montrym and Moreton indicate a
design target texture cache hit rate of only 90% [35]). To
increase the texture cache hit rate further would require un-
reasonably large caches.
Prior to the introduction of the GeForce 8800 GTX in

2006, the GPU programming model placed restrictions on
the locations a shader program could write. This restriction
was a natural consequence of the way the graphics pipeline
is organized—pixel shaders may read arbitrary memory lo-



cations (called a gather operation) while performing texture
filtering, but write the resulting color and depth information
to a fixed location determined by the pixels location on the
screen. Early GPGPU developers invented techniques to
work around this limitation [12]. However, recent GPUs
overcome this limitation more efficiently by directly en-
abling hardware to support writes to arbitrary memory loca-
tions (also known as a scatter operation). Hardware support
for scatter requires an interconnection network between the
pixel shaders and the raster operation units that write data to
DRAM, and this interconnect is not useful in current raster
based graphics pipelines [25, 11].

One of the challenges of obtaining high performance us-
ing GPUs is the need for the software developer to take
steps to make effective use of on-chip storage. The raw
computing power of contemporary GPUs relative to the off-
chip bandwidth is significant—e.g., over a given interval of
time the NVIDIA GeForce 285 GTX [38] can perform close
to seven single-precision floating-point operations for every
single byte of data transferred to or from off-chip graphics
DRAM. A related concern is the need to amortize the over-
head of transferring data from the CPU to the GPU [23].
In addition to providing registers that can be accessed from
within a single thread, the GeForce 8 series also includes
a small, 16KB on-chip random access memory per stream-
ing multiprocessor, called shared memory [39]. In a graph-
ics pipeline, such on-chip storage could potentially be used
for buffering between rendering stages [43]. In the con-
text of non-graphics computation, such on-chip memory is
exploited by employing program transformations such as
tiling [47], which are traditionally used to improve cache
locality in general purpose computers.

GPUs will likely continue their rapid evolution and it
seems likely that future GPUs will provide even more flex-
ible programming models than current GPUs. For exam-
ple, William Mark argues that future GPUs may benefit
from support for cache-coherence [33]. Cache coherence
is a technique that ensures no processor has a different
view of memory. Supporting cache coherence increase the
amount of traffic between cores, potentially limiting over-
all throughput. Mark argues supporting cache coherence in
graphics hardware makes sense from a graphics perspec-
tive since more advanced rendering algorithms than those
in use in GPUs today often require irregular data struc-
tures (e.g., trees) which are not well supported in current
GPU architectures due to their requirement of explicitly
managing off-chip data transfers [33]. The recently an-
nounced Larrabee architecture from Intel will have coherent
caches [28]. Larrabee also replaces many graphics specific
fixed-function hardware units, including rasterization, with
software. One of the fixed-function units that remains in
Larrabee is hardware support for texturing. Next we con-
sider programming models.

4 Programming Models for GPU Compute

The programming models used for GPU Computing
have evolved rapidly. Early approaches leveraging tradi-
tional graphics APIs such as OpenGL or DirectX are sum-
marized by Owens et al. [24]. Today, GPU hardware ven-
dors supply programming APIs, including CUDA [39], and
Brook+ [9] that are extensions of C/C++ which greatly re-
duce the difficulty of learning these languages for experi-
enced software developers. Furthermore, the introduction
of the OpenCL standard [27], which is similar in many ways
to CUDA and Brook+, indicates that there is strong inter-
est in developing a common framework to ensure software
portability. Since CUDA is currently the most widespread,
this paper describes a few of its important features. A more
complete introduction can be found elsewhere [37, 39].

A CUDA application starts by running on the CPU. Be-
fore doing any work on the GPU, the application may per-
form operations such as reading input from a file. It will
typically transfer some data from the CPU to the GPU via a
system interconnect such as PCI Express. Then the applica-
tion will initiate computation on the GPU by calling a ker-
nel function. While the GPU is running the kernel, the CPU
may continue performing other computations. The kernel
runs numerous threads in parallel on the GPU. A group of
threads (32 on current NVIDIA GPUs) are organized into a
warp, and multiple warps are grouped together into a coop-
erative thread array (CTA) which is also sometimes referred
to as a block. Multiple CTAs are grouped together in a grid.
Threads within a CTA can communicate with each other via
the 16KB on-chip shared memory and can synchronize us-
ing barrier synchronization. After a kernel finishes comput-
ing results on the GPU, the CPU may initiate transfer of the
results of the computation back to the CPU’s memory. Next
we consider architecture challenges for GPU computing.

5 Architecture Challenges

In this section we outline challenges related to support-
ing non-graphics computing on graphics processors. Sec-
tions 5.1 and 5.2 consider control flow and memory ac-
cess. Section 5.3 considers architecture evaluation method-
ologies. From a software developer’s standpoint, the first
challenge with any parallel system is Amdahl’s Law [19], a
corollary of which is performance improvement is bounded
by one over the fraction of the application that cannot be
run in parallel. In the first three sections below, we are con-
cerned with applications that exhibit sufficient parallelism
that they can make good use of a GPU. In Section 5.4 we
consider the potential benefits of integrating a GPU and
GPU on a single chip.



5.1 Control Flow

The use of SIMT execution on GPUs supported with
stack based reconvergence mechanisms, mentioned in Sec-
tion 3, can incur significant performance overheads. The
stack based reconvergence mechanism implemented in the
Chap processor (developed at Lucasfilm, Ltd.) is described
by Levinthal and Porter [29]. The basic idea is to selec-
tively enable or disable SIMD processing elements based
upon the outcome of branches executed for that processing
element. A slightly more general approach, that uses the im-
mediate post-dominator of a branch as a control flow recon-
vergence point is the PDOMmechanism described by Fung
et al. [18, 17]. When individual threads within a warp or
wavefront encounter different branch outcomes (e.g., some
threads see the branch as “taken” other see the branch as
“not-taken”) an entry is created on the stack so that execu-
tion of one control flow path (the “taken” path) can proceed
before the other (the “not taken” path). This serializes the
execution of the two paths and leads to a loss in perfor-
mance, a condition known as branch divergence.
One proposal for overcoming the branch divergence

problem, proposed for stream processors, is to reorganize
the computation at the software level (with hardware sup-
port) using conditional streams [45]. Each conditional
branch generates a new stream of data which is input into a
new kernel. While CUDA and Brook+ support the notion of
streams, neither currently provides support for conditional
streams. Others have proposed augmenting each SIMD
processing element with its own instruction sequencer to
directly enable temporary MIMD operation [26, 42]. Fi-
nally, a more recent proposal is to modify the hardware
to allow warps (or wavefronts) to be reorganized dynam-
ically during execution—an approach known as dynamic
warp formation [18, 17]. Each proposal has limitations:
Conditional streams include overheads for creating multi-
ple kernels which can in some cases be hidden, but may
be unavoidable with deeply nested control flow. Local se-
quencers introduce hardware overheads and their limited
instruction capacities may result in instruction bandwidth
limitations. Finally, dynamic warp formation is sensitive to
the warp scheduling algorithm and the number of warps per
CTA (fewer warps per CTA is worse). Another alternative
is for hardware developers to simply decrease the number of
threads per warp in future GPUs as demand for higher per-
formance on control flow intensive applications increases.

5.2 Memory Operations

Memory operations can present a severe challenge for
GPUs. We consider both off-chip and on-chip communica-
tion on the GPU as well as the link between the CPU and the
GPU. Generally, there are two quantities of interest when

considering memory access operations. The first is band-
width, measured as the total amount of data that can be ac-
cessed over an interval of time. The second is latency, mea-
sured as the average time to complete a single operation.
Since GPUs are fundamentally designed to hide latency by
utilizing fine-grained multithreading, the primary concern
is bandwidth. This is quite different than the case for single
thread general purpose computing where the focus has pri-
marily been on latency reduction using techniques such as
prefetching.
The foremost concern is the cost of off-chip memory ac-

cesses. The challenge here is that, with each successive pro-
cess technology generation, the number of I/O pins per chip
does not increase as quickly as the number of transistors
that can be integrated onto a single chip. Compounding this,
modern DRAM technology is organized in such a way that
the order that locations are accessed in the memory affects
the time it takes to access data. This issue is described in
more detail by Yuan and Aamodt [49] who provide a more
detailed survey of recent research than possible here. A
challenging problem is developing DRAM access schedul-
ing algorithms that provide improved performance. Exist-
ing approaches essentially employ greedy scheduling algo-
rithms. A open question is whether less greedy approaches
can provide better performance and if so what form the so-
lutions would take.
A related challenge is that, while individual threads in

a warp can access arbitrary memory locations (scatter or
gather), there is generally a penalty for doing so. This re-
sults from the stalling of the pipeline due to the need to issue
multiple memory requests to satisfy each individual thread’s
access request. When individual threads within a warp ac-
cess contiguous locations in memory, a single larger request
can be sent.
Finally, on-chip communication also presents chal-

lenges. The local on-chip shared memory is typically
banked to increase bandwidth, but does not have many read-
write ports resulting in “bank conflicts” where two or more
threads from a single warp want to access a resource at the
same time, but only one is allowed (i.e., a structural hazard),
even though they are accessing different data. While soft-
ware tuning tools exist to help the programmer identify this
issue, it may not be easy to eliminate these bank conflicts
by making simple software changes.

5.3 Evaluation Methodologies

How does one go about evaluating a novel architecture
idea they believe will improve performance? In the early
days of computing, design decisions were made based upon
low level performance measures such as the time to exe-
cute a single instruction [22]. Such techniques are highly
ineffective for modern computers due to the large amount



of parallelism employed (the execution of individual in-
structions is overlapped on all modern microprocessors).
Since the 1980’s and the reduced instruction set comput-
ing (RISC) movement, the computer industry has firmly
embraced a quantitative methodology in which design de-
cisions are informed by careful analysis of the impact on
overall system performance as measured by the average ex-
ecution time of real software applications [22]. In practice,
this now translates to a methodology of evaluating architec-
ture proposals using C/C++ based cycle level detailed per-
formance simulators [36].
Computer system performance is governed by the equa-

tion [22]:

Execution Time =
IC× cycle time

IPC
(1)

This equation states that the total time it takes to run a
program (Execution Time) is the product of the instruction
count (IC) and the clock cycle time (cycle time) divided by
the average instructions executed per cycle (IPC). While im-
provements in process technology and circuit design tech-
niques can improve the clock cycle time, architecture mod-
ifications may impact all three of these components. C/C++
based cycle level simulators measure the instruction count
and instructions per cycle but do not provide information on
the cycle time. Furthermore, these simulators (even those
used in industry) are typically only accurate to within at
most ≈5% of the actual hardware (and often they are less
accurate). The benefit of using such simulators is they ab-
stract away details that have a minor impact upon perfor-
mance resulting in a modeling methodology in which it is
easier to rapidly evaluate design alternatives.
The GPGPU-Sim simulator, developed at the Univer-

sity of British Columbia, provides a framework for under-
taking research on architecture for non-graphics comput-
ing on graphics processors [10]. GPGPU-Sim (which can
be downloaded from http://www.gpgpu-sim.org),
can run unmodified CUDA applications and enables archi-
tecture researchers to quantitatively evaluate the impact of
their design proposals on average instructions per cycle.
Other simulators focus on graphics workloads [15].
An important consideration that governs whether any

proposed architectural feature will be used in practice is
whether the benefits (e.g., performance gain) are worth the
cost (e.g., silicon area). While building a hardware proto-
type is the most accurate way to estimate the area costs, in
many cases the costs of certain hardware structures can be
estimated using tools such as CACTI [4].

5.4 Heterogeneous Architectures

Recently, there has been much interest in the potential
to integrate a CPU and GPU onto a single chip [6]. One

argument in favor of this is that communication overheads
between the CPU and GPU limit potential performance, as
suggested by Amdahl’s Law. Applications that have signif-
icant parallelism and do not require significant amounts of
communication between CPU and GPU would have little
reason to see a benefit from this arrangement. For this rea-
son, a recent study [48] explored the performance potential
for a more “general purpose” set of applications. The results
of the study highlight that when parallelism is not extreme,
lowering the read-after-write latency of the parallel cores is
important. In addition, it shows that increasing the band-
width and lowering the latency between the cores beyond
values attainable today using PCI Express appear to have
small effects. Since it is all but certain that hardware man-
ufacturers will build heterogeneous systems, more research
in the area of such systems is warranted.

6 Where to learn more

This paper has provided a very brief introduction to
the topic of architecting GPUs for non-graphics applica-
tions. For readers interest in learning more, there are several
sources to turn to.
Owens et al. [24] survey the state of general purpose

computing on GPUs as it existed just prior to the intro-
duction of CUDA. They summarize the motivations for
using GPUs, provide an overview of GPU hardware fea-
tures, along with GPGPU programming models, tools, tech-
niques and applications. Nickolls et al. [37] provide a con-
cise introduction to CUDA. Lindholm et al. [31] provide
an overview of the NVIDIA Tesla GPU architecture. Gar-
land et al. [32] describe their experience writing several
CUDA applications and the performance achieved versus
CPU-only execution. Most research on GPU architectures
has historically appeared at graphics specific conferences
such as ACM SIGGRAPH and Graphics Hardware. There
have also been several publications at computer architecture
conferences (ISCA, MICRO, HPCA, Supercomputing, and
others). In particular, research on stream processors [43, 46]
is highly relevant to architecting GPUs for non-graphics ap-
plications.
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