
Optimization of Data Prefetch Helper Threads with
Path-Expression Based Statistical Modeling

Tor M. Aamodt
Dept. of Electrical and Computer Engineering

University of British Columbia
2332 Main Mall, Vancouver,

British Columbia, V6T 1Z4, CANADA
aamodt@ece.ubc.ca

Paul Chow
Dept. of Electrical and Computer Engineering

University of Toronto
10 King’s College Road,

Toronto, Ontario, M5S 3G4, CANADA
pc@eecg.utoronto.ca

ABSTRACT
This paper investigates helper threads that improve per-
formance by prefetching data on behalf of an application’s
main thread. The focus is data prefetch helper threads that
lack branch instructions and which generate prefetches for
one dynamic instance of a delinquent load instruction per
spawned helper thread. This form of helper thread, some-
times called a simple p-thread, has been studied previously
by Roth et al. [29, 26] who proposed a framework for opti-
mizing their impact. A key step in that framework is pre-
dicting the performance impact of a helper thread. In this
paper we propose and evaluate a novel performance predic-
tion technique that achieves comparable results yet requires
less detailed information about dynamic program behavior.
This technique extends a path expression based statistical
modeling framework [2] by incorporating information about
branch correlation (which we show is important) and by
considering data flow information in a statistical manner.
Significantly, the profile information we use is similar to
that provided within current optimizing compilers. This pa-
per also provides the first comprehensive assessment of the
sources of modeling error relevant to predicting the perfor-
mance impact of simple p-threads.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture; D.3.4
[Programming Languages]: Processors—Optimization ;
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories

General Terms
Algorithms, Measurement, Performance, Design, Theory

Keywords
Multithreading, Helper Threads, Analytical Modeling, Op-
timization, Path Expressions, Data Prefetch

©ACM, 2007. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proc. 21st ACM Int’l Conf. on Super-
computing (ICS’07), June 18–20, 2007, Seattle, WA, USA.

1. INTRODUCTION
A significant performance bottleneck in current micropro-

cessors is the latency of memory accesses that miss in the
cache hierarchy. While hardware based prefetch mechanisms
can reduce the frequency and latency of cache misses, ex-
isting hardware-only prefetch mechanisms are not effective
for all memory access patterns. Recently, significant inter-
est has centered on the use of so-called helper threads for
prefetching data [12, 28, 23, 37, 11, 29, 20, 18, 17, 36, 26]. In
this paper we study techniques for predicting the benefit of
compiler generated helper threads [20, 18]. We quantify the
sources of modeling error in prior schemes and we propose
a technique to overcome one of the more significant sources
of modeling errors.

In contrast to earlier execution trace based helper thread
performance prediction techniques our approach is compat-
ible with traditional optimizing compiler implementation
frameworks. In particular, we show how to achieve the ben-
efits of the aggregate advantage framework [29, 26] within
a modern optimizing compiler framework [1]. The key to
the aggregate advantage framework is a structure called the
slice tree. The slice tree is a directed graph with vertices
representing instructions and edges linking instructions in
a simple prefetch thread (p-thread). A natural way to con-
struct the slice tree is by running the program and extracting
the backward slice of each performance degrading event (i.e.,
L2 data cache misses). The main drawback of this approach
is that it requires a detailed microarchitecture simulator. In
this paper we describe how to build the slice tree using in-
formation that is more accessible from within an optimizing
compiler framework.

The rest of this paper is organized as follows. In Section 2,
Roth and Sohi’s [29] optimization technique is summarized.
Section 3 summarizes the findings of our detailed investiga-
tion into sources of modeling error in p-thread optimization.
In Section 4, two extensions of our earlier path expression
modeling technique [2] are proposed, which can be used in-
stead of execution trace data. Section 5 presents our ex-
perimental evaluation of the proposed techniques. Section 6
summarizes related work, and Section 7 concludes.

2. OPTIMIZATION OF P-THREADS
In this section we briefly summarize the features of the

aggregate advantage framework [29, 26] made accessible to
modern optimizing compiler frameworks by the path expres-
sion based techniques proposed in this paper.

Figure 1 illustrates a slice for a delinquent load in the

 root->potential = (cost_t) -MAX_ART_COST;
 tmp = node = root->child;
 while(node != root) {
 while(node) {
 A.......................if(node->orientation == UP)
 node->potential = node->basic_arc->cost + node->pred->potential;
 else /* == DOWN */ {
 node->potential = node->pred->potential - node->basic_arc->cost;
 checksum++;
 }
 G.......................tmp = node;
 H.......B...............node = node->child;
 }
 F...................node = tmp;
 while(node->pred) {
 D.......................tmp = node->sibling;
 if(tmp) {
 C...........................node = tmp;
 break;
 }
 else
 E...........................node = node->pred;
 }
 }

BB 3

BB 4
BB 5
BB 6
BB 7

BB 16

BB 8

BB 9

BB 10

BB 11

BB 15

BB 12

X..............

0.56

1.00

1.00

0.73

0.85 0.97

1.00

Figure 1: Example slice for a delinquent load in 181.mcf. Delinquent load is dereference node->orientation in
basic block labeled BB6, on line marked A. Corresponding helper thread for this slice would be spawned when
the main thread reaches H. Edges in graph (on left side of figure) are labeled with the relative frequency
the dependency occurred given that the successor was executed (this is the posteriori reaching definition

probability defined in Section 4.3). This occurs when control flow follows the implied control flow (defined in
Section 4). See corresponding slice tree in Figure 2.

benchmark mcf from the SPEC 2000 integer benchmark
suite [33]. The code is from the function refresh potential

and several lines directly contributing to the address com-
putation are highlighted on the left (our p-threads include
instructions from both the value and address slice [38]). The
corresponding slice tree is shown in Figure 2. Each node in
the tree represents an instruction in the program binary,
and is labeled with a letter corresponding to the line from
the source code. The values next to each circle in Figure 2
represent the aggregate advantage measured in millions of
cycles. The best slice to use as a p-thread—determined by
measuring the actual speedup obtained—is emphasized in
bold in the slice tree starting from the node with a double
edge labeled B (variously referred to as the trigger instruc-
tion [28, 11], lead instruction [23], or spawn point [9]). Note
that in this case, the best p-thread to use is not the one
with the highest aggregate advantage value [26]. The ag-
gregate advantage for each node is computed using the fol-
lowing equations, which essentially transform average values
measured during simulation into the estimated benefit the
corresponding helper thread would provide [29]:

ADVagg(p) = LTagg(p) − OHagg(p) (1)

LTagg(p) = DCpt−cm(p) · LT(p) (2)

LT(p) = min(SCDHmt(p) − SCDHpt(p), Lcm)(3)

In the above equations ADVagg(p) is the aggregate advan-
tage of the helper thread p, LTagg(p) is the aggregate la-
tency tolerance of the helper thread, and OHagg(p) is the
aggregate overhead. The aggregate latency tolerance is the
number of cycles of stalled execution that are removed by
the helper thread. The aggregate overhead is the number
of additional cycles incurred to support p-thread execution

assuming (hypothetically) the data prefetched by the helper
thread were “ignored” by the main thread so that the main
thread had to access these values from wherever they were
in the memory hierarchy before the helper thread attempted
to prefetch them. As latency tolerance is only provided by
those helper thread instances that prefetch data not already
in the cache that the main thread subsequently uses, the ag-
gregate latency tolerance can be expressed as a product of
DCpt−cm(p), the dynamic count of helper threads that pre-
execute actual misses, and LT(p), the average per-helper-
thread-instance latency tolerance of helper thread p. In
turn, the latter can be expressed as the minimum of the av-
erage difference between the schedule constrained data flow
heights of the execution sequence of the main thread and
the helper thread (SCDHmt(p) and SCDHpt(p) respectively)
and the latency of a cache miss (Lcm). For the above exam-
ple we measured the following values for node B (measured
over a segment of 100M simulated instructions):

DCpt−cm(p) = 480753

SCDHmt(p) = 670

SCDHpt(p) = 111

Lcm(p) = 300

Substituting these values into Equations 1 to 3 yields an
aggregate (latency) advantage of:

ADVagg(p) = 480753 ∗ min(670 − 111, 300)

= 144.2 × 106 [cycles]

However, the actual execution time saved when this helper
thread was used was 96.3M cycles (which translates into a
speedup of 12.6%). As observed by Petric and Roth [26],

B
19.1

?

G
19.1

?

F
19.1

?

E
24.1

?

D
24.4

?

C
24.4

?

B
47.9

R

B
67.7

R

B
0.0

R
A

C
34.7

	

D
34.7

?

E
34.0

?

F
26.0

?

C
144.1

	

D
146.9

	

E
147.1

?

E
125.0

?

G
144.2

?

B

144.2

?

B 9.6

R

C 134.6

	

D
134.6

?

E
22.2

�

F
18.7

?

C 0.0

	

D 1.3

	

E
1.2

	

F
4.8

	

G 25.0

?

B 59.7

?

Figure 2: Slice tree for delinquent load in Fig-
ure 1. Values beside nodes in slice tree are ag-
gregate advantage in millions of cycles. The best
helper thread, as determined by the actual speedup
obtained, begins at the node B with the double edge
and follows the highlighted path to the delinquent
load instruction at the root node labeled A.

part of this inaccuracy on the side of optimism results from
ignoring whether the prefetches reduce the latency of misses
on the critical path. In this paper we explore other im-
portant sources of prediction inaccuracy. Note that the
largest aggregate advantage is for E—implying this is the
best helper thread, but the p-thread starting at this node
has an actual speedup of only 1.4%. Thus, accurate model-
ing of the impact of helper threads is important to making
good optimization choices.

3. SOURCES OF MODELING ERROR
Before describing our techniques for predicting the benefit

of helper threads, we summarize the results of our investi-
gation into the sources of modeling error for earlier frame-
works (detailed quantitative data are presented later). In
this paper we focus on the fundamental question of how to
predict the benefit of potential helper threads given a spe-
cific set of profile information assuming the same inputs will
be seen again. Prior work has established that the benefit
of p-threads selected using the aggregate advantage frame-
work with one set of program inputs is often robust across
program inputs [29]. In practice, if this were not the case,
one could combine the results of profile runs using differ-
ent input sets [8]. Alternatively, one might adaptively tune
or even select among different helper threads based upon
program phase—for example, prior work has explored se-
lectively throttling helper threads on a real (not simulated)
hardware system using performance counters [17]. We be-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

Prefetch Slack (cycles)

R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

Figure 3: P-thread prefetch slack distribution for
175.vpr (idealized execution model: 4B cache lines,
perfect branch prediction)

lieve that since (as we show) there are significant sources of
modeling error when using so-called “perfect information”
(profile information for the same input data used to eval-
uate performance), a important challenge is accurately in-
terpreting whatever profile information is available. In the
following section we provide a framework for making more
accurate modeling available within the context of an opti-
mizing compiler and extend it to address one of the key
sources of modeling error.

Figure 3 shows one significant source of modeling error—the
distribution in the latency tolerance of p-threads. Note
that the average value of this distribution is the quantity
SCDHmt(p)−SCDHpt(p) from Equation 3. The distribution
in Figure 3 is multimodal and indicates a significant fraction
(18.3%) of the prefetches have slack that happens to be less
than the latency of memory (300 cycles in our simulations).
The isolated and well defined peaks in this distribution may
indicate that the main thread iterates around a loop a vari-
able number of times before reaching the target load. Their
are two problems resulting from approximating this latency
tolerance distribution with an average value. One, which
affects 175.vpr, is that using the average value will signifi-
cantly over-estimate the benefit of this helper thread. On
the other hand, for the Olden benchmark treeadd [7] we
discovered that while the latency tolerance distribution had
an average near zero, several individual helper thread in-
stances were actually able to offer significant prefetch bene-
fit in the context of the multithreaded microarchitectures we
simulated. In this case very beneficial helper threads were
entirely overlooked.

The results of our detailed investigation into all sources
of modeling discrepancies concluded that the main sources
of error are:
Prefetch Slack Distribution: Due to the nonlinearity
in the transfer function between latency tolerance and exe-
cution time savings, measuring only average quantities can
lead to significant inaccuracies.
Prefetch Slack Sensitivity: Out-of-order superscalar pro-
cessors hide the latency of L1 data cache misses off the crit-
ical path [32]. Thus each cycle earlier a target delinquent
load is prefetched may not save a cycle of execution time [26].
We found the impact is equivalent to a constant multiplica-
tive factor applied to the minimum of the prefetch slack and

the memory latency.
Branch Outcome Correlation: The path expression frame-
work described in [2] assumes that branch outcomes are
uncorrelated. This approximation may lead the modeling
framework to underestimate the frequency of execution paths
from the spawn point to the target delinquent load causing
the benefit of the associated helper threads to be underesti-
mated.
Spatial Locality / Loss of Temporal Locality: Typi-
cal memory systems use caches that store several words of
memory in a single block (or cache line). The slice of a
delinquent load may contain other loads. During applica-
tion profiling these other loads may appear to have a high
hit rate, but when these loads are executed in a helper thread
they may trigger cache misses and consequently the helper
thread would have less latency tolerance than predicted.
Resource Constraints: Estimating the number of helper
threads running concurrently was found to be important.
Equivalent Linked Data Traversals: In at least one
case (181.mcf) it was observed that significant prefetch ben-
efit was obtained even for those dynamic p-thread instances
where the main thread did not follow the control flow as-
sumed when creating the helper thread. The reason for this
was found to be that the application would begin by travers-
ing a different path through the linked data structure asso-
ciated with the target load of the helper thread, it would
later return back to the same node visited when the helper
thread was spawned, and then followed the control flow as-
sumed by the helper thread. Again significant optimization
potential can be overlooked in this case.
Correlation of Cache Misses to Control Flow Paths:
The assumption (used later in Equation 6) that the prob-
ability of a cache miss is independent of the control flow
leading up to the load instruction does not always hold in
practice. For example, the probability of a cache miss oc-
curring when the main thread follows the implied control
flow (defined in Section 4) of the p-thread starting at the
node B with the double edge in Figure 2 is 0.766 versus an
average L2 cache miss rate 0.432 for the target load. Similar
observations have been made by others [24, 21].

In the following section we introduce two models that pro-
vide the optimization benefits of the aggregate advantage
framework within the context of an optimizing compiler. We
then revisit the sources of inaccurate prediction in Section 5.

4. PATH EXPRESSION MODELING
The values used in the aggregate advantage optimization

framework are statistical quantities. In this section we de-
scribe an algorithm for computing these quantities from data
that is easy to obtain within the framework of present day
feedback directed optimizing compiler frameworks. The al-
gorithm we describe uses path expressions [34, 35, 2]. A path
expression is a regular expression summarizing all paths be-
tween two vertices in a directed graph. From a delinquent
load we incrementally build up a p-thread as follows: An
instruction is included in the p-thread if it is a data flow
predecessor of an instruction already in the p-thread and it
is the “most likely” instruction to generate a live-in value to
the existing p-thread (a variable is a “live-in” to a p-thread
if it is used in that p-thread before being defined). We quan-
tify “most likely” using a novel form of data flow frequency
analysis [27].

A

B

C

i1

i2

i3

in

in-1

i1: m = A*n;

a = b;m = m+b;

i2: x = W[m];

(a) (b)
Consider whether the control flow the main thread fol-

lows after spawning a p-thread “matches” the control flow
assumed when constructing the slice defining the p-thread.
The set of paths the main thread can follow from spawn to
target for which this is true is the implied control flow.

More formally, label the instructions in the slice from i1 to
in in order from the spawn to the target instruction. Then,
the implied control flow of a p-thread is the subset of paths in
the main thread from i1 to in that pass through instructions
ik (where 1 < k < n) in order, such that along a given
path no variable which is live between any two consecutive
instructions ik and ik+1 in the p-thread is redefined by an
instruction between ik and ik+1 in the main thread. We
say a path in the main thread between two consecutive slice
instructions is admissible if it avoids definitions of variables
live at that point in the p-thread. For example, in part (b) in
the figure above, the definition of m on the left hand side of
the branch kills the definition of m at i1 before it reaches i2
along the execution path that takes the left hand side of the
branch, but the path along the right hand side is admissible.

In part (a) Γ represents the set of all paths from i1 to in.
The implied control flow from i1 to in is the subset of Γ com-
posed of the concatenation of the path expression α sum-
marizing admissible control flow between instruction i1 and
i2 with the path expression β summarizing admissible con-
trol flow between instruction i2 and i3, etc... up to the path
expression ζ summarizing admissible control flow between
instruction in−1 and in. After spawning, the main thread
either follows the implied control flow of the p-thread (e.g.,
‘A’), a path that likely results in a different load address (e.g.,
‘B’) or a path that avoids the target load altogether (e.g., ‘C’).

Figure 4: Implied Control Flow

4.1 Expected Benefit
To make optimization choices, we compute the expected

benefit of using a helper thread. Given a sequence of in-
structions i1, i2, ...in making up a p-thread p, we compute
the expected benefit of the p-thread as follows:

E[benefit(p)] = fsp · P[miss] ·
`

n−1
Y

k=1

RDP (k|p)
´

·

min
`

(E[latmt] − E[latht]), latmem

´

(4)

The quantity RDP (k|p) is the reaching definition probability
from instruction ik to ik+1 for the helper thread p. This is
the probability that program execution goes from instruc-

tion ik to instruction ik+1 without defining any variables
that are “live” [25] between instruction ik and ik+1 in the
helper thread.

Building upon an earlier path expression based approach
to statistical control flow modeling [2], we compute RDP (k|p)
by first finding the path expression from ik to ik+1. The path
expression is transformed into a probability by recursively
replacing the concatenation and union operators from the
regular expression with the product and sum of the path
probabilities, respectively. The closure operator for a path
with probability p is replaced with the quantity 1/(1 − p).
The edges of the control flow graph are replaced by their
respective transition probabilities as determined by profil-
ing the branch outcomes of the application (e.g., “taken”
or “not taken” for conditional branches). To obtain the de-
sired reaching definition probability we carry out the above
recursive evaluation after first assigning zero probabilities to
edges leaving basic blocks that contain instructions which
re-define (i.e., “kill” [25]) live variables within the p-thread
(as well as to the edges leaving ik+1 as required by the pro-
cedure for computing statistical quantities outlined in [2]).
The set of paths that remains forms what we call the implied
control flow of the helper thread between instructions ik and
ik+1.

Thus, the implied control flow of a simple p-thread is the
set of paths the application main thread may follow from
the spawn point to the target delinquent load, which sat-
isfy the following conditions: The execution path encoun-
ters each instruction in the program slice used to define the
p-thread in the same order as the p-thread, and no variable
live between two instructions in the p-thread is redefined by
any other instruction encountered between the correspond-
ing two slice instructions in the main thread. Note that if the
main thread follows the implied control flow of the p-thread
after spawning that p-thread, it is guaranteed to compute
the same address for the delinquent load as the helper thread
(following the implied control flow is a sufficient condition,
but not always a necessary condition for computing an ad-
dress to accurately prefetch the data referenced by a future
load instruction). See Figure 4.

The quantity E[latmt] in Equation 4 is the expected la-
tency of the main thread from the spawn to the delinquent
load and is evaluated using the path expression method for
computing expected path length [2], modified to weight ba-
sic blocks by the average number of cycles they take to ex-
ecute and modifying edge probabilities as done when com-
puting the reaching definition probability. As we are only
interested in the latency of the main thread when it fol-
lows implied control flow of the helper thread, the quantity
E[latmt] can be decomposed as follows:

E[latmt] =

n−1
X

k=1

latency(k|p) (5)

where the quantity latency(k|p) is the expected number of
cycles for execution of the main thread to go from instruc-
tion ik to ik+1 along the implied control flow of p-thread
p. One way to obtain the information required to compute
this quantity in practice may be to profile average cycles per
instruction at the individual instruction or basic block level
using hardware performance monitors using a utility such
as Intel’s VTune performance analyzer [16].

The quantity E[latht] in Equation 4 is the number of cy-

cles it takes the helper thread to execute after spawning.
To compute this quantity the execution latencies of each in-
struction in the helper thread are simply added. This ignores
the potential for ILP in the helper thread, but requires less
analysis. The assumption of little ILP for the helper threads
turns out to be a valid one for the simple p-threads we ex-
amined in this study as the dependency graphs are often a
single chain of dependent instructions.

The quantity fsp in Equation 4 is the frequency the spawn
instruction is executed (determined via basic block profil-
ing), the quantity P[miss] is the relative frequency that the
delinquent load misses in the cache, and finally, the quantity
latmem is the latency of main memory.

4.2 Connection to Aggregate Advantage
The connection between Equation 4 for the expected bene-

fit of spawning a p-thread and Equation 1 for computing the
aggregate advantage of a p-thread is as follows: DCpt−cm(p)
is the number of instances of the slice p that lead to an oc-
currence of the delinquent load that suffers a cache miss.
This is approximately equal to the total number of slices
leading to the delinquent load multiplied by the cache miss
rate of the delinquent load:

DCpt−cm(p) ≈ DCpt · P[miss] (6)

The approximation in Equation 6 is due to the assump-
tion that the probability of encountering a data cache miss
is independent of the control flow path leading up to the
target delinquent load instruction, and that, for a particu-
lar instance of the target delinquent load to have its data
prefetched, the main thread must follow the implied control
flow of the p-thread spawned to prefetch the data.

The quantity DCpt on the right hand side in Equation 6 is
equal to the frequency the spawn instruction is executed by
the main thread (fsp), multiplied by the relative frequency
that execution subsequently follows the implied control flow
of the p-thread. The relative frequency that execution fol-
lows the implied path is the ratio of the frequency that the
main thread execution follows the implied path (fimplied cf)
over the frequency with which the spawn point is reached
(fsp). The ratio of fimplied cf over fsp can be estimated us-
ing the path expression framework so that DCpt can be ex-
pressed as:

DCpt = fsp ·
fimplied cf

fsp

= fsp ·
`

n−1
Y

k=1

RDP (k|p)
´

To estimate the quantity LTagg we use the value E[latmt]−
E[latpt] described above.

4.3 Predecessor Selection and Pruning
The form of static program slicing required by our algo-

rithm takes as input an instruction (perhaps with additional
context information) and returns the set of dataflow prede-
cessors (for simple p-threads we do not include control de-
pendencies in the slice). For simplicity, rather than building
the entire slice tree, let us examine how to generate a single
p-thread equivalent to one path in the slice tree. For con-
creteness we assume a greedy algorithm is used to select the
path.

X1 = ... Y2 = ...

… = X + Y

?

Y1 = ... ?

0.56 0.44

BB1

BB2 BB3

BB4

Y1 : PP = 1.00, D = 10
Y2 : PP = 0.44, D = 3

(a)

(b) (d)

(c)

Figure 5: Example illustrating need for predecessor
pruning during p-thread slicing.

There are two challenges to using static program slicing
to build a p-thread in this manner. The first is ensuring
the p-thread being created is actually in the slice tree, and
the second is selecting the best instruction to add to the
p-thread. Without further analysis it is not clear which in-
structions from the set of dataflow predecessors found via
static slicing can be added to the existing p-thread and re-
sult in a valid p-thread. For example, in Figure 5, two in-
structions define register Y, however since X1 has already
been selected to be in the p-thread, adding Y2 would lead
to an incorrect p-thread. The underlying reason is that Y2

does not lie on a path leading to X1 without intersecting
another instruction already selected to be in the p-thread
(in this case instruction “a” in BB4).

To ensure the p-thread being created is a correct p-thread
(which implies it has a node in the slice tree), we filter the set
of dataflow predecessors before a new instruction is added
to the p-thread from the slice. We do this by pruning away
predecessors inconsistent with the implied control flow of
the current p-thread.

From among the remaining data flow predecessors we use
the following greedy heuristic to select the (estimated) best
new instruction to include in the slice: For each of the data
flow predecessors, we compute the posteriori reaching defini-
tion probability (PRDP) excluding any execution paths that
include other data flow predecessors currently under consid-
eration. The PRDP of a dataflow predecessor to a particular
instruction is the reaching probability in the reversed graph
excluding edges leaving basic blocks that contain an instruc-
tion that kills the definition generated by the predecessor.
For each live-in variable to the p-thread, we select the pre-
decessor with the largest PRDP.

4.4 Example
To illustrate the algorithm let us consider Figure 1 again.

To aid understanding, Figure 6 illustrates the control flow
graph for the function refresh potential() with the im-
plied control flow of the desired helper thread traced out
with bold arrows. The implied control flow of the desired p-

1

2

3

4

5

6

716

8

9

10

11

12

13

exit

15

0.99997

0.00003

0.50.5

0.440.56

0.99995

0.00005

0.00007

0.99993

0.56
0.44

“H”,”G”,”B”

“F”

“E”

“D”

“C”

“A”

“X”

Figure 6: Control flow graph for code in Figure 1.
Circles represent basic blocks. Numbers inside cir-
cles are the basic block number from the right hand
side of Figure 1. Edges are labeled with the branch
transition probability.

thread starts in basic block 8, follows the backward branch
to basic block 6, goes along either path back to basic block
8, then falls out of the loop to basic block 9, continues to
basic block 10, then to basic block 15, and back to block 10,
then goes around the outer loop via blocks 11, 12, 13 and 5
to finally reach the delinquent load at 6.

Our algorithm starts by initializing the p-thread to in-
clude only the delinquent load marked A (in Figure 1 and
Figure 6). Static slicing indicates that instructions B, C, E, F
and X are dataflow predecessors of A. The posteriori reach-
ing definition probabilities for these instructions are then
evaluated resulting in values of 0.560, 0.440, 0.000, 0.000,
and 0.000 respectively. These values are computed by eval-
uating the posteriori probability [2] excluding paths through
instructions that define “node” in Figure 1). Since the value
for B is largest, we include B in the p-thread.

To determine when to stop adding instructions to the p-
thread, we examine the expected benefit of the p-thread as
each additional instruction is added. Table 1 shows the value
of the reaching definition probability (RDP) for the implied
control flow of the entire p-thread as nodes are added (col-
umn a), the spawn frequency (column b), the cache miss fre-
quency (column c), the expected slack (column d), and the
expected benefit (column e). Also included are values from
the aggregate advantage calculation, namely DCpt−cm (col-
umn f), the difference ∆SCDH = SCDHmt−pt in the sched-
ule constrained data flow heights of the main thread and
the helper thread (column g), and the aggregate advantage
computed using the aggregate advantage technique (column
h). Finally, the cycles actually saved if the p-thread is used

Sp. (a) (b) (c) (d) (e) (f) (g) (h) (i)
Inst.

Q

RDP fsp P[miss] E[slack] E[benefit] DCpt−cm ∆SCDH ADVagg Actual
(cycles) (cycles) (cycles)

B 0.56 2.55M 0.43 0 0 842682 0 0 0.5M

C 0.56 1.12M 0.43 254 68M 567304 254 144.1M 5.4M

D 0.313 2.55M 0.43 260 159M 567304 260 146.9M 17.6M

E 0.138 1.43M 0.43 260 89M 565767 260 147.1M 12.0M

F 0.077 1.12M 0.43 260 39M 480753 260 125.0M 10.4M

G 0.077 2.55M 0.43 363 45M 480753 363 144.2M 87.5M

H 0.077 2.55M 0.43 559 25M 480753 559 144.2M 96.3M

Table 1: Comparison of static slicing with statistical control flow analysis using our path expression opti-
mization metric in column (e) versus Roth and Sohi’s aggregate advantage metric in column (h) and actual
speedup in column (i).

are in column (i). To isolate it as a source of modeling error,
the estimate prefetch slack in column (d) is simply measured
using SCDHmt−pt (rather than Equation 5).

We see that the path expression model predicts the peak
benefit to occur for the p-thread starting at node D, whereas
the peak aggregate advantage value is for node E. Further-
more, the best speedup is actually obtained for the p-thread
starting at node H. Examining columns (a) through (h) it
can be seen that the discrepancy in predictions between the
path expression technique and the aggregate advantage tech-
nique is largely due to the value RDP computed using the
path expressions. For example, for the p-thread starting at
node H, the low value of the predicted benefit is most heav-
ily influenced by the low value of RDP. It turns out that the
value of RDP significantly underestimates the actual value.
For example, the probability of following the implied control
flow from H to A is actually roughly 0.5 rather than 0.077.

The main contributor to the suboptimal optimization de-
cision made using the expected benefit computed using our
path expression technique is the computation of RDP (em-
ploying Equation 5 increases error further [1]). In the fol-
lowing section we show how to dramatically improve the
accuracy of the RDP prediction. This improvement to the
path expression based approach enables it to select helper
threads similar to those that would be selected using simu-
lator based execution tracing and the aggregate advantage
framework but using information more easily collected dur-
ing application profiling. We discuss the reason that aggre-
gate advantage does not select the helper thread correspond-
ing to H in Section 5.3.

4.5 Branch Correlation
In this section we show that by computing control flow

statistics over a second-order control flow graph, the accu-
racy of our predictions can be improved significantly. We
construct a higher-order Markov chain model of control flow
as follows: Each state consists of the combination of a basic
block and the recent control flow history leading up to that
basic block. The “first-order” Markov chain from the last
section thus consists of states encoding no branch outcome
history leading up to the current basic block, while a sec-
ond order Markov chain consists of states which represent
both the last basic block visited and the current basic block.
Even higher-order models could be constructed by including
additional branch history in each state. We call the graph
representing the nodes and state transitions of a second-

enter

1:2

2:2

2:3

3:4

4:5

5:6

6:7

7:8

8:6 6:16

16:8

8:9

9:10

10:11

15:10

10:15

11:12

15:12

12:13

exit

12:5

0.99997

0.00003

0.0590.941

0.150

0.049

0.951
0.85

0.83
0.17

0.0720.928

0.99993

0.00007
0.269

0.731

“H”, “B”

“G”

“F”
“E”

“D”

“C”

“A”

Figure 7: Second-order control flow graph for code
in Figure 1.

order Markov chain a second-order control flow graph.
Figure 7 illustrates the second-order control flow graph for

refresh potential(). Each node in this graph represents a
branch outcome in the function refresh potential() and
is labeled using the convention n:m, where n and m are the
basic block numbers used in Figures 1 and 6. Here n repre-
sents the previous basic block the program executed, while
m represents the basic block where the program is currently
executing. The bold lines indicate the implied control flow of
the p-thread we wish to select. Note that, even though the
original source code’s control flow is reducible, this graph
is non-reducible [25]. This does not impact our approach
since Tarjan provides an algorithm [35] that can be used to
extract path expressions even for non-reducible graphs.

Table 2 provides data similar to that in Table 1 but for the
enhanced version of our path expression optimization algo-
rithm. Examining Table 2 in comparison to Table 1 we ob-
serve that while (a) the same slice was chosen by both of our
schemes, and (b) neither our schemes nor aggregate picked
the best p-thread, that (c) the expected benefit computed
using the second-order control flow graph is now significantly

closer to the (less accessible from a compiler writer’s per-
spective) aggregate advantage value for longer slices. For
example, node H is predicted to have a benefit of 141M cy-
cles using the second-order control-flow graph, versus 25M
for the first-order control flow graph (in Table 1) and 144.2M
for the aggregate advantage. We argue such improvements
in prediction accuracy are necessary to obtain better opti-
mization results.

5. EXPERIMENTAL EVALUATION
In this section we evaluate our path expression data prefetch

helper thread optimization algorithm. After describing our
experimental methodology, we show that the proposed opti-
mization algorithm compares favorably to an enhanced ver-
sion of the aggregate advantage methodology at predicting
the speedup obtained when employing a given p-thread to
prefetch for a given (static) problem load instruction. Then
we delve deeper into the sources of modeling error that ex-
ist in both approaches and measure sensitivities to various
aspects of the modeling framework and the simulated mi-
croarchitecture.

5.1 Methodology
To evaluate the various approaches to simple p-thread op-

timization we selected five benchmarks from the SPEC 2000
integer benchmark suite [33] and two benchmarks from the
Olden benchmark suite [7] that exhibited large performance
degradation due to data cache misses. Simulation data pre-
sented in this section was collected using the benchmark
reference inputs over a 100 million instruction segment after
fast-forwarding to a representative location of program ex-
ecution found using the SimPoint toolkit [31]. Data cache,
traditional edge profiling, and second-order control flow pro-
file information was obtained by running the same input
and program segment as used to evaluate performance (as
noted in Section 3 prior research has shown that p-threads
selected using aggregate advantage are relatively insensitive
to changes in program inputs [29], and furthermore in this
work we focus on how best to interpret profile information
assuming it accurately represents likely program behavior).
We extended version 3.0d of the SimpleScalar microproces-
sor simulator [6] to model an SMT processor with the mi-
croarchitecture parameters given in Table 3.

Edge Profile
Information

Program
Binary

Slice Tree

Optimizer

Path
Expression
Framework

Data Cache
Profile Info.

request instruction’s
predecessors

predecessor
instructions

request statistics for
path between two
instructions

path statistics

Helper thread slice
definition

Main Thread
SimpleScalar
binary

(a)

(b)

(c)
SimpleScalar
slice profile

sim-outorder
loader

translates slice
definition into
extra static

instructions in
binary for

helper thread

Figure 8: Helper thread generation infrastructure

Two automated software frameworks for augmenting ap-
plications with helper threads were implemented and exten-
sively evaluated. Both leverage the path expression based
techniques described in Section 4. In this paper we focus
on the infrastructure illustrated in Figure 8. Due to prac-

tical considerations this infrastructure employs information
from the slice tree data structure rather than performing
true static program slicing. We have experimented exten-
sively [1] with developing compiler based infrastructure us-
ing Grammatech’s CodeSurfer [14] program slicer and the
SUIF compiler intermediate representation [15]. A practical
issue we encountered with the latter approach was corre-
lating information between these two frameworks’ different
intermediate representations. The main source of inaccu-
racy in the infrastructure we employ in this paper is the
use of perfect memory disambiguation—the dynamic data
addresses accessed by load and store instructions are used
during the creation of the slice tree, which means the slice
tree contains more accurate dependence information than
is available using static slicing. Note that our goal is to
accurately predict the benefit of a given slice if used as a
p-thread, which is orthogonal to the effect of pointer analy-
sis on determining which slices to analyze. Prior work [20]
has established that compilers can statically construct p-
threads capable of achieving a speedup. As in Section 4.4
we use the main thread and expected helper thread latency
information captured during slice tree generation (using the
microprocessor simulator) rather than Equation 5.

5.2 Target Load Selection
With a framework that produces accurate predictions of

performance improvement for helper threads it is possible
to make good tradeoffs in the selection of which loads can
most benefit from helper thread based prefetching. Since the
aim of this work is to develop such a framework and in the
process investigate the sources of inaccuracy in its predic-
tions we fix the selection of target loads. Table 4 lists up to
the top five load instructions for each benchmark ranked in
order of their estimated impact on performance. The poten-
tial speedup varies from 7% for vortex to 148% for treeadd
indicating that these applications may benefit significantly
from the use of data prefetch helper threads.

Bench. Target Load Frequency Speedup L1 miss rate L2 miss rate* Sensitivity
1 art 0x404c80 1067500 1.396 50% 50% 1.01
2 art 0x404c98 1067500 1.357 100% 100% 0.25
3 art 0x4045e8 567943 1.030 98% 100% 0.07
4 art 0x404358 284532 1.002 62% 98% 0.02
5 art 0x404c88 1067500 1.000 100% 100% 0.00
6 bh 0x403000 322628 2.161 100% 88% 1.01
7 bzip2 0x40bad0 410549 1.285 67% 65% 0.85
8 bzip2 0x40aca0 174995 1.064 50% 45% 1.07
9 bzip2 0x40abc0 174995 1.060 48% 43% 1.07

10 bzip2 0x40ab50 174995 1.056 47% 42% 1.07
11 bzip2 0x40ac30 174995 1.056 46% 42% 1.07
12 mcf 0x4009f8 2546268 1.294 57% 75% 0.66
13 mcf 0x400a18 1269615 1.000 100% 96% 0.00
14 mcf 0x400a50 1276653 1.000 99% 99% 0.00
15 treeadd 0x400508 1048575 2.483 50% 50% 1.10
16 vortex 0x4880e8 28965 1.072 121% 82% 1.00
17 vortex 0x4673d8 114655 1.061 23% 97% 0.94
18 vortex 0x466668 263188 1.025 10% 45% 0.82
19 vortex 0x45dc00 15027 1.012 63% 51% 1.01
20 vortex 0x461958 424163 1.011 6% 33% 0.55
21 vpr 0x41e5e8 394677 1.092 21% 81% 1.04
22 vpr 0x41dc38 152291 1.054 65% 77% 0.59
23 vpr 0x41e6b0 384331 1.035 63% 78% 0.18
24 vpr 0x41f400 377369 1.028 27% 72% 0.34
25 vpr 0x41f570 1905810 1.020 14% 71% 0.08

Table 4: Target Load Selection (“Sensitivity” is de-
fined in Section 5.3.1)

5.3 Framework Accuracy
To assess the accuracy of the data prefetch helper thread

optimization framework, helper threads were generated for
the selected target loads using the infrastructure illustrated

Sp. (a) (b) (c) (d) (e) (f) (g) (h) (i)
Inst.

Q

RDP fsp P[miss] E[slack] E[benefit] DCpt−cm ∆SCDH ADVagg Actual
(cycles) (cycles) (cycles)

B 0.951 2.55M 0.43 0 0 842682 0 0 0.5M

C 0.897 1.12M 0.43 254 72.5M 567304 254 144.1M 5.4M

D 0.897 2.55M 0.43 260 169M 567304 260 146.9M 17.6M

E 0.897 1.43M 0.43 260 94.3M 565767 260 147.1M 12.0M

F 0.833 1.12M 0.43 260 68.9M 480753 260 125.0M 10.4M

F 0.691 2.55M 0.43 363 150M 480753 363 144.2M 87.5M

H 0.651 2.55M 0.43 559 141M 480753 559 144.2M 96.3M

Table 2: Comparison of static slicing with second-order statistical control flow analysis using path expressions
versus aggregate advantage.

Table 3: Processor Configurations
Threading SMT with 4 thread contexts Func. Units 4 iALU, 2 LD/ST, 4 fpALU

Superscalar 4-way issue/decode/commit 1 iMUL/DIV, 1 fpMUL/DIV

Pipeline 256 entry RUU, 64 entry LSQ Reg. Files 32 GPR, 32 FPR

Fetch 8 inst./thread (max 2 threads/cyc) (per thread)

priority main thread Caches L1I 32KB, 2-way, 32B blks, 1-cyc

max 2 taken branch/cyc/thread L1D 16KB, 4-way, 32B blks, 2-cyc

Branch hybrid predictor with L2 1 MB, 4-way, 64B blk, 14-cyc

Prediction (a) 2048-entry bimodal Memory 300-cycle

(b) 256-entry global predictor

(c) 1024-entry selector

64-entry return address stack

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

art bh bzip2 mcf treeadd vortex vpr avg

C
o

r
r
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

path expressions

enhanced agg. adv.

Figure 9: Comparing accuracy of path expression
and aggregate advantage frameworks

in Figure 8. The actual benefit of the selected helper threads
was measured using detailed performance simulation and
compared with the speedup predicted by our path expres-
sion framework (including branch correlation information).
To quantify the prediction accuracy of our framework, we
compute the correlation coefficient of predicted speedups
and actual speedups. Figure 9 shows that on average the
compiler friendly path expression based technique has cor-
relation coefficient of 0.65, which is fairly close to the value
0.74 obtained using an enhanced version of the execution
trace based aggregate advantage. The enhanced aggregate
advantage technique we employ in this paper measures the
slack of each instance of a slice and compares it against the

1

1.1

1.2

1.3

1.4

1.5

1 1.1 1.2 1.3 1.4 1.5

Predicted Speedup

A
c
tu

a
l
S

p
e
e
d

u
p

art

bh

bzip2

mcf

treeadd

vortex

vpr

Figure 10: Actual versus predicted speedup for path
expression based modeling.

nonlinearity of the prefetch slack sensitivity function (see
Figure 12 described in Section 5.3.1) rather than first av-
eraging the values. In contrast the path expression based
technique uses the average and standard deviation of the
estimated helper thread latency measured during slice tree
extraction and applies a Gaussian approximation to obtain
the resulting predicted speedup. To better understand why
the correlation coefficient is less than one, Figure 10 shows
the actual and predicted speedup values for our path ex-
pression based approach. The amount of correlation varies
significantly by benchmark. While the correlation for bzip2
is very good, for treeadd the actual speedup was found to
be greater than predicted.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

art bh bzip2 mcf treeadd vortex vpr avg

C
o

r
r
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

1st order 1:1

1st order

1st order g

2nd order g

slice tree avg

slice tree dyn

Figure 11: Correlation of predicted and actual
speedups (idealized execution model: 4B data cache
lines, perfect branch prediction)

Figure 11 plots the correlation coefficient of the predicted
and actual speedups for several of the p-thread modeling
techniques already described, both with and without the use
of second-order control flow information. In particular, the
bars labeled 1st order 1:1 are for the path expression mod-
eling prediction with prefetch sensitivity assumed to be one
cycle improvement for each cycle of prefetch slack (for cache
misses), up to the latency of main memory; 1st order in-
cludes the impact of using the prefetch sensitivity measured
earlier; 1st order-g also includes the impact of prefetch slack
distribution assuming a Gaussian latency distribution; 2nd
order-g uses the second order control flow path expression
model, prefetch slack sensitivity and the Gaussian latency
distribution model; slice tree avg represents a version of ag-
gregate advantage formulation that includes the effects of
prefetch slack sensitivity [26]; and slice tree dyn goes one
step further and accounts for the effects of prefetch slack
distribution (this is the same data presented earlier as the
enhanced aggregate advantage technique).

The data in Figure 11 highlights the importance of using
second-order control flow profile information, prefetch slack
sensitivity and latency distribution information.

Below we examine the sources of modeling errors in more
detail. Additional results are contained in Chapter 5 of the
associated dissertation [1].

5.3.1 Prefetch Slack Sensitivity
Figure 12 plots the relationship between the prefetch slack

for target loads that miss in the L1 cache, and the result-
ing reduction in execution time. As observed by Petric and
Roth [26] the reduction is typically less than one cycle of
execution time saved per cycle of prefetch slack. We define
the prefetch slack sensitivity as the slope of a best fit line
to the speedup/prefetch-slack function in Figure 12 from
zero prefetch slack to the main memory latency of 300 cy-
cles. The magnitude of the prefetch slack sensitivity was
measured and this sensitivity was incorporated in the pre-
dictions made by both the enhanced aggregate advantage
prediction technique and our path expression based predic-
tion technique.

5.3.2 Prefetch Slack Distribution
Figure 3 plots a histogram of the prefetch latencies of the

best p-thread found for the selected target load in 175.vpr.

0

50

100

150

200

250

300

350

0 100 200 300 400 500

Prefetch Slack (cycles)

A
v
e
ra

g
e
 E

x
e
c
u

ti
o

n
 T

im
e
 R

e
d

u
c
ti

o
n

 p
e
r

T
a
rg

e
t

L
o

a
d

 C
a
c
h

e
 M

is
s
 (

c
y
c
le

s
)

art

bh

bzip2

mcf

treeadd

vortex

vpr

Figure 12: Sensitivity of execution time to prefetch
slack

There is a wide distribution of latency tolerances (or prefetch
slack) in the prefetches generated by this static p-thread. It
is possible to predict the impact such variation has on per-
formance by computing the path length variance [2]. We
evaluated this approach using a simple Gaussian approxi-
mation and found that it reduces prediction error by 13%.
However, it should be clear that a Gaussian is a poor approx-
imation to the form of multimodal distribution in Figure 3
and hence further research to more accurately account for
this effect would be beneficial.

5.3.3 Branch Outcome Correlation
Figure 11 shows that both 181.mcf and 255.vortex benefit

from the application of second order control flow information
to capture the impact of correlated branch outcomes (see
data labeled 2nd order-g).

5.3.4 Spatial Locality
We explored the impact of using 4-byte blocks to elimi-

nate the effects of spatial locality on p-thread performance
impact, which is not modeled by our proposed technique.
The benchmarks that show the most significant change are
treeadd and 181.mcf. The behavior for 181.mcf was inves-
tigated in detail and it was found that the profile data for
32B cache lines did not accurately predict the prefetch slack
of the helper threads. The reason was that a load in the
helper thread that almost always hit when executed as part
of the main thread, was found to miss when executed by the
helper thread in advance of another memory access that was
not in the slice. When the cache line size is instead set to
4B (the size of a pointer), this effect is eliminated and the
predictions for helper thread latency are closer to the actual
observed latency.

5.3.5 Resource Constraints
Figure 13 illustrates the impact of making additional thread

contexts available to run the selected helper threads for
256.bzip2. As additional thread contexts are made avail-
able the resulting speedup is closer to that predicted using
the proposed modeling technique.

5.3.6 Equivalent Linked Data Structure Traversals
Figure 14 plots the predicted and actual speedups for

181.mcf assuming a memory hierarchy that stores data in

1

1.05

1.1

1.15

1.2

1.25

1.3

uid:2 uid:3 uid:13 uid:22 uid:23 uid:24 uid:25 uid:30 uid:34

Spawn Instruction (node in slice tree)

S
p

e
e
d

u
p

2nd order g

actual-4t

actual-8t

actual-16t

Figure 13: Increasing thread resources for 256.bzip2
reduces prediction error (idealized execution model:
4B cache lines, perfect branch prediction).

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

uid:3 uid:35 uid:36 uid:37 uid:38 uid:39 uid:40 uid:50 uid:51 uid:52

Spawn Instruction (node in slice tree)

S
p

e
e

d
u

p

1st order 1:1

1st order

1st order g

2nd order g

slice tree avg

slice tree dyn

actual

Figure 14: Predicted and actual speedups for
181.mcf with 4B cache lines and perfect branch
prediction: Disparity due to unmodeled equivalent
linked data structure traversals.

4-byte blocks. The large actual speedup encountered for the
longer p-threads was found to be a result of p-threads where
the main thread did not follow the implied control flow as-
sumed during p-thread creation. Further analysis revealed
this was because the main thread would return to the same
location in the data structure and then access the data which
has been “incorrectly” prefetched by the p-thread.

6. RELATED WORK
In this section we summarize related work not mentioned

elsewhere in this paper. We believe the second-order con-
trol flow graph introduced in this paper is novel. The no-
tion of profiling paths through a program dates to Fisher’s
work on trace scheduling [13]. Ball and Larus proposed ef-
ficient path profiling [4]. Larus proposed whole program
paths [19]. Data flow frequency analysis using “two-edge
profiling” was proposed by Mehofer and Scholz [22], who
subsequently proposed data flow frequency analysis using
whole program paths [30]. We note that [22] uses the first-
order control flow graph and the quantity p(u, v, w) which is
the two edge probability. In the context of predicting helper

thread performance impact, we believe our work is more
general since it uses the second-order control flow graph
and path expressions for analysis. Path expressions allow
one to predict the expected latency of the main thread to
help compute the expected benefit of a helper thread. As
noted earlier, the path expression framework also enables
one to compute the variance in this latency [2]. It is not
clear how to compute these quantities using the approaches
in [22, 30]. Our predecessor selection and pruning algorithm
in Section 4.3 could be viewed as a form of dynamic program
slicing [3] using path expressions. Prior work has looked at
program optimizations based upon analysis of branch corre-
lation. For example, Bodik [5] proposed statically analyzing
branch correlation to remove redundant branches via code
restructuring.

7. SUMMARY
This paper proposes and evaluates a technique for opti-

mizing simple p-threads using control flow profile informa-
tion and building on the aggregate advantage framework of
Roth and Sohi [29] and the path expression modeling frame-
work described in [2]. This technique combines the effec-
tiveness of the aggregate advantage optimization framework
with the efficiency and compiler friendly implementation ad-
vantages of a path expression based framework. We evalu-
ated extending the control flow modeling approach in [2] by
incorporating branch outcome correlation information. This
improves the accuracy of the speedup predictions, as does
more accurately modeling of the distribution of prefetch la-
tencies. Further research on compile time mechanisms to
predict prefetch slack sensitivity and incorporating more
realistic memory disambiguation (perhaps including proba-
bilistic pointer analysis techniques [10]) is needed to evaluate
the practicality of the proposed approach in the setting of
an optimizing compiler. Our investigation into the sources
of modeling errors indicates that modeling dataflow events
such as equivalent linked data structure traversals and the
impact of spatial locality on helper thread execution may
yield significant improvements in prediction accuracy.

8. ACKNOWLEDGEMENTS
This work supported partly supported by the Natural Sci-

ences and Engineering Research Council of Canada. We
thank the anonymous reviewers along with Todd Mowry,
Andreas Moshovos, and Greg Steffan for their valuable com-
ments on this work.

9. REFERENCES
[1] T. M. Aamodt. Modeling and Optimization of

Speculative Threads. PhD thesis, Department of
Electrical and Computer Engineering, University of
Toronto, 2006.

[2] T. M. Aamodt, P. Marcuello, P. Chow, A. González,
P. Hammarlund, H. Wang, and J. P. Shen. A
Framework for Modeling and Optimization of
Prescient Instruction Prefetch. In ACM
SIGMETRICS Int’l Conf. on Measurement and
Modeling of Computer Systems, pages 13–24, 2003.

[3] H. Agrawal and J. R. Horgan. Dynamic Program
Slicing. In Conf. on Programming Language Design
and Implementation, pages 246–256, 1990.

[4] T. Ball and J. R. Larus. Efficient path profiling. In
Int’l Symp. on Microarchitecture, pages 46–57, 1996.

[5] R. Bod́ık, R. Gupta, and M. L. Soffa. Interprocedural
conditional branch elimination. In Conf. on
Programming Language Design and Implementation,
pages 146–158, 1997.

[6] D. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. http://www.simplescalar.com, 1997.

[7] M. C. Carlisle. Olden: Parallelizing Programs with
Dynamic Data Structures on Distributed-Memory
Machines. PhD thesis, Princeton University,
Department of Computer Science, June 1996.

[8] P. P. Chang, S. A. Mahlke, and W. Hwu. Using Profile
Information to Assist Classic Code Optimizations.
Software: Practice and Experience, 21(12):1301–1321,
1991.

[9] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt.
Difficult-Path Branch Prediction Using Subordinate
Microthreads. In 29th Int’l Symp. on Computer
Architecture, pages 307–317, 2002.

[10] P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee.
Interprocedural probabilistic pointer analysis. IEEE
Trans. Parallel Distrib. Syst., 15(10):893–907, 2004.

[11] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes,
Y.-F. Lee, D. Lavery, and J. P. Shen. Speculative
Precomputation: Long-Range Prefetching of
Delinquent Loads. In 28th Int’l Symp. on Computer
Architecture, pages 14–25, 2001.

[12] M. Dubois and Y. Song. Assisted execution. Technical
Report CENG 98-25, Department of EE-Systems,
University of Southern California, October 1998.

[13] J. A. Fisher. Trace Scheduling: A Technique for
Global Microcode Compaction. IEEE Trans.
Computers, 30(7):478–490, 1981.

[14] GrammaTech. Codesurfer.
http://www.grammatech.com, 2007.

[15] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam.
Maximizing Multiprocessor Performance with the
SUIF Compiler. IEEE Computer, December 1996.

[16] Intel Corporation. Intel®VTuneTM Performance
Analyzer. http://www.intel.com, 2007.

[17] D. Kim, S.-W. Liao, P. H. Wang, J. del Cuvillo,
X. Tian, X. Zou, H. Wang, D. Yeung, M. Girkar, and
J. P. Shen. Physical Experimentation with Prefetching
Helper Threads on Intel’s Hyper-Threaded Processors.
In 2nd Intl. Symp. on Code Generation and
Optimization (CGO 2004), pages 27–38, 2004.

[18] D. Kim and D. Yeung. Design and Evaluation of
Compiler Algorithms for Pre-Execution. In
ASPLOS-X, pages 159–170, 2002.

[19] J. R. Larus. Whole program paths. In Conf. on
Programming Language Design and Implementation,
pages 259–269, 1999.

[20] S. S. Liao, P. H. Wang, H. Wang, G. Hoflehner,
D. Lavery, and J. P. Shen. Post-Pass Binary
Adaptation for Software-Based Speculative
Precomputation. In Conf. on Programming Language
Design and Implementation, pages 117–128, 2002.

[21] C.-K. Luk. Optimizing the Cache Performance of
Non-numeric Applications. PhD thesis, Department of

Computer Science, University of Toronto, January
2000.

[22] E. Mehofer and B. Scholz. Probabilistic data flow
system with two-edge profiling. In Workshop on
Dynamic and Adaptive Compilation and Optimization,
pages 65–72, 2000.

[23] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi.
Slice-Processors: An Implementation of
Operation-Based Prediction. In 15th Int’l Conf. on
Supercomputing, pages 321–334, 2001.

[24] T. C. Mowry and C.-K. Luk. Predicting Data Cache
Misses in Non-Numeric Applications Through
Correlation Profiling. In 30th Int’l Symp. on
Microarchitecture, pages 314–320, 1997.

[25] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, August 1997.

[26] V. Petric and A. Roth. Energy-effectiveness of
pre-execution and energy-aware p-thread selection. In
32nd Int’l Symp. on Computer Architecture, pages
322–333, 2005.

[27] G. Ramalingam. Data flow frequency analysis. In
Conf. on Programming Language Design and
Implementation, pages 267–277, 1996.

[28] A. Roth and G. S. Sohi. Speculative Data-Driven
Multithreading. In 7th Int’l Symp. on
High-Performance Computer Architecture, pages
37–48, 2001.

[29] A. Roth and G. S. Sohi. A Quantitative Framework
for Automated Pre-Execution Thread Selection. In
Int’l Symp. on Microarchitecture, pages 430–441, 2002.

[30] B. Scholz and E. Mehofer. Dataflow frequency analysis
based on whole program paths. In The 11th Int’l
Conf. on Parallel Architectures and Compilation
Techniques, pages 95–103, 2002.

[31] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In 10th Int’l Conf. on Architectural
Support for Programming Languages and Operating
Systems, 2002.

[32] S. T. Srinivasan and A. R. Lebeck. Load latency
tolerance in dynamically scheduled processors. In Int’l
Symp. on Microarchitecture, pages 148–159, 1998.

[33] Standard Performance Evaluation Corporation. SPEC
2000 CPU benchmarks. http://www.spec.org/.

[34] R. E. Tarjan. A Unified Approach to Path Problems.
Journal of the ACM, 28(3):577–593, 1981.

[35] R. E. Tarjan. Fast Algorithms for Solving Path
Problems. Journal of the ACM, 28(3):594–614, 1981.

[36] P. H. Wang, J. D. Collins, H. Wang, D. Kim,
B. Greene, K.-M. Chan, A. B. Yunus, T. Sych, S. F.
Moore, and J. P. Shen. Helper threads via virtual
multithreading on an experimental itanium 2
processor-based platform. In ASPLOS, pages 144–155,
2004.

[37] C. Zilles and G. Sohi. Execution-based prediction
using speculative slices. In 28th Int’l Symp. on
Computer Architecture, pages 2–13, 2001.

[38] C. B. Zilles and G. S. Sohi. Understanding the
backward slices of performance degrading instructions.
In 27th Int’l Symp. on Computer Architecture, pages
172–181, 2000.

