
Embedded ISA Support for Enhanced Floating-Point
to Fixed-Point ANSI C Compilation

Tor Aamodt
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario

M5S 3G4, Canada

aamodt@eecg.utoronto.ca

Paul Chow
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario

M5S 3G4, Canada

pc@eecg.utoronto.ca

ABSTRACT
Recently tools for automating the translation of floating-
point signal-processing applications written in ANSI C into
fixed-point have been presented [34, 17, 8]. This paper in-
troduces a novel fixed-point instruction-set operation, Frac-
tional Multiplication with internal Left Shift (FMLS), and
an associated translation algorithm—Intermediate-Result-
Profiling based Shift Absorption (IRP-SA), that enhance fixed-
point rounding-noise and runtime performance. A signifi-
cant feature of FMLS is that it is well suited to the lat-
est generation of embedded processors that maintain rela-
tively homogeneous register architectures. FMLS may im-
prove the rounding-noise performance of fractional multi-
plication operations in three ways depending upon the spe-
cific fixed-point scaling properties an application exhibits.
The IRP-SA algorithm enhances this by exploiting the mod-
ular nature of 2’s-complement addition which allows the
discarding of most-significant-bits that are redundant due
to inter-operand correlations. Rounding-noise reductions
equivalent to carrying as much as 2.0 additional bits of pre-
cision throughout the computation are presented. Further-
more, by encoding a very limited set of output shift values
(two left, one left, none, and one right) into the FMLS op-
eration, speedups of up to 13 percent are observed.

1. INTRODUCTION
Many signal processing algorithms are naturally expressed

using a floating-point representation, however direct floating-
point computation requires either large processor die ar-
eas, or slow software emulation. In many embedded ap-
plications the resulting system cost and/or power consump-
tion would be unacceptable. Usually this situation is re-
solved by developing a hand-coded fixed-point version of
the original algorithm with tolerable signal-to-quantization-
noise-ratio (SQNR) degradation. The process of manually
converting any but the most trivial algorithms is time con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’00, November 17-19, 2000, San Jose, California.
Copyright 2000 ACM 1-58113-338-3/00/0011 ..$5.00

suming, tedious, and error prone. Furthermore, ANSI C,
still the system-level programming language of choice for
many requires fundamental language extensions to express
fixed-point algorithms effectively [19]. This has motivated
the development of floating-point to fixed-point conversion
utilities that might at least partially automate the process [34,
17, 2, 8]. It is important to recognize that the problem state-
ment tackled by such utilities is very different from that
traditionally embraced during compiler development in one
important respect: the usual constraint that no optimiza-
tion is allowed to change the program’s output is relaxed.
The instruction set enhancements and supporting compiler
algorithms presented in this paper enhance both the SQNR
and runtime performance of automatically generated fixed-
point code produced by such a conversion utility without
unduly complicating either architecture or compiler design.
Although not emphasized here, they can be used to augment
techniques such as those discussed in [31, 14] that determine
the minimum precision each operation requires to achieve a
pre-specified output SQNR (for further discussion see [1]).

1.1 Prior Work
Two research groups have published work on floating-

point to fixed-point conversion starting from ANSI C de-
scriptions, and recently Synopsys Inc. has introduced a de-
sign utility closely modeled on one of these. Before reviewing
these systems, it is worthwhile mentioning the known theo-
retical insights and their practical limitations related to the
problem at hand.

Analytical Conversion Techniques
A method of obtaining dynamic-range constraints at the in-
ternal nodes of a digital filter that enables the judicious ap-
plication of fixed-point scaling operations was described by
Leland B. Jackson in [11, 12]. These constraints are de-
rived ignoring rounding-error and are expressed in terms of
the “norm” of the input-signal spectrum or power spectral
density and the transfer function to the node in question.
However, as well as being limited to linear time-invariant
(LTI) systems, this procedure requires detailed knowledge of
the signal-flow graph and is therefore hard to apply within
an ANSI C compiler due to the complexity of the implied
dependence analysis problem. Furthermore, this technique
is fairly conservative for many systems and signal classes of



interest[15]1 . For these reasons, existing floating-point to
fixed-point conversion utilities often employ profile data to
obtain estimates of the dynamic-range of various floating-
point values in the codified representation of a digital signal
processing algorithm.

Procedures for finding the minimum round-off noise of
canonical representations of LTI systems such as the state-
space [21, 7], extended-state-space [3], and lattice [6] rep-
resentations also require complete knowledge of the overall
transfer function. As these are primarily synthesis tech-
niques and do not in any case determine the precise fixed-
point scaling, but rather the overall signal-flow structure,
they are most suitable to design tools such as Matlab [20],
which are often employed to generate floating-point ANSI C
programs that may then be fed to a digital signal proces-
sor’s native ANSI C compiler. Similarly, fixed-point imple-
mentation techniques such as block-floating-point [22] and
quantization-error feedback [29] rely upon high-level signal-
flow-graph information. An interesting alternative to fixed-
point that might be nearly as effective in capturing the twin
benefits of low-power and low-cost signal-processing is the
use of reduced precision/range floating-point arithmetic [33].
However automated use of such hardware may very well sub-
sume an understanding of the floating-point to fixed-point
conversion problem because it appears to introduce many of
the same challenges.

Prior ANSI C Conversion Systems
Existing automated floating-point to fixed-point conversion
tools limit the transformations considered to the generation
of a fixed-point scaling scheme that minimizes the likelihood
of fixed-point overflows for a given dataflow. Although this
is no panacea, such a utility can be used to greatly accelerate
the iterative design flow that is often employed in floating-
point to fixed-point conversion [34, 8].

The FRIDGE system [34], developed at Aachen Univer-
sity uses a worst-case (WC) estimation technique to guide
their “interpolation” scaling algorithm. The input to the
interpolation process is the range of a limited set of signals
and the maximum value any signal is allowed to grow to.
By using “worst-case” inferences, such as

max
∀t

�
A(t) + B(t) � = max

∀t
A(t) + max

∀t
B(t)

the input scaling is propagated to all other unspecified sig-
nals. In some cases the user will be prompted for additional
signal constraints if the problem is under-specified. The
FRIDGE system allows the designer to perform bit-accurate
simulations of partially specified systems in order to obtain
profile information that might be used to aid this process.
Furthermore, by performing detailed control and data-flow
analyses FRIDGE attempts to minimize the coupling be-
tween a variable’s name and the fixed-point scaling assigned
to it. Recently Synopsys Inc. has developed a commercially
available system that closely resembles FRIDGE [8], how-
ever it uses a technique vaguely described as a “better than
worst-case analysis... range propagation” method [9] to de-
termine the scaling operations and operates on the newly

1The authors of [15] showed an SQNR improvement of
24.1 dB (equivalent to 4 bits of additional precision) com-
pared with this theoretical technique when using a technique
that relied upon actual measurement of the dynamic-range
of internal variables.

introduced System C language [32] rather than ANSI C.
The ANSI C floating-point to fixed-point conversion util-

ity developed at Soeul National University [17, 18] uses a
profile based methodology and a statistically motivated scal-
ing procedure. The procedure used in [17] appears to ag-
gressively assume no overflows will occur while propagating
dynamic-range information in a bottom-up manner through
complex expression-trees when starting from actual mea-
surements which are only taken for leaf operands. This ap-
pears to work because the dynamic range of a leaf operand,
say x, is conservatively estimated using the relation,

R(x) = max � �
|µ(x)| + n × σ(x) � , max |x| �

where µ(x) is the average, σ(x) is the standard deviation,
and max |x| is maximum absolute value of x measured dur-
ing profiling. n is a parameter either chosen by the designer,
or estimated using higher order statistical information of x,
as described in [16]. By setting n large enough overflows
are in most cases eliminated. We designate this approach
SNU-n.

1.2 Methodology
Our profile based floating-point to fixed-point conversion

utility integrates into the front end of our pre-existing DSP
compiler infrastructure and thus bypasses the source code
regeneration phase used in [17] and [18]. This pre-existing
infrastructure has been developed as part of Embedded Pro-
cessor Architecture and Compiler Research project at the
University of Toronto2. The project focuses on the con-
current investigation of architectural features and compiler
algorithms for application specific instruction-set processors
(ASIPs) with the aim of producing highly optimized solu-
tions for embedded systems [23, 27, 26]. Central to the
approach is the concurrent study of a parameterized VLIW
architecture and optimizing compiler that enables architec-
tural exploration while targeting a particular application—it
has been well noted that many traditional digital signal pro-
cessor architectures make exceptionally poor compiler tar-
gets especially because they usually exhibit very inhomoge-
neous register architectures that bind instruction selection
with register allocation [4]. In addition to the number and
type of function units available, the datapath bitwidth is pa-
rameterized by our compiler and simulation infrastructure.

By profiling intermediate calculation results within ex-
pression trees in addition to explicit program variables a
scaling assignment retaining greater precision is attainable
than using the fairly conservative WC method, more reliably
than SNU-n. We evaluate the performance of WC without
“interpolating” between expression trees. Instead, profile
data is made available for all leaf operands. Using a pro-
filing based methodology means that our conversion results
will only be as reliable as the profile data is itself at pre-
dicting the inputs seen in practice. In particular if the value
of internal signal is not properly bounded fixed-point over-
flows causing sever output degradation may occur. However,
we believe a fairly large class of embedded signal-processing
applications can be characterized using profile data. Fur-
thermore, it is not difficult to find input samples that con-
servatively model large classes of input signals. For example,
we have found that a short duration “chirp” signal, defined

as y(t) = A cos ω0t
2, for t ∈ (0,

fsample

2ω0
), can adequately, al-

2http://www.eecg.utoronto.ca/˜pc/research/dsp



beit conservatively, excite the internal state of linear filter
structures to account for a wide range of speech inputs that
are normalized to lie in the range (−A,A). More detailed
examples are given in [1].

1.3 Organization
The rest of this paper is organized as follows, Section 2 de-

scribes our conversion algorithms and the proposed instruc-
tion set enhancements. Section 3 presents results comparing
the SQNR performance of code generated by our scaling al-
gorithm, WC, SNU-n both with and without the proposed
FMLS operation for five diverse signal processing applica-
tions, a couple of which have two variants bringing the total
number of benchmarks used to seven. Section 4 presents
data illustrating the execution time enhancement of our pro-
posed ISA enhancements and Section 5 concludes indicating
some future directions for this work.

2. FLOAT-TO-FIXED CONVERSION

Our floating-point to fixed-point conversion utility is out-
lined in Figure 1. The most common syntactic features
of ANSI C are supported, including the use of pointers
and structured data types. Furthermore, support for auto-
matically generating fixed-point versions of commonly used
ANSI C math libraries is included. The utility was devel-
oped by extending the SUIF compiler infrastructure devel-
oped at Stanford3. SUIF provides an ANSI C front end and
a flexible intermediate representation. We use a modified
version of the MIPS code generator included in the SUIF
distribution that specifically targets our ASIP/DSP archi-
tecture [24], and a post-optimizer used for VLIW schedul-
ing and machine specific optimizations [28, 25, 30, 26]. As
SUIF does not intrinsically support fractional fixed-point
data types and indeed because its scalar optimization facil-
ities are fairly weak to begin with, we have added several
scalar optimizations that properly respect our extensions of
the SUIF intermediate representation.

2.1 Range Identification
Fixed-point numerical representations differ from floating-

point in that the location of the binary-point separating in-
teger and fractional components is implied by a number’s
usage rather than being explicitly represented using sepa-
rate exponent and mantissa. For instance, when adding
two numbers together using an integer ALU the binary-
points must be pre-aligned, eg. by right shifting the smaller
operand.

The frequent and occasionally even desirable practice of
using “pointers” to access data in the ANSI C program-
ming language necessitates the partitioning of all addressed
floating-point data and load/store operations used to refer-
ence them so that a common statically determined scaling
is provided for all memory accesses. This requirement is
most naturally supported by the incorporation of a context-
sensitive interprocedural alias-analysis that SUIF is well suited
to supporting. These alias-partitions, all non-addressed floating-
point data items, and all intermediate floating-point cal-
culations are assigned unique floating-point identifiers with
SUIF’s annotation facility for later use during both code in-
strumentation and the generation of scaling operations. To
support index-dependent analysis of floating-point ranges,

3http://suif.stanford.edu

Floating-Point ANSI C Program

?�
�

�
�

SUIF Front End
ANSI Math Library

Replacement

?�� ��Identifier Assignment

?

PPPPPPPq�� ��Instrument Code

?�� ��Profile
�������)�

�
�
�Generate Scaling

Operations

?�
�

�
�Code Generation

+ VLIW Packing

?
Fixed-Point DSP Simulator

Figure 1: Floating-Point to Fixed-Point Conversion

control-flow, data-flow and dependence analysis is used to
determine when an alias partition’s references access data
in a regular way (i.e. through array accesses dependent
upon a surrounding loop’s index). Alias-partition accesses
for which this property holds are assigned additional infor-
mation providing summaries of the array offset dependency
upon available loop-index variables. See [1] for more details.

After each assignment to a variable, calculation of an in-
termediate result, or read/write access of an alias-partition,
profiling code is inserted to record the maximum and min-
imum values encountered. The instrumented code is con-
verted back to ANSI C4, compiled and then run on a desktop
system to obtain profile results rapidly even for relatively
complex signal-processing applications and large training
sets.

The fixed-point datapath wordlength (WL) is implicitly
divided amongst the sign bit, integer word length (IWL),
and a fractional word length (FWL). Profiling a signal x

obtains the minimum allowable IWL(x) and thereby locates
the binary-point so overflows are prevented using the follow-
ing relation

IWL(x) = blog2(max |x|)c + 1

where b·c represents the “floor” function which truncates
toward −∞. The scaling algorithms we propose are in fact
independent of how these measured IWL values are found,
and merely rely upon some technique being available to es-
timate a given floating-point quantity’s dynamic-range. For
many applications merely choosing an appropriately rich set

4SUIF provides s2c, a program for converting the interme-
diate representation back to C



of benchmarks for profiling appears to ensure this technique
will work. Seen in this light the “statistical approaches”
put forward in [17, 16] are merely heuristics for generalizing
from limited data. On the other hand, it is desirable that the
fixed-point code should work using the same inputs used for
profiling. Where numerical stability is lacking, accumulated
rounding-errors can occasionally change the dynamic-range
of a signal after conversion to fixed-point. A straightforward
technique of dealing with this is to re-profile the system once
a first-order estimate of the dynamic-ranges is known so that
simulated rounding-noise of approapriate amplitude can be
injected after each operation that will undergo truncation in
the final fixed-point version (see [1] for more details on this
including experimental results).

2.2 Scaling Algorithms
A limitation of the worst-case estimation technique when

processing an additive operation is illustrated by the follow-
ing example: If both source operands take on values in the
range [-1,1] then it may actually be the case that the result
lies within the range [-0.5,0.5], whereas worst case estimation
would determine that it lies within the range [-2,2], resulting
in two bits being discarded unnecessarily. In addition to this
limitation the SNU-n scaling procedure, as implemented for
[17] has the unfortunate property that it does not accurately
predict some overflows—a straightforward counter example
is an expression such as “A + B” where A and B take on
values very closely distributed around 2n for some arbitrary
n ∈ Z. In this case it can be shown that the required value
of the problem dependent n parameter to successfully pre-
vent overflow of A + B grows rapidly as the distributions of
A and B shrink.

2.2.1 IRP: Local Error Minimization
For the Intermediate Result Profiling (IRP) algorithm,

scaling operations5 are added to expression trees using a
post-order traversal that incorporates both the gathered IWL
information and the current scaling status of source operands.
The current IWL of X indicates the IWL of X given all
the shift operations that have been applied within the sub-
expression rooted at X. Key to understanding IRP is the
property,

IWLX current ≥ IWLX measured

which holds trivially for leaf operands of the expression tree,
and is preserved inductively by the IRP scaling rules. Es-
sentially, this condition ensures overflow is avoided provided
the sample inputs to the profiling stage gave a good sta-
tistical characterization. It is by exploiting the additional
information in IWLX measured that numerical error may be
minimized by retaining extra precision wherever possible.

As an example, consider the conversion of the floating-
point expression “A + B” into its fixed-point equivalent il-
lustrated in Figure 2. Here A and B could be variables, con-
stants or subexpressions that have already been processed.
To begin we make two assumptions

IWL A+B measured ≤ max {IWLA, IWLB} (1)

IWLA measured > IWLB current (2)

The first condition states that the value of A+B always fits
into the larger of the IWL required to represent A or B. The
5as in ANSI C we use the notation “<<” for left shift oper-
ations, and “>>” for right shift operations

+

�
���

S
S

SSo

6 IWLA+B current ?

IWLA+B measured

√

�
�

�
�

�
�

A
A
A
A
A
A

A

IWL A current

√
IWL A measured

√

�
�

�
�

A
A
A
A

B

IWL B current

√
IWL B measured

√�
��
�P

r
e
v
io

u
s
ly

C
o
n
v
e
r
t
e
d

S
u
b
-
E
x
p
r
e
s
s
io

n
s

Figure 2: IRP Conversion Algorithm Example

second states that A is known to take on larger values than
B’s current scaling. Then the most aggressive scaling, i.e.
the scaling retaining the most precision for future operations
without causing overflow, is given by:

A + B
float-to-fixed−→ (A << nA) + (B >> [n − nB])

where:

nA = IWL A current − IWL A measured

nB = IWL B current − IWL B measured

n = IWL A measured − IWLB measured

Note that nA and nB are shift amounts required to ‘max-
imize the precision’ in A and B respectively, and n is the
shift required to align the binary points of A and B. Now,
by defining “x << −n” = “x >> n”, and invoking similarity
to remove assumption (2), one obtains:

A + B
float-to-fixed−→ A >> [IWLmax − IWLA current]

+ B >> [IWLmax − IWLB current]

and IWLA+B current = IWLmax. If assumption (1) is not
true, then it must be the case that IWLA+B measured =
IWL max + 1 and instead:

A + B
float-to-fixed−→ A >> [1 + IWLmax − IWLA current]

+ B >> [1 + IWL max − IWLB current]

with IWLA+B current = IWLmax + 1. Note that the prop-
erty IWLA+B current ≥ IWLA+B measured is preserved as
required, however we do not yet exploit information such
as the possibility that a positive value of nA may indicate
precision has been discarded unnecessarily within the sub-
expression rooted at A. We consider this possibility in the
next section. This transformation also applies without mod-
ification to subtraction operations. The IRP algorithm is
local in the sense that the determination of shift values im-
pacts the scaling of the source operands of the current in-
struction only.

For multiplication operations the scaling applied to the
source operands is:

A · B float-to-fixed−→ (A << nA) · (B << nB)



where nA and nB are defined as before, and the resulting
current IWL is given by

IWLA·B current = IWLA measured + IWLB measured

For division, we assume that the hardware supports 2·WL
bit by WL bit integer division (this is not unreasonable–
the Analog Devices ADSP-2100, Motorola DSP56000, Texas
Instruments C5x and C6x all have primitives for just such an
operation) in which case the scaling applied to the operands
is:

A

B

float-to-fixed−→ A >> [ndividend − nA]

B << nB

where nA and nB are again defined as before and ndividend

is given by:

ndiff = IWL A
B

measured

− IWLA measured + IWLB measured

ndividend = ndiff , if ndiff ≥ 0

ndividend = 0 , otherwise

Note that ndividend must be greater than zero to ensure A
does not overflow. The resulting current IWL is given by:

IWL A
B

current
= ndividend + n

This scaling is combined with the assumption that A is
shifted by WL − 1 into the most significant portion of the
dividend double-precision register before the actual division
operation (the dividend must have two sign bits to ensure
the result is valid). Note that unlike the addition, sub-
traction and multiplication operations, for division a priori
knowledge of the result IWL is also necessary to generate
the scaling operations (i.e. the IWL of the quotient can not
be inferred from knowledge of the IWL of the dividend and
divisor). This requirement cannot be satisfied by the SNU-
n methodology used in [17] however the WC algorithm can
be extended to handle division provided we can bound the
quotient using the maximum absolute value of the dividend
and the minimum absolute value of the divisor.

2.2.2 IRP-SA: Using ‘Shift Absorption’
2’s-complement integer addition has the favorable prop-

erty that if the sum of N numbers is a number which fits into
the available wordlength then the correct result is obtained
regardless of whether any of the partial sums overflows. This
property can be exploited, and at the same time some redun-
dant shift operations may be eliminated if a left shift after
an additive operation is transformed into two equal left shift
operations on the source operands. If a source operand al-
ready has a shift applied to it the new shift applied to it is
the original shift plus the “absorbed” left shift. If the result is
a left shift and this operand is additive, the absorption con-
tinues recursively down the expression tree (see Figure 3).
This shift allocation subroutine is combined with IRP to
provide the IRP-SA algorithm. The basic shift absorption
routine is easily extended to eliminate redundant shift op-
erations not affecting numerical precision, eg. ((A << 1) +

(B << 1)) >> 1. A sample conversion is illustrated below in
Figures 4, 5, and 6.

2.3 Architectural Enhancements
IRP-SA frequently uncovers fractional-multiplication op-

erations followed by a left scaling shift (which discards most

*- - - - - - - - - - - - - - - - - - - - -*
| OP: Operand to apply scaling to. |

| SHIFT: Shift we desire to apply at OP |
| (negative means left shift). |
| RESULT: Shift actually applied at OP |

*- - - - - - - - - - - - - - - - - - - - -*

operand ShiftAbsorption( operand OP,
integer SHIFT )

{
if( OP is a constant or symbol )

return (OP >> SHIFT);

else if( OP is an additive instruction ) {
if( SHIFT < 0 ) {

integer Na = current shift of A
integer Nb = current shift of B
operand A, B = source operands of

OP w/o scaling
A = ShiftAbsorption( A, Na + SHIFT )

B = ShiftAbsorption( B, Nb + SHIFT )
return OP; // no shift applied to OP

}
}
else return (OP >> SHIFT)

}

Figure 3: Shift Absorption Procedure

t2 = xin + 1.742319554830*d20 - 0.820939679242*d21;

yout= t2 - 1.633101801841*d20 + d21;
d21 = d20;
d20 = t2;

Figure 4: Original Floating-Point Code

significant bits). However, this condition arises for three
distinct reasons: First, occasionally the product of two 2’s-
complement numbers requires one bit less than the sum of
the bitwidths of the multiplicands to be fully represented;
second, if the multiplicands have some statistical degree of
inverse proportionality; third, if the product is additively
combined with another quantity that is negatively corre-
lated with it. Regardless of which situation applies, addi-
tional precision can be obtained by introducing a novel op-
eration into the processor’s instruction set: Fractional Mul-
tiplication with internal Left Shift (FMLS). This operation
accesses additional least significant bits of the 2×wordlength
intermediate result, which are usually rounded into the LSB
of the 1×wordlength fractional product, by trading these for
a corresponding number of most significant bits that would
have been discarded anyway. An additional benefit of this
operation encoding is that non-trivial speedups in the com-
putation are also frequently possible.

The execution time performance benefits of combining an
output shift with fractional multiplication have been ac-
knowledged by previous DSP architectures [10] where the
peak performance benefit is limited primarily to inner prod-
uct calculations using block scaling because the output shift
is often dictated by a control register requiring separate
modification each time the output scaling changes. We ad-
vocate encoding the output shift directly into the instruc-
tion word because, in addition to enhancing signal quality,
our simulation data indicates that a very limited set of shift
values is responsible for most of the execution speedup and
this encoding avails these benefits to a larger set of signal



t2 = ((xin >> 5) + 28546 * d20 - ((26901 * d21) >> 1)) << 1;
yout = ((((t2 >> 1) - 26757 * d20) << 1) + d21) << 2;
d21 = d20;

d20 = t2;

Figure 5: IRP Version

t2 = (xin >> 4) + ((28546 * d20) << 1) - 26901 * d21;

yout= (t2 << 2) - ((26757 * d20) << 3) + (d21 << 2);
d21 = d20;

d20 = t2;

Figure 6: IRP-SA Version

processing applications.
The FMLS operation is illustrated in Figure 7 and the

code generation pattern is shown in Figure 8 (where sym-
bol ‘?’ represents fractional fixed-point multiplication oper-
ations). Our simulation data indicates that a limited set of
left shift values—roughly 3 or 4—suffices to capture most
of the benefits to both SQNR and execution time. This is
encouraging because it limits the impact on both operation
encoding and the fractional multiplier’s hardware implemen-
tation. Furthermore, this encoding exhibits good orthogo-
nality between instruction selection and register allocation,
and is therefore easy for a compiler to generate.

3. EXPERIMENTAL RESULTS: SQNR
To measure the fidelity of the converted code we use the

signal-to-quantization-noise-ratio SQNR defined as the ratio
of the signal-power to the quantization noise-power. The
‘signal’ in this case is the application output using double
precision floating-point arithmetic, and the ‘noise’ is the dif-
ference between this and the output generated by the fixed-
point code using “chomping” truncation (ie. discarding least
significant bits without modifying what is left). We present
results for five typical yet disparate digital signal process-
ing tasks to illustrate the effectiveness of the two algorithms
put forward in this paper both alone and in conjunction with
the proposed FMLS operation. Each benchmark is briefly
outlined in the following five subsections. Section 3.6 sum-
marizes the SQNR performance enhancements by interpo-
lating the data presented earlier to arrive at an equivalent
improvement in terms of additional datapath bits effectively
saved. It is important to note that the signal-processing
characteristics of benchmark implementations that would be
irrelevant from the perspective of any traditional compiler
developer in fact play a big part in determining SQNR per-
formance when converting to fixed-point. A more detailed
study of this issue is presented in [1].

3.1 4thOrder Cascaded Direct-Form II Filter
A 4th order Chebyshev type II lowpass filter realized us-

ing two cascaded direct-form IIR filter seconds was intro-
duced in [18]. As the synthesis procedure used there was un-
clear we redesigned the filter coefficients using MATLAB’s
cheby2ord and cheby2 commands designing for stopband
ripple suppression of 40 dB and a normalized passband and
stopband edge frequencies of 0.1 and 0.2 respectively and the
resulting transfer function was processed using tf2sos to
obtain a high quality pairing of poles and zeros for two cas-
caded second-order Direct-Form type II IIR sections. The

Full 8 by 8 bit Product

� ��� �

ABADFASFASFAASDUFASABABA

ABADUFASABAa
� ��� �

Result

asdblah blah blhshf

(a) Integer Product (8.0 format)

asdblah blah blhshf

(b) Fractional Product (1.7 format)

asdblah blah blhshf

� cf. fractional multiplication followed
by a left shift logical of 2 bits

(c) Fractional Multiply with Internal Left Shift

Figure 7: Various Forms of 8 x 8 bit Multiplication

result

6

<<

�
���

@
@@I

shift amount?

�
���

@
@@I

a b

Figure 8: FMLS Code-Generation Pattern

simulation results for both 14-bit and 16-bit implementa-
tions are listed in Table 1 using a 2000 point independent
and uniformly distributed white noise input sequence. The
best result is obtained using IRP-SA with the FMLS oper-
ation in the ISA indicating that significant operand correla-
tion was uncovered and exposed by IRP-SA in such a way
that FMLS could exploit it to improve the signal-to-noise
performance.

3.2 16thOrder Normalized Lattice Filter
The next example is a 16th order elliptic bandpass fil-

ter, designed as with the previous example using MATLAB
and realized using a normalized lattice filter topology. The
unnormalized lattice (abbreviated NLAT) and ladder coef-
ficients where obtained using the MATLAB tf2latc com-
mand, and the normalized coefficients where derived as shown
in [13]. The filter was again excited with a 2000 point white
noise input using 14 and 16-bit architectures. The results
presented in Table 2 indicate little improvement using the
FMLS operation. This is consistent with the fact that the



14 Bit 16 Bit
Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS

SNU-4 31.5 dB 31.6 dB 43.5 dB 43.6 dB

SNU-2 37.5 dB 37.6 dB 49.7 dB 49.8 dB

SNU-0 37.4 dB 37.5 dB 49.4 dB 49.5 dB

WC 37.4 dB 37.5 dB 49.4 dB 49.5 dB

IRP 38.6 dB 38.1 dB 50.6 dB 50.2 dB

IRP-SA 38.4 dB 44.0 dB 50.4 dB 56.2 dB

Table 1: SQNR – 4th Order Cascaded IIR Filter

14 Bit 16 Bit

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS

SNU-4 39.9 dB 39.9 dB 41.7 dB 41.7 dB

SNU-2 10.0 dB 10.0 dB 10.0 dB 10.0 dB

SNU-0 10.0 dB 10.0 dB 10.0 dB 10.0 dB

WC 44.3 dB 44.3 dB 55.8 dB 55.8 dB

IRP 45.8 dB 46.0 dB 57.6 dB 57.5 dB

IRP-SA 45.8 dB 46.0 dB 57.6 dB 57.5 dB

Table 2: SQNR – 16th Order Normalized Lattice Filter

normalized lattice filter structure is specifically designed to
dramatically improve the numerical stability of the compu-
tation using fixed-point arithmetic–very few FMLS opera-
tions can be generated for this nearly optimal structure. It
is interesting to note that our conversion system performs
almost as well on the unnormalized lattice structure (ab-
breviated LAT) providing only 6dB signal degradation by
comparison. The unnormalized structure is also 20 percent
faster because it uses half as many multiplications. The good
SQNR performance of the regular lattice filter benchmark is
greatly enabled by the index-dependent scaling capabilities
of our conversion utility detailed in [1].

3.3 Radix-2 Decimation in Time FFT
Two variants of this benchmark where used: One that

evaluates the twiddle factors directly, and one that uses
trigonometric recurrence relations. The former is abbrevi-
ated FFT-MW, and the later FFT-NR, for “Mathworks”
and “Numerical Recipes”, respectively depending upon the
source of the code used. The results for implementing a 128-
point radix-2 decimation in time FFT using The Mathwork’s
version of the code supplied with Matlab’s Real-Time Work-
shop are listed in Table 3. In this case significant gains are
obtained using the FMLS instruction with WC, IRP, and
IRP-SA. The inner loop of an FFT involves two very simple
sum of products expressions, and the FMLS is being used
to retain extra precision for each accumulation. It is impor-
tant to point out that as with the unnormalized lattice filter
benchmark, the FFT exhibits an iteration dependent scaling
problem. Typically hand-coded solutions use some form of
block-floating point or index-dependent scaling, however the
form of the loops used in an FFT is particularly hard to an-
alyze and therefore our software uses less effective constant
scaling for all outer loop iterations.

3.4 Nonlinear Feedback Control

14 Bit 16 Bit
Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS

SNU-4 14.3 dB 32.6 dB 31.6 dB 33.6 dB

SNU-2 4.0 dB 4.2 dB 4.2 dB 4.3 dB

SNU-0 4.0 dB 4.2 dB 4.2 dB 4.3 dB

WC 20.8 dB 32.8 dB 33.2 dB 53.5 dB

IRP 20.7 dB 33.0 dB 33.0 dB 56.5 dB

IRP-SA 20.7 dB 32.7 dB 33.0 dB 56.5 dB

Table 3: SQNR – 128-Point Radix-2 FFT

The rotational inverted pendulum6 is a testbed for non-
linear control design. It is open-loop unstable and highly
nonlinear. Practical examples of embedded nonlinear con-
trol applications, such as automotive anti-lock braking sys-
tems, are growing rapidly with increasing understanding of
nonlinear dynamics. We obtained source code for a con-
troller generated automatically from a high-level description
by Bortoff using Mathmatica. This controller was developed
to support his noted research on the application of spline
functions to provide approximate state feedback lineariza-
tion [5]. The inner loop code involves 23 transcendental
function evaluations, 1835 multiplications, 21 divisions, and
roughly 1000 addition and subtractions. Furthermore, many
expression trees in this code contain over 100 arithmetic op-
erations. To measure the resulting closed-loop performance
after floating-point to fixed-point conversion we interfaced
our ASIP simulator with a very accurate software model
of the rotational inverted pendulum provided by Bortoff.
The converted code exhibits excellent performance, even at
wordlengths as low as 12 bits, using IRP-SA with FMLS
(see Figure 9 which contrasts the performance of WC, IRP,
and IRP-SA w/ FMLS all using a 12 bit wordlength). The
conversion results for this benchmark are summarized in Ta-
ble 4 and show considerable gains due to IRP, and the FMLS
instruction in combination.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Time (seconds)

z[
0]

IRP−SA   using  FMLS  instructions

IRP−SA 

WC 

double precision floating−point 

Step Input (Control Reference) 

Figure 9: Pendulum Step Response – 12 Bits

3.5 Levinson-Durbin Recursion
6see http://www.control.utoronto.ca/˜bortoff/pendulum.html



14 Bit 16 Bit
Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS

SNU-4 4.0 dB 42.7 dB 30.7 dB 54.9 dB

SNU-2 37.9 dB 48.4 dB 49.6 dB 60.0dB

SNU-0 44.2 dB 57.9 dB 55.8 dB 69.5 dB

WC 47.3 dB 54.3 dB 59.2 dB 66.1 dB

IRP 53.1 dB 58.4 dB 65.8 dB 71.8 dB

IRP-SA 52.8 dB 59.4 dB 64.4 dB 72.0 dB

Table 4: SQNR – Rotational Inverted Pendulum

This kernel is often found in speech coding applications.
It was found that greater precision was required to achieve
reasonable performance with this kernel, and furthermore
this example illustrates a case where IRP and IRP-SA are
susceptible to dynamic-range estimation error due to accu-
mulated round-off error (see Table 5). Interestingly, SNU-n
performs better here. As noted earlier, there are a num-
ber of ways to remedy this situation that are explored in [1]
however the simplest is to use slightly conservative profile
inputs.

24 Bit 28 Bit
Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS

SNU-4 55.6 dB 53.6 dB 74.9 dB 75.2 dB

SNU-2 54.2 dB 54.7 dB 75.0 dB 74.8 dB

SNU-0 54.2 dB 54.7 dB 75.0 dB 74.8 dB

WC 42.0 dB 42.0 dB 66.9 dB 68.3 dB

IRP 45.4 dB 45.4 dB 75.0 dB 74.9 dB

IRP-SA 45.4 dB 55.0 dB 75.0 dB 74.8 dB

Table 5: SQNR – Levinson-Durbin Recursion

3.6 SQNR Summary of Results
The data presented in the previous subsections can be

neatly summarized by by interpolating the data presented
in Tables 1-4 to express the SQNR improvement in terms of
the number of equivalent bits of precision carried throughout
the computation. This data is summarized in Figures 10 and
11.

4. EXPERIMENTAL RESULTS: SPEEDUP

To quantify the performance enhancing effect of adding
output shifted arithmetic operations to the instruction set
it is instructive to measure the execution speedup while
making successively more opcode/output-shift combinations
available. To this end we characterized the relative run-time
execution frequencies of different shift values. Figure 12 dis-
plays the output shift usages for fractional multiplication
on the nonlinear control benchmark. For lack of a simpler
method we prioritize the opcode/output-shift pairs made
available by the more frequently used opcode/output-shift
patterns when all patterns are available. We study both
ISA’s that support a shift immediate instruction (which was
not available for our baseline architecture) and those that
by default use only a shift by register value operation.

Based upon our simulation study we believe that for fixed-
point execution the inclusion of a shift immediate operation
is generally desirable as the scaling operations are statically

-0.5

0

0.5

1

1.5

2

SQ
N

R
 E

nh
an

ce
m

en
t (

B
its

)

IIR4 NLAT LAT FFT-NR FFT-MW INVPEND LEVDUR

IRP-SA

FMLS

IRP-SA w/ FMLS

Figure 10: SQNR Enhancements versus IRP

0

0.5

1

1.5

2

SQ
N

R
 E

nh
an

ce
m

en
t (

B
its

)

IIR4 NLAT LAT FFT-NR FFT-MW INVPEND LEVDUR

Figure 11: FMLS Enhancement versus IRP-SA

determined and the magnitude of required shifts can be eas-
ily encoded within the instruction word. Fixed-point digital
signal processors such as the Texas Instruments C5x include
such instructions, however this operation was not included
in our baseline system earlier because SUIF does not intrin-
sically support this operation format.

Figure 13 plots the measured speedup versus the number
of additional operations for the nonlinear control benchmark
using IRP-SA. Clearly only a few additional opcode/output-
shift pair are needed to obtain most of the benefit. Even
across applications there appears to be some consistency in
the set used more frequently: All of our benchmarks use
the FMLS operation with an effective shift left of one most
frequently, and left shifts greater than 3 quite infrequently.
Figure 14 illustrates the speedup achieved under three con-
ditions: One, all output shift distances are available for each
arithmetic operation (this is labelled “Limiting” in the fig-
ure); Two, eight fractional multiply output shift values rang-
ing between four left and three right are available as is a shift
immediate operation (labelled “8-FMUL + Shift Immed”);
Three, four fractional multiply output shift values are avail-



−10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Output Shift

R
el

at
iv

e 
F

re
qu

en
cy

Increasing Right Shift Increasing Left Shift 

Figure 12: Fractional Multiplication Output Shift Distri-

bution for the Nonlinear Feedback Control Benchmark

0 5 10 15 20 25 30 35 40 45
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Specialized "opcode/outputshift" Combinations

R
el

at
iv

e 
S

pe
ed

up

ISA  w/o Shift Immediate Operation
ISA with Shift Immediate Operation

Figure 13: Speedup for the Nonlinear Control Bench-

mark

able ranging from left shift by two to right shift by one (la-
belled “4-FMUL + Shift Immed”). In Figure 15 the same
values are compared against a baseline architecture already
containing a shift immediate operation.

5. CONCLUSIONS
An algorithm for automatically generating fixed-point scal-

ing operations was presented in conjunction with a novel em-
bedded fixed-point ISA extension: Fractional-Multiply with
internal Left Shift. Non-trivial improvements in signal qual-
ity over previous conversion approaches were illustrated, and
some impressive speedups noted. It is seen that an SQNR
improvement equivalent to carrying up to 2.0 extra bits of
precision throughout the computation is achievable using
IRP-SA in conjunction with the FMLS operation. Further-
more, by simply adding a FMLS operation with a few output
shift distances a speedup of 1.13 is achievable. There are sev-
eral directions in which to explore looking forward: Methods

1

1.1

1.2

1.3

1.4

1.5

R
el

at
iv

e 
S

pe
ed

up

IIR4 NLAT LAT FFT-NR FFT-MW INVPEND LEVDUR

Limiting

8-FMUL + Shift Immed

4-FMUL + Shift Immed

Figure 14: Speedup Summary: Baseline IRP-SA, and

no shift immediate operation available

1

1.1

1.2

1.3

1.4

R
el

at
iv

e 
S

pe
ed

up

IIR4 NLAT LAT FFT-NR FFT-MW INVPEND LEVDUR

Limiting
8-FMUL
4-FMUL

Figure 15: Speedup Summary: Baseline IRP-SA, and

shift immediate operations are available

of automatically generating block-floating point scaling, or
using quantization-error feedback are quite desirable but re-
main elusive.

6. ACKNOWLEDGEMENTS
This research was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) under a
PGS ‘A’ post-graduate studies award, and by a research
grant from Communications and Information Technology
Ontario.

7. REFERENCES
[1] T. Aamodt. Floating-Point to Fixed-Point

Compilation and Embedded Architectural Support.
Master’s thesis, University of Toronto, 2000.
URL: http://www.eecg.utoronto.ca/˜aamodt.

[2] T. Aamodt and P. Chow. Numerical Error Minimizing
Floating-Point to Fixed-Point ANSI C Compilation.
In 1st Workshop on Media Processors and Digital
Signal Processing, November 1999.



[3] K. M. Anspach, B. W. Bomar, R. C. Engels, and
R. D. Joseph. Minimization of Fixed-Point Roundoff
Noise in Extended State-Space Digital Filters. IEEE
Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 43(3), March 1996.

[4] G. Araujo and S. Malik. Code Generation for
Fixed-Point DSPs. ACM Transactions on Design
Automation of Electronic Systems, 3(2), April 1998.

[5] S. A. Bortoff. Approximate State-Feedback
Linearization using Spline Functions. Automatica,
33(8), August 1997.

[6] J.-G. Chung and K. K. Parhi. Scaled Normalized
Lattice Digital Filter Structures. IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal
Processing, 42(4), April 1995.

[7] S. Y. Hwang. Minimum Uncorrelated Unit Noise in
State-Space Digital Filtering. IEEE Transactions on
Acoustics, Speech, and Signal Processing,
ASSP-25:273–281, August 1977.

[8] S. Inc. Press Release: Synopsys Accelerates
System-Level C-Based DSP Design With CoCentric
Fixed-Point Designer Tool, April 10, 2000.

[9] S. Inc. Synopsys CoCentric Fixed-Point Designer
Datasheet, April 10, 2000.

[10] T. Instruments. TMS320C5x User’s Guide, 1993.

[11] L. B. Jackson. On the Interaction of Roundoff Noise
and Dynamic Range in Digital Filters. The Bell
System Technical Journal, 49(2), February 1970.

[12] L. B. Jackson. Roundoff-Noise Analysis for
Fixed-Point Digital Filters Realized in Cascade or
Parallel Form. IEEE Transactions on Audio and
Electroacoustics, AU-18(2), June 1970.

[13] A. H. G. Jr. and J. D. Markel. A Normalized Digital
Filter Structure. IEEE Transactions on Acoustics,
Speech and Signal Processing, ASSP-23(3), June 1975.

[14] H. Keding, F. Hutgen, M. Willems, and M. Coors.
Transformation of Floating-Point to Fixed-Point
Algorithms by Interpolation Applying a Statistical
Approach. In 9th Int. Conf. on Signal Processing
Applications and Technology, 1998.

[15] S. Kim and W. Sung. A Floating-Point to Fixed-Point
Assembly Program Translator for the TMS 320C25.
IEEE Trans. Circuits and Systems II, 41(11),
November 1994.

[16] S. Kim and W. Sung. Fixed-Point Optimization
Utility for C and C++ Based Digital Signal
Processing Programs. IEEE Trans. Circuits and
Systems II, 45(11), November 1998.

[17] K.-I. Kum, J. Kang, and W. Sung. A Floating-point
to Fixed-point C Converter for Fixed-point Digital
Signal Processors. In Proc. 2nd SUIF Compiler
Workshop, August 1997.

[18] K.-I. Kum, J. Kang, and W. Sung. A Floating-Point
to Integer C Converter with Shift Reduction for
Fixed-Point Digital Signal Processors. In Proceedings
of the ICASSP, volume 4, pages 2163–2166, 1999.

[19] K. W. Leary and W. Waddington. DSP/C: A
Standard High Level Language for DSP and Numeric
Processing. In Proceedings of the ICASSP, pages
1065–1068, 1990.

[20] http://www.mathworks.com.

[21] C. T. Mullis and R. A. Roberts. Synthesis of
Minimum Roundoff Noise Fixed-Point Digital Filters.
IEEE Transactions on Circuits and Systems,
CAS-23:551–561, September 1976.

[22] A. V. Oppenheim. Realization of Digital Filters Using
Block-Floating-Point Arithmetic. IEEE Transactions
on Audio and Electroacoustics, AU-18(2), June 1970.

[23] S. Peng. UTDSP: A VLIW Programmable DSP
Processor in 0.35 µm CMOS. Master’s thesis,
University of Toronto, 1999.
URL: http://www.eecg.utoronto.ca/˜speng.

[24] S. Pujare, C. G. Lee, and P. Chow.
Machine-Independent Compiler Optimizations for the
UofT DSP Architecture. In Proc. 6th ICSPAT, pages
860–865, October 1995.

[25] M. A. Saghir. Architectural and Compiler Support for
DSP Applications. Master’s thesis, University of
Toronto, 1993.

[26] M. A. Saghir. Application-Specific Instruction-Set
Architectures for Embedded DSP Applications. PhD
thesis, University of Toronto, 1998.

[27] M. A. Saghir, P. Chow, and C. G. Lee.
Application-Driven Design of DSP Architectures and
Compilers. In Proc. ICASSP, pages II–437–II–440,
1994.

[28] V. Singh. An Optimizing C Compiler for a General
Purpose DSP Architecture. Master’s thesis, Univeristy
of Toronto, 1992.

[29] H. A. Spang and P. M. Schultheiss. Reduction of
Quantization Noise by use of Feedback. IRE Trans.
Commun., CS-10:pp. 373–380, 1962.

[30] M. G. Stoodley and C. G. Lee. Software Pipelining
Loops with Conditional Branches. In Proc. 29th
IEEE/ACM Int. Sym. Microarchitecture, pages
262–273, December 1996.

[31] W. Sung and K.-I. Kum. Simulation-Based
Word-Length Optimization Method for Fixed-Point
Digital Signal Processing Systems. IEEE Trans. Signal
Processing, 43(12), December 1995.

[32] http://www.systemc.org.

[33] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar.
Reducing Power by Optimizing the Necessary
Precision/Range of Floating-Point Arithmetic. IEEE
Transactions on VLSI Systems, 8(3), June 2000.

[34] M. Willems, V. Bursgens, T. Grotker, and H. Meyr.
FRIDGE: An Interactive Code Generation
Environment for HW/SW CoDesign. In Proceedings of
the ICASSP, April 1997.


