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Abstract 

 
A field-programmable gate array (FPGA) is a type of programmable hardware, where a 

logic designer must create a specific hardware design and then "compile" it into a 

bitstream that "configures" the device for a specific function at power-up. This compiling 

process, known as place-and-route (PAR), can take hours or even days, a duration which 

discourages the use of FPGAs for solving compute-oriented problems. To help mitigate 

this and other problems, overlays are emerging as useful design patterns in solving 

compute-oriented problems. An overlay consists of a set of compiler-like tools and an 

architecture written in a hardware design language like VHDL or Verilog. This cleanly 

separates the compiling problem into two phases: at the front end, high-level language 

compilers can quickly map a compute task into the overlay architecture, which is now 

serving as an intermediate layer. Unfortunately, the back-end of the process, where an 

overlay architecture is compiled into an FPGA device, remains a very time-consuming 

task. Many attempts have been made to accelerate the PAR process, ranging from using 

multicore processors, making quality/runtime tradeoffs, and using hard macros, with 

limited success. We introduce a new hard-macro methodology, called Rapid Overlay 

Builder, and demonstrate a run-time improvement up to 22 times compared to a regular 

unaccelerated flow using Xilinx ISE. In addition, compared to prior work, ROB 

continues to work well even with high logic utilization levels of 89%, and it consistently 

maintains high clock rates. By applying this methodology, we anticipate that overlays can 

be implemented much more quickly and with lower area and speed overheads than would 

otherwise be possible. This will greatly improve the usability of FPGAs, allowing them 

to be used as a replacement for CPUs in a greater variety of applications. 

 

 



! iii!

Preface 

 
Research was conducted with insight and efforts from Dr. Guy Lemieux and Dr. Dirk 

Koch. The Rapid Overlay Builder methodology was built on a CAD tool called GoAhead 

co-developed by Dr. Koch. The VHDL code for the floating-point operations used in the 

complex PE was prepared and experiments presented in Section 4.2 were performed by 

Dr. Koch. 

 
 
 

 
 
 
 
 



! iv!

Table of Contents 
 

Abstract .............................................................................................................................. ii 

Preface ............................................................................................................................... iii 

Table of Contents ............................................................................................................. iv 

List of Tables ................................................................................................................... vii 

List of Figures ................................................................................................................. viii 

Glossary ............................................................................................................................ ix 

Acknowledgement .............................................................................................................. x 

1 Introduction .................................................................................................................1 

 1.1 Motivation ..............................................................................................................1

 1.2 Research Goals and Approaches ............................................................................3

 1.3 Contributions .........................................................................................................4

 1.4 Thesis Organization ...............................................................................................4 

2 Background .................................................................................................................6 

2.1 Overlay Architectures ............................................................................................6

 2.2 Fast Compilation with FPGAs ...............................................................................8

  2.2.1 Parallel Compilation ................................................................................8

  2.2.2 Netlist Preservation ..................................................................................8

  2.2.3 Trading Circuit Performance ...................................................................9 

 2.3 Targeted FPGA Device ..........................................................................................9

 2.4 Related Technology Overview ............................................................................10

  2.4.1 Module Relocation .................................................................................11

  2.4.2 Module Variants .....................................................................................12

  2.4.3 Routerless Stitching ...............................................................................14

  2.4.4 Related Research Comparison ...............................................................14 



! v!

 2.5 Summary ..............................................................................................................16 

3 CGRA Architectures ................................................................................................17

 3.1 Homogeneous CGRA with Simple PEs ...............................................................17

 3.2 FPGA Driver ........................................................................................................20

 3.3 Heterogeneous CGRA with Complex PEs ..........................................................20 

4 Rapid Overlay Builder .............................................................................................24 

4.1 Methodology ........................................................................................................24

 4.1.1 Targeted FPGA Device ..........................................................................25

 4.1.2 Resource Budgeting for a PE Tile .........................................................26

 4.1.3 Floorplanning for CGRA Designs .........................................................27

 4.1.4 Placing and Routing Initial PE Variants ................................................30

 4.1.5 Extracting PE Tiles from Initial PE Variants .........................................33

 4.1.6 Relocating PE Tiles on the Device ........................................................35

 4.1.7 Interconnecting Adjacent PE Tiles ........................................................36

 4.1.8 Interconnecting CGRA Design with FPGA Driver ...............................37 

4.2 Application: CGRA Customization .....................................................................39

 4.2.1 PE Specialization ...................................................................................39

 4.2.2 CGRA Customization ............................................................................41 

4.3 Summary ..............................................................................................................43 

5 Results ........................................................................................................................44 

5.1 Introduction ..........................................................................................................44

 5.2 Homogeneous CGRA Results..............................................................................44

  5.2.1 Standard Xilinx ISE Flow ......................................................................45

  5.2.2 CAD Time Comparison .........................................................................48

  5.2.3 XDL Conversion Limitation ..................................................................50

  5.2.4 Utilization and Clock Rate Comparison ................................................52

 5.3 Heterogeneous CGRA Results .............................................................................53

 5.4 Summary ..............................................................................................................56 



! vi!

6 Future Work ..............................................................................................................57

 6.1 Tool Flow Automation .........................................................................................57

 6.2 Netlist Conversion Limitation ..............................................................................59

 6.3 Partial Reconfiguration Capability ......................................................................60

 6.4 Bitstream Verification ..........................................................................................60 

7 Conclusions ................................................................................................................61 

Bibliography .....................................................................................................................64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! vii!

List of Tables 
 

Table 2.1 Component-based Design Related Research Comparison  ..........................15 

Table 3.1 Resource Breakdown of Specialized PEs and the Complex PE  .................21 

Table 3.2 A Customized CGRA Example ....................................................................22 

Table 4.1 Resource Requirement Reference for a PE Tile  .........................................26 

Table 4.2 Floorplan Alternatives ..................................................................................27 

Table 4.3 Prohibition Methodology for PE Variant #1 .................................................31 

Table 4.4 Resource Summary of PE Variants ...............................................................32 

Table 4.5 Resource Utilization of Specialized PEs .......................................................40 

Table 5.1 CAD Time Comparison – Simple PE ...........................................................49 

Table 5.2 Build Time per PE ........................................................................................50 

Table 5.3 Resource Breakdown, Achieved Clock Speed and  

Tool Run-times of Specialized PEs  ............................................................54 

 

 

 

 

 

 

 

 



!viii!

List of Figures 
 

Figure 2.1 Valid Module Relocation Scheme  ..............................................................12 

Figure 2.2 Virtex-6 VLX240T Resource Footprint Mask  ............................................13 

Figure 3.1 101-PE CGRA Design with FPGA Driver ...................................................19 

Figure 4.1 Virtex-6 VLX240T Resource Footprint Mask  ............................................25 

Figure 4.2 PE Variants with Footprint Masks ................................................................28 

Figure 4.3 CGRA Designs with 8 Different Sizes .........................................................29 

Figure 4.4 PE Tiles and Connection Anchors Allocation ..............................................30 

Figure 4.5 One Placed and Routed PE Variant ..............................................................33 

Figure 4.6 PE Tile Extracted from a PE Variant ............................................................34 

Figure 4.7 Script Employed for Relocating PE Tiles .....................................................35 

Figure 4.8 Module Relocation and Instantiation ............................................................36 

Figure 4.9 Physical Implementation of a 101-PE CGRA System ..................................38 

Figure 5.1 Exploration for Optimal Physical Partitioning .............................................46 

Figure 5.2 Routing Progression using Flat Floorplan ....................................................47 

Figure 5.3 XDL Conversion Time Exploration ..............................................................51 

Figure 5.4 Utilization and Fmax Comparison – Simple PE ...........................................52 

Figure 5.5 Fully Featured Complex PE and Specialized PEs ........................................55 

 

 

 

 



! ix!

Glossary 
 

 

ALU Arithmetic Logic Unit 

BRAM Block Random Access Memory 

CAD Computer Aided Design 

CGRA Coarse-Grained Reconfigurable Array 

CLB Configurable Logic Block 

CPU Central Processing Unit 

DDR Double Data Rate 

DSP  Digital Signal Processing 

FPGA Field-programmable Gate Array 

ISA  Instruction Set Architecture 

LUT Look-Up Table 

PAR Place-And-Route 

PCIe Peripheral Component Interconnect Express 

PE  Processing Element 

RTL Register-Transfer Level 

 

 



! x!

Acknowledgement 

 
I would like to sincerely thank my supervisor Dr. Guy Lemieux for his guidance and 

patience throughout the program. Without his insight and support, I would not be 

completing the degree and writing this thesis. 

I would also like to thank Dr. Dirk Koch for his monumental support and input to this thesis. 

This thesis would have been impossible without his knowledge and expertise in this research 

area.  

Finally, special thanks goes to my parents and my wife Wen for always supporting me in all 

aspects over the years.  

 



1 

Chapter 1 

 

Introduction 

 

1.1 Motivation 

Modern FPGA devices contain over 1 million LUTs and over 1000 dedicated memory 

and multiplier blocks. As circuits continue to scale up, the long place-and-route process 

required by the CAD tools forms a growing concern. To address this issue, vendor tools 

and other related CAD research accelerate the compilation process using different 

techniques, including parallel compilation [1-8], design partitions [9], netlist preservation 

[1-2] and trading circuit performance [10] for faster compilation. However, the speedup 

provided by these approaches is still limited. 

 Recently, a new design flow that uses overlay architectures has emerged to solve 

reconfigurable problems. Overlay architectures, which are pre-compiled circuits that are 

reconfigurable themselves, provide a higher level of abstraction to the hardware designers. 

The new design flow directly maps applications to the overlay architectures using custom 

tools or compilers, and therefore eliminates the long place-and-route times, which are 

found in the traditional hardware design flow. This significantly boosts the design 
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productivity for users by allowing shorter turnaround times, which can be found in 

software development. 

 Despite the fact that overlay architectures enable a more interactive and portable 

application development process, implementing an overlay architecture in an FPGA 

device still suffers from long place-and-route times [11]. With these long place-and-route 

times, overlays cannot be as nimble and dynamic through the use of specialization, where 

the overlay architecture is highly customized to the needs of the application. As an 

extreme example, it prevents users from generating a new architecture implementation 

each time they change their algorithm, even though that may be beneficial to the overall 

result. 

 A number of previous research efforts accelerate the place-and-route process in a 

component-based design fashion, which fits the overall profile of overlay architectures. 

One of the most notable techniques employed in this research area is module relocation. 

Module relocation is a technique of relocating netlists of a pre-built module in other 

locations of the device, and is a technique that is commonly applied on Xilinx FPGAs. 

By preserving and reusing previous CAD efforts, the place-and-route problem size is 

reduced and the process is accelerated. While some of the related research [12] relocates 

post-place netlists, others [13][14][15] relocate post-route netlists, which are also known 

as hard macros in a Xilinx context. For example, in HMFlow[13], a simulated annealing 

macro placer is developed and swaps hard macros using module relocation to achieve 

better placement results. Although [25] obtained significant speedups in the 

place-and-route process, the compilation flow cannot guarantee the speedups when logic 

utilization is above 50% and the resulted clock rates can only achieve 75% of the clock 
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rates resulted from Xilinx tools. In addition to the research efforts that employed module 

relocation, a bottom-up compilation flow [11] utilizes partitioning and floorplanning with 

pre-built modules to accelerate the place-and-route process while high clock rates are 

maintained. However, the highest logic utilization level reported in [11] is 70% and it is 

not clear whether the speedups can be maintained when circuits continue to scale. While 

reusing pre-built modules significantly reduces the placement time, the time consumption 

in the routing process dominates in the compilation flow of [11][13]. 

1.2 Approaches 

To overcome these limitations, this thesis presents the Rapid Overlay Builder (ROB) 

methodology for Xilinx FPGAs. ROB accelerates the place-and-route process of building 

overlays that can be floorplanned into a set of adjacent modules. Most overlays fall into 

this category, containing a high degree of repetition and regularity. For example, 

array-based coarse-grained reconfigurable architectures (CGRAs) are ideal in that they 

have a regular layout and they replicate a similar (but not necessarily identical) 

processing element (PE) at each site. 

ROB is a component-based design methodology, including a set of scripts, tools, and 

know-how, that interacts with the Xilinx ISE toolchain. To obtain fast place and route 

speeds, it takes advantage of three key underlying techniques: (1) module relocation, (2) 

module variants, and (3) stitching modules by zipping. Module relocation compiles a 

module into a hard macro; it can usually be relocated almost anywhere vertically with 

little or no additional CPU effort. Module variants (or design alternatives) are modules 

with the exact same functionality but mapped to a different resource footprint. This 
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assists horizontal relocation in the presence of heterogeneous columns found in modern 

FPGAs. Zipping is a routerless method of stitching adjacent modules with zero overhead, 

such that their interconnect aligns perfectly without any extra logic, switches, or wires. 

Zipping also allows very tight packing of adjacent modules. All three techniques are 

utilized by ROB to reduce place-and-route effort. Although not presently done in ROB, 

the decomposition above also allows for easy parallelization across multiple 

workstations. 

1.3 Contributions 

This thesis utilizes pre-existing techniques including module relocation, module variants 

and a routerless stitching mechanism in the ROB methodology. The contributions of this 

thesis are summarized as follows: 

1. Obtaining scalable speedups in building CGRA designs 

2. Achieving high logic utilization level with scalable speedups 

3. Maintaining consistent and high clock rates of CGRA designs 

1.4 Thesis Organization 

The remainder of this thesis is organized as follow. Chapter 2 presents background 

information of overlay architectures and related technology employed in the ROB 

methodology. Chapter 3 describes a homogeneous CGRA using integer-only PEs that is 

used in a case study and a heterogeneous CGRA with floating-point capabilities. Chapter 

4 describes the ROB methodology in further details. Chapter 5 compares the results from 
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Xilinx ISE and the ROB methodology. Chapter 6 lists the limitations of this thesis and 

some future work. Lastly, Chapter 7 presents conclusions of the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

Chapter 2 

 

Background 

 

This chapter first presents an overview of overlay architectures. Then, related previous 

work on accelerating the place-and-route process will be described, with their limitations. 

Next, this chapter gives background information of the target FPGA device and defines 

terminology being used throughout this thesis. Finally, the previously known techniques 

that the Rapid Overlay Builder (ROB) methodology employs will be presented and 

similar tool flows will be described with their limitations.  

 

2.1 Overlay Architectures 

Overlay architectures can be thought of as pre-compiled circuits that are reconfigurable 

themselves. The overlay provides a higher level of abstraction to application developers 

than just “raw gates” provided by an FPGA. More precisely, an overlay is a framework, 

consisting of custom tools or compilers as well as an RTL description of the architecture, 

which transforms a general-purpose FPGA into a compute-oriented structure. The overlay 

tools provide two productivity boosts for users: they tend to run quickly, like software 
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compilers, and they enable the use of a more programmer-friendly language. They can 

also enable portability across devices, device families, and vendors. 

 Just as an FPGA loads a configuration bitstream containing an implementation of the 

overlay RTL, the overlay itself must load an application bitstream generated by the 

overlay tools. The second step is called personalization in this thesis. 

 A number of overlay architectures have been proposed, including ZUMA [16][17], 

iDEA [18], MXP [19], Octavo [20], VLIW-SCORE [21], Soft-CGRA [22], and 

Mesh-of-FUs [23]. These overlays suffer from very long place-and-route times required to 

implement the architecture in the FPGA. For Altera FPGAs, design partitioning was found 

to help quality of results from CAD, but not mapping time [9]. 

 A common feature of all these overlays is the repetition of a processing element or PE 

across the device. The PEs can either be homogeneous or heterogeneous. In some cases, 

the PEs can be specialized, where some of the PE flexibility is removed to save area 

and/or improve delay. 

The overlay architecture studied in this thesis is an array-based CGRA, where 

processing elements (PEs) communicate only with their nearest neighbours. This scheme 

is often used in related work [24]. Consequently, the ROB methodology can be easily 

applied to these CGRA architectures. Other overlay implementations that use a floorplan 

to lock the position of adjacent modules will also work. 
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2.2 Fast Compilation with FPGAs 

As FPGA capacity continues to scale up, the long place-and-route (PAR) process 

required by the CAD tools forms a growing concern. Although overlay architectures 

emerge as a way to boost design productivity, placing and routing overlay architectures 

themselves still takes a long time to complete [11]. This section reviews prior work and 

their limitations on accelerating the PAR process. 

2.2.1 Parallel Compilation 

One promising solution to long PAR times is to parallelize CAD algorithms. By 

employing multiple processor cores, PAR problems are divided into smaller problems 

that can be solved concurrently. There have been a number of prior work that proposed 

parallel algorithms for placement [1-6] and routing [7-8]. Although Altera and Xilinx 

enabled the capabilities of parallelizing the PAR process, most of the prior work were 

done using the VPR framework due to limited access to the proprietary PAR tools from 

the vendors. Despite the fact that parallel compilation can lead to reasonable speedups, 

the resulted size of the bounding boxes and clock rates might be degraded, especially 

when a PAR problem is highly parallelized. Careful and comprehensive experiments 

need to be performed in order to understand the tradeoff between CAD time speedups, 

logic utilization levels and clock rates. 

2.2.2 Netlist Preservation 

Incremental compilation of design partitions is another approach to accelerate the PAR 

process by reducing the problem size. Instead of a flat compilation of the entire design, 

vendor tools provide options to utilize netlists of modules that were compiled before 
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[1][2]. The post-routed netlists of one module is known as a hard macro in Xilinx context. 

Despite the high degree of repetition of resources present on FPGA devices, vendor tools 

have very limited support in relocating pre-built hard macros. Therefore, a PAR process 

is required for instantiating the same module in other locations of the FPGA devices. 

2.2.3 Trading Circuit Performance 

While most CAD research focused on improving circuit performance, some research 

worked on trading circuit performance for fast PAR runtimes. By accelerating the PAR 

process, debug cycles will be shortened, which helps with improving productivity of 

hardware designers. Mulpuri [10] examined the tradeoffs between routing quality and 

PAR runtimes. With a 27% degradation of circuit performance, the PAR process obtained 

a 3x speedup. HMFlow [25] utilized hard macros to accelerate the PAR process by 30x, 

while the clock rates remain 75% of the clock rate achieved by the vendor tool. Unlike 

these research efforts, this thesis focuses on accelerating the PAR process, while 

maintaining high clock rates with vendor tool standards. 

 

2.3 Targeted FPGA Device 

Modern FPGA devices contain over 1 million LUTs and over 1000 dedicated memory 

and multiplier blocks, providing heterogeneous types of underlying resources to meet the 

demand of hardware designers. These heterogeneous resources with their own physical 

sizes are unevenly distributed across the FPGA devices. 

The targeted device in this thesis is a Xilinx XC6VLX240T-FF1156 from an ML605 

board. There are four different types of resources in the targeted device: DSP block (D), 
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BRAM block (B), Slice-M featured CLB (M) and Slice-L featured CLB (L). DSP blocks 

contain dedicated multipliers and BRAM blocks contain dedicated memory. The Slice-M 

featured CLBs contain LUTs that can alternatively be configured as memory or shift 

registers, where as Slice-L featured CLBs can only be used as logic. On the targeted 

Virtex 6 device, the height of one DSP block is the same as the height of one BRAM 

block and equivalent to the height of five CLBs. It is also important to know that the 

height of a clock region on the device is equivalent to the height of 40 CLBs. In this 

thesis, none of the implemented modules will span across the boundary of a clock region. 

This implementation allows a better support in partial reconfiguration, which can be 

explored in future work. 

 A placed and routed module is called a pre-built module in this thesis. For a given 

pre-built module, this thesis defines its footprint mask as the set of underlying resources 

(columns) used by the module. For example, if a module is implemented on a device and 

utilizes one DSP column, one Slice-M featured CLB column, one Slice-L featured CLB 

column and one BRAM column from left to right, then the corresponding footprint mask 

is {D, M, L, B}, and the footprint mask width is 4. 

 

2.4 Related Technology Overview 

In this section, an overview of previously known techniques that will be employed by the 

ROB methodology is first presented. Lastly, this section compares the ROB methodology 
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with other similar component-based design flows, the limitations of which will then be 

detailed. 

2.4.1 Module Relocation 

Component-based system design using module relocation is an efficient technique 

employed in this thesis to accelerate the PAR process. Although Xilinx vendor tools do 

not support module relocation well, there are various works reported to support this 

feature. The earliest attempts on supporting module relocation were done by relocating 

bitstreams using custom CAD tools. These tools, including PARBIT [26], REPLICA [27] 

and REPLICA2Pro [28], modify addresses within the bitstream to enable relocation. 

These CAD tools only provide support for legacy Xilinx devices, and unlike post-routed 

netlists, the relocated bitstream is not timing verifiable. In [29], a methodology is proposed 

for enhancing relocation flexibility by not using the primitives of certain resource columns. 

Those columns can then act as a wildcard for module placement because the routing fabric 

is identical for logic columns, memory columns and multiplier columns on Xilinx FPGAs. 

Unfortunately, the skipped columns become stranded resources that cannot be utilized. 

Recent work on module relocation is based on hard macros at the netlist level [12-15]. 

They utilize custom CAD tools that calculate a set of valid placements that follow the 

footprint mask requirements. In prior work, some macro placers [13][14][15] are able to 

preserve post-routed netlists during relocation, while [12] only preserves the placement 

during this process. Fitting modules into predefined bounding boxes typically results in 

both internal and external fragmentation. For HMFlow, the authors report that rapid 

compilation cannot be guaranteed when the logic utilization exceeds 50% [13]. 
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2.4.2 Module Variants 

Theoretically, a pre-built module is relocatable to locations with an identical resource 

footprint. As shown in Figure 2.1, Region 1 corresponds to the bounding box of a module 

with footprint mask {M, M, M, M, D, M, M, B}. The footprint mask width of Region 1 is 

8. In Xilinx FPGAs, Region 1 can be vertically relocated to Region 2, or horizontally 

relocated to Region 3. In general, however, the number of compatible horizontal 

placement sites is quite restricted. For example, Region 1 cannot be relocated to Region 4, 

because the destination footprint mask {D, M, M, B, M, L, M, L} differs. Instead, to 

 
 
 

Figure 2.1: Valid Module Relocation Scheme 
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utilize Region 4, the module needs to be re-placed and re-routed within an appropriate 

bounding box [30]. After this, the new module instance in Region 4 is created, which we 

call a variant of the original module. The ROB methodology creates a set of module 

variants to increase horizontal relocation flexibility. It also attempts to reduce the number 

of variants required. 

In the context of the CGRA that this thesis studied, the module variants also known as 

PE variants, are utilized in the ROB methodology. The post-routed netlists of a PE variant 

constrained in a bounding box defined by a floorplan is called a PE tile. The targeted 

device in this thesis is a Xilinx XC6VLX240T-FF1156 from an ML605 board. Its 

footprint mask has 101 columns, as shown in Figure 2.2. The left and right sides of the 

device have similar footprint masks, which can be exploited to reduce the number of 

required PE variants by half. Building a CGRA using a set of PE variants not only lowers 

the external fragmentation, but also helps with achieving consistent clock rates of the 

CGRA. 

 
 
 

Figure 2.2: Virtex-6 VLX240T Resource Footprint Mask  
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2.4.3 Routerless Stitching 

To stitch instantiated modules together, a routing process is usually required. To 

reduce overhead, instead of invoking the vendor’s routing tool, some prior work [4][6] 

developed custom routers for the stitching process. Custom routers were required because 

the vendor routing tool only takes NCD format netlists as input, whereas these tools work 

with hard macros described by XDL format netlists. Conversion from XDL to NCD to 

complete this operation is problematic because (1) it flattens hard macros and (2) routes 

inside hard macros are not guaranteed to remain intact during the stitching process. 

This thesis tackles the stitching process in a different way such that the routing step 

can be eliminated. One way to achieve this routerless objective is to use bus macros [31]. 

However, this option was not considered here for three reasons (1) bus macros need 

considerable extra logic, (2) they add extra latency, and (3) bus macros would have 

impacted the placement flexibility (e.g. they cannot be placed on BRAM columns). 

The stitching mechanism used in this thesis is a method we call zipping [32]. This 

mechanism enables direct module-to-module communication without any logic overhead 

and allows higher logic utilization in return. In the ROB methodology, fitting modules 

into bounding boxes and placing them adjacently provides locality that allows for short, 

predefined routes. This results in zero area and delay overhead on the connections. As the 

routing process is replaced by simple netlist manipulation, the stitching process is 

accelerated. 

2.4.4 Related Research Comparison 

Table 2.1 compares prior work that accelerated the PAR process in a component-based 

design fashion.  
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 HMFlow [25] utilized hard macros to accelerate the PAR process and is able to 

obtain a speedup up to 30x. However, the speedup is not guaranteed when a design has a 

logic utilization rate above 50% [13]. This is one drawback of the hard macro placer 

developed in HMFlow. In HMFlow, before the placement process occurs, the tool 

computes a set of valid locations for hard macros that are being placed on the device. A 

simulated annealing placer is then invoked to place the hard macros. Unlike a traditional 

placer swapping primitive instances, the placer swaps entire hard macros, including the 

primitive instances and routed nets inside the hard macros, to achieve better placement 

results. Because hard macros have irregular sizes and different aspect ratios, the external 

fragmentation has to remain high to allow unutilized area for the placer to swap hard 

macros. In addition, HMFlow can only achieve clock rate that is 75% of the clock rate 

achieved by the vendor tool. 

Bottom-up compilation [11] utilized circuit partitioning and floorplanning to achieve 

high scalability of large custom mesh-of-functional-units overlays. This compilation flow 

accelerated the PAR process by stitching post-routed tiles that were implemented offline, 

CAD Features 
and Results HMFlow [25] Bottom-up 

Compilation [11] 
ROB 

Methodology 
Platform Xilinx Altera Xilinx 

Module Relocation post-routed netlists N/A post-routed netlists 

Module Variants no no yes 

Stitching Process custom router vendor's router routerless 

Speedups 30x 33x 22x 
Logic Utilization 

Achieved 50% 70% 89% 

Clock Rates 0.75x 1.02x 1.37x 
 

Table 2.1: Component-based Design Related Research Comparison 
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obtaining a 33x speedup. However, unlike ROB, the post-routed tiles proposed in this 

flow are not relocatable. To make the post-routed tiles portable on an FPGA device, this 

compilation flow has to build all possible tile variants and to store these variants in the 

tile library. In addition, the stitching process is handled by the vendor’s routing tool, 

which can take 35 minutes to route a design with a 70% utilization rate. Instead, the ROB 

methodology employs zipping to accelerate this process by simple netlist manipulation. 

It is important to understand that all speedups in Table 2.1 are achieved by excluding 

the time for building initial modules/PEs. In addition, although we include the XDL 

conversion time to calculate the speedup of the methodology, it was not explicitly stated 

in [25] whether the XDL conversion time was also excluded. 

 

2.5 Summary 

This chapter presents the overview of overlay architectures and illustrates the advantage 

of the use of overlay architectures. Related previous research on accelerating the PAR 

process using traditional methods of parallel compilation, netlist preservation and trading 

circuit performance were described, with their limitations. In addition, we combine 

module relocation, module variants, and routerless stitching into the ROB methodology 

to achieve ultra-fast compilation speeds. Meanwhile, The ROB methodology gets high 

run-time speedups that have been proven with logic utilization levels up to 89%. Such a 

high level of utilization is usually very difficult for most tools to achieve. In comparison, 

HMFlow has difficulty exceeding 50% and Bottom-up Compilation Flow was not tested 

beyond 70% utilization. Lastly, the clock rates resulted from the ROB methodology are 

consistent and higher than other similar tool flows described in this section. 
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Chapter 3 

 

CGRA Architecture 

 

The focus of this thesis is to accelerate the compilation process of building overlays that 

have some regularity and repetition. To provide a concrete demonstration, this chapter 

presents two CGRA architectures to be used in developing the ROB methodology. The 

first architecture uses a simple PE; each simple PE can perform a common set of integer 

operations. The second architecture uses complex PEs that include both integer and 

floating-point operations. Furthermore, the first architecture is always homogeneous, 

where all PEs are identical, whereas the second architecture will apply specialization to its 

columns; each column of complex PEs in the CGRA will be homogeneous and support 

only a subset of the total operations. Applying this to other overlays should require only 

minor adaptations. 

3.1 Homogeneous CGRA with Simple PEs 

The first CGRA chosen for the case study consists of a homogeneous 2D array of simple 

processing elements (PEs); these PEs are called simple because they only support integer 

operations. The CGRA architecture and PE structure is shown in Figure 3.1. 
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Each PE communicates with each nearest neighbor through a register labeled N, S, E 

and W. Each communication channel (direction) consists of a 32-bit input bus and 32-bit 

output bus. These buses are used to send operands and results between PEs. Input and 

output buses of the PEs at the outer edge of the CGRA are connected in a loop-back 

manner. In addition, an input personalization bus and an output personalization bus are 

used for streaming application bitstream data along the PEs in a daisy-chained manner. To 

keep the personalization buses compact, they are only 4 bits wide plus an extra “enable” 

bit. 

Each PE also has a local register labeled R in the figure for holding intermediate results. 

The ALU, which is capable of an assortment of integer operations (shifting, addition, 

subtraction, multiplication and some bit manipulations but not division), takes its operands 

from any of the N, S, E, W, or R registers and writes back to R and/or any other register(s) 

in one cycle. In addition, a crossbar may concurrently route data across the PE as long as 

there are no destination conflicts. 
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Figure 3.1: 101-PE CGRA Design with FPGA Driver 
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3.2 FPGA Driver 

The entire CGRA is designed to communicate with DDR3, Ethernet, and a PC host over 

PCIe. Hence, a large, predesigned IP block called the FPGA Driver [33] is used to connect 

these I/O devices. The FPGA Driver occupies 8114 logic slices, which is an area 

equivalent to 30 simple PEs in the homogeneous CGRA. To meet timing requirements, it 

is constrained in the right side of the device for direct access to the I/O pins for Ethernet, 

PCIe and DDR3 memory. The FPGA Driver is responsible for: (1) streaming data 

between PCIe, the on-board DDR3 memory and the CGRA overlay, (2) carrying out the 

personalization process using the application bitstream, (3) enabling the partial 

reconfiguration capability. The FPGA Driver feeds application data and the 

personalization bitstream into the CGRA from the rightmost PEs of each row, and collects 

the computation results from the CGRA. 

 

3.3 Heterogeneous CGRA with Complex PEs 

To demonstrate a more complex usage scenario, a customizable heterogeneous CGRA 

using complex PEs with both integer and floating-point capabilities is also built. However, 

since a complex PE which supports all floating-point operations is quite large (812 slices), 

we will apply specialization to columns of PEs in Chapter 5 to save area. This 

specialization will involve forcing a column of PEs to support just one floating-point 

operation, but varying which operation is supported from column to column. This results 

in a heterogeneous CGRA architecture. 
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When applying specialization to the CGRA, it is assumed that a fully general-purpose 

PE is often underutilized in a CGRA that is running a specific application. Hence, by 

analyzing an application (or a domain), designers can not only determine whether some 

instructions go completely unused, but also determine the appropriate mixture among the 

remaining instructions. In addition, the designers must also consider the parallelism profile 

of these instructions in the application, and provide enough concurrency for each. Bearing 

this all in mind, it is beneficial for designers to create a heterogeneous set of specialized 

PEs for the CGRA that supports the required application. These heterogeneous PEs must 

ultimately be placed in the CGRA. This is partially analogous to ISA subsetting [34] 

where a CPU is customized to only provide the instructions that are needed by an actual 

program it is supposed to run. 

Table 3.1 shows the resource breakdown of the specialized PEs and the complex PE. In 

the experiments, it is found out that all of the specialized PEs can fit into a tile that is 10 

columns x 20 rows. In contrast, the complex PE requires a tile that is 20 columns x 30 

rows.  

Specialized PE 
Logic Slices DSP Blocks 

PE 
Variant 1 

PE 
Variant 2 

PE 
Variant 1 

PE 
Variant 2 

FADD 260 270 0 0 
FSUB 267 264 0 0 
FDIV 279 261 0 0 
FMUL 312 306 3 3 

FCONV 249 246 2 2 
ALU 152 136 3 3 

 
Complex PE 812 812 6 6 

 
Table 3.1: Resource Breakdown of Specialized PEs and the Complex PE 
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A customized CGRA example is shown in Table 3.2, where the CGRA consists of 8 

specialized PE columns and 12 specialized PE rows. All specialized PEs in the same PE 

column are identical. 

In this thesis, we do not concern ourselves with precisely how one determines the 

mixture of these PEs. It is simply enough to assume that some type of specialization must 

be applied, where each column of PEs may contain a PE design that has been uniquely 

specialized relative to other columns. 

The main advantage of a CGRA with specialized PEs is better device utilization, 

allowing either a larger CGRA (in terms of PE tiles), or the ability to implement a given 

CGRA on a smaller FPGA device. In addition, the specialized PEs offer the potential for 

higher clock speeds. 

It is important to understand that such customization of CGRA is best done after 

mapping an application to the CGRA. This is because designers only know the application 

needs after the mapping phase. This suggests that one cannot simply prebuild the 

customized overlay before the application. With conventional place and route approaches, 

an architecture customization like this results in long compilation time, making such a 

practice infeasible. In contrast, the stitching mechanism employed in the ROB 

methodology enables architectural customization with the rapid software-like compilation 

times being preserved. 

Column # 1 2 3 4 5 6 7 8 
Specialized 

PE FADD FSUB FDIV FMUL FCONV ALU FADD FSUB 

 
Table 3.2: A Customized CGRA Example 
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The customization process is detailed in Chapter 4. 
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Chapter 4 

 

Rapid Overlay Builder 

 

This chapter presents the Rapid Overlay Builder methodology, or ROB for short. The use 

of this methodology will first be demonstrated as a case study to build the homogeneous 

CGRA with simple PEs described in Section 3.1. Then, the CGRA customization process 

will be presented using the heterogeneous CGRA with complex PEs described in Section 

3.3. 

 

4.1 Methodology 

There are seven major tasks needed to build a CGRA in ROB. Out of the seven tasks, only 

the first two tasks presently require manual engagement from the users, while scripts have 

automated the other five tasks. While the first two tasks are also ultimately scriptable, they 

are not yet automated due to time limitations. The seven tasks are: 

1. Resource budgeting for a PE tile 

2. Floorplanning for CGRA designs 
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3. Placing and routing initial PE variants using Xilinx ISE 

4. Extracting PE tiles from initial PE variants 

5. Relocating PE tiles on the device 

6. Interconnecting adjacent PE tiles 

7. Interconnecting between the CGRA design and the FPGA Driver 

Below, these seven tasks are covered in greater details. However, to help better 

understanding the methodology and the results, this section will first review the key 

feature of the target FPGA device. 

4.1.1 Targeted FPGA Device 

The targeted FPGA device in this thesis is a Xilinx XC6VLX240T-FF1156 from an 

ML605 board. As previously described in Section 2.3, four different types of resources 

present in the targeted device: DSP block (D), BRAM block (B), Slice-M featured CLB 

(M) and Slice-L featured CLB (L). The resource footprint mask of the device, 

representing the set of underlying resources of the device, is shown in Figure 4.1. 

 
 

Figure 4.1: Virtex-6 VLX240T Resource Footprint Mask 
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 In order to understand the process of floorplanning and defining PE variants, it is 

important to know the left and right sides of the device have similar footprint masks, 

which is shown in Figure 4.1. This similarity can be exploited to reduce the number of 

required PE variants by half. In addition, the height of a clock region is equivalent to the 

height of 40 CLBs, whereas the height of a DSP block and a BRAM block is equivalent 

to the height of 5 CLBs. To simplify the shape of a PE tile, we define a PE tile has to be 

rectangular and the height of a PE tile has to be a multiple of 5 CLBs. 

Although this target FPGA device was chosen for this thesis, the ROB methodology 

should work on other FPGA devices with minor adaptions. 

4.1.2 Resource Budgeting for a PE Tile 

In order to floorplan the CGRA properly, an initial place-and-route process of a PE tile is 

required to obtain the set of required resources as a reference. The place-and-route process 

is a standard Xilinx ISE compilation run and does not require any constrained floorplan of 

the PE tile. However, a PE design may require heterogeneous types of resources. Later on 

in our case study, we will find that some resources such as hard multiplier blocks may not 

always be readily available nearby when floorplanning. In such a case, the PE tile can use 

more logic slices by use of a soft multiplier. Therefore, the PE tile sometimes needs to be 

built with different synthesis options, including whether to use hard multiplier blocks and 

memory blocks. This provides a comprehensive reference designs with different resource 

Synthesis Option # Logic Slices Multiplier Blocks 
1 230 2 
2 304 N/A 

 
Table 4.1: Resource Requirement Reference for a PE Tile 
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demands and that can add flexibility in floorplaning the PE variants later. With a 

comprehensive reference set of required resources for the PE tile, designers have a 

preliminary understanding of the size of the PE tile with different resource footprints on 

the device. 

 Table 4.1 shows the reference set of required resource of the integer-only PE design 

with different synthesis options. Synthesis results for utilizing memory blocks are not 

shown in the table, because the PE design does not utilize any memory blocks. After 

removing the resources reserved for the FPGA Driver from the target FPGA, there are a 

total of 26,160 logic slices and 304 multiplier blocks available. 

4.1.3 Floorplanning for CGRA Designs 

After reserving room for the FPGA Driver, Table 4.2 shows floorplan alternatives 

consisting of PE tiles with different aspect ratios that accommodate about 230 logic slices 

(115 CLBs). It also gives the corresponding external fragmentation (leftover CLBs) after 

instantiating the maximum number of PE tiles on the device. In some of the floorplan 

alternatives, after defining bounding boxes that include DSP blocks, it is found that the 

Floorplan 
Option # 

PE Width 
(CLBs) 

PE Height 
(CLBs) 

Number of 
PEs 

External 
Fragmentation 

(CLBs) 
1 24 5 93 1920 
2 12 10 95 1680 
3 8 15 102 720 
4 6 20 101 840 
5 5 25 78 3330 
6 4 30 81 3360 

 
Table 4.2: Floorplan Alternatives 
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logic resources left over can also be sufficient to build a logic-only PE tile. In such a case, 

logic-only PE tiles are built to lower the external fragmentation. 

It is shown in Table 4.2 that floorplan options #3 and #4 yield the lowest external 

fragmentation. Floorplan option #4 is adopted because the resulting PE tiles will be half 

the height of a clock region. Hence, none of the PE tiles will span across the boundary of a 

clock region. This also allows the floorplan to be used in a dynamically reconfigurable 

system, which can be explored in future work. 

 The chosen floorplan consists of 11 PE tiles in the horizontal direction and 12 PE tiles 

in the vertical direction. Since the PE tiles are relocatable in the vertical direction, only 

one PE variant is needed for every column of PE tiles. Furthermore, with the feature 

similarity found on the left and right side of the device, only 6 variants of each Simple PE 

are required across the 11 PE columns. Figure 4.2 presents the footprint masks of all 6 PE 

variants utilized in the floorplan. With this set of PE variants, CGRAs of 8 different sizes 

 
 
 

Figure 4.2: PE Variants with Footprint Masks 
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are built in a case study to examine the scalability of the ROB methodology, as shown in 

Figure 4.3. 

 After this step, all the tasks in the ROB methodology are automated by scripts. 

 
 

Figure 4.3: CGRA Designs with 8 Different Sizes 
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4.1.4 Placing and Routing Initial PE Variants 

Before placing the routing the initial PE variants, the ROB methodology reserves 

dedicated area for the connection anchors to produce a PE tile, according to the 

predefined floorplan. A PE tile is a bounding-box constrained region (of size PE Width x 

PE Height) that contains all of the PE logic and routing. One PE tile will be produced for 

each PE variant. The connection anchors are temporary appendages that will be discarded 

later on. 

For each PE tile, a set of connection anchors is required on each of the four sides of the 

rectangular PE tile. A connection anchor is a pre-built hard macro that will connect the 

signals for communication between adjacent PE tiles, each one forming one half of the 

interface for zipping later. When PE tiles are abutted, it is important for interconnect 

 
 
 

Figure 4.4: PE Tiles and Connection Anchors Allocation 
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between adjacent PE tiles to lie in a straight line. Otherwise, a wasteful “dogleg” shape 

connection would be required. To avoid “doglegs”, the layouts of the connection anchors 

on the opposite sides of one PE tile must physically correspond to each other, as shown in 

Figure 4.4. One limitation of this process is that the connection anchors have to be 

allocated on the odd columns of the FPGA device, due to low-level implementation issue. 

More precisely, the routing resources on the odd columns are different than the resources 

on the even columns. This means the primitives placed on the odd columns cannot be 

relocated to the even columns. 

 In early experiments, it was found that ISE would sometimes utilize resources outside 

the PE tile, even though the PE tile was physically constrained by an area group constraint. 

To prevent this behavior, any resource that is not in the reserved area of the connection 

anchors and the PE tile is prohibited for placement by patching the user constraint file 

with “PROHIBIT” constraints. 

Another issue found was that the routing is more congested at the boundary of the PE 

tile. This congestion manifests itself as longer route times in ISE and lower clock 

frequency. This is because logic resources at the border have access to fewer wires for 

routing than the logic resources that are located in the center of the PE. To address this 

Prohibition Methodology Routing Time 
(seconds) 

No prohibited areas 332 
Top row prohibited 132 

Bottom row prohibited 121 
Top and bottom row prohibited 91 

 
 

Table 4.3: Prohibition Methodology for PE Variant #1 
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issue, the ROB methodology offers options to prohibit some logic resources at the PE tile 

boundary for placement. This results in a better ratio of routing wires per logic resource at 

the PE boundary at the cost of unused logic resources (i.e. higher internal fragmentation). 

However, there must still be sufficient logic remaining in the PE tile for the variant to fit 

after these constraints are applied. In the case study, four strategies for PE Variant #1 were 

investigated and the results are presented in Table 4.3. It was found that blocking the top 

and bottom rows inside the PE tile from placement gets a faster routing time in ISE. Based 

on this, the top and bottom rows were prohibited for all PE variant tiles in this thesis. 

 Once the physical constraints of the PE variants are set, every PE variant needs to be 

placed and routed using ISE. Since the compilation process is independent for every 

variant, this process can be trivially parallelized across workstations. In the case study, a 

sequential process of building the initial PE variants took 48 minutes to complete, while a 

parallelized build process took 18 minutes using a workstation with 4 CPU cores. 

Depending upon the precise overlay design and usage, it may be possible to precompute 

this initial PE build time so it is not observed by users. Resource utilization summary and 

the build time for each PE variant are shown in Table 4.4. 

PE Variant 
Footprint Mask Logic Slices Multiplier 

Blocks 

PE Variant 
Build Time 
(minutes) 

{MLMLBMMD} 216 2 9 
{MMMMDMMB} 211 2 7 
{MMMMMMMM} 281 N/A 8 
{BMMDMMMM} 208 2 7 
{DMMBMLML} 216 2 8 

{MLMLLLLLLL} 290 N/A 9 
 
 

Table 4.4: Resource Summary of PE Variants 



33 

 A placed and routed PE variant is shown in Figure 4.5, where cyan wires represent the 

clock network and dark blue wires represent everything in the PE variant except for the 

clock signal. In the figure, four sets of connection anchors, which represent the IO ports 

for the data bus, are clearly shown on four sides of the PE tile. The connection anchors for 

the personalization bitstream are located at the bottom of the PE tile. These connection 

anchors will be discarded in the next step.  

4.1.5 Extracting PE Tiles from Initial PE Variants 

Once the PE variants are placed and routed, the NCD netlists of the PE variants are 

automatically converted to XDL netlists by scripts. With the XDL netlists, the PE 

 
 
 

Figure 4.5: One Placed and Routed PE Variant 
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variants can be cut out along the boundary of the PE tile, leaving the data bus wires as 

floating antennas, as shown in Figure 4.6. The cut interconnect wires will be used for 

zipping together adjacent tiles. These XDL representations are stored in a pre-built PE 

tile library. The library of pre-built PE tiles will be used for assembling the final CGRA. 

 

 

 

 
 
 

Figure 4.6: PE Tile Extracted from a PE Variant 
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4.1.6 Relocating PE Tiles on the Device 

In the case study, every pre-built PE tile spans 20 rows of CLBs, which is half the height 

of a clock region. Five PE tiles have a footprint mask width of 8 and one PE tile, which 

contains only logic resources, has a footprint mask width of 10. The PE tiles from the 

library are relocated and instantiated according to a predefined floorplan.  

 

Figure 4.7: Script Employed for Relocating PE Tiles 

# Instantiating PE tiles starting at INT_X9 
Set Variable=module_top Value="220"; 
SetLabel LabelName=LoopHead_1;  
AddBlockToSelection UpperLeftTile=INT_X9Y[%module_top%-1] 
LowerRightTile=INT_X9Y[%module_top%-1]; 
Set Variable=module_top Value=[%module_top%-20]; 
GotoLabel LabelName=LoopHead_1 Condition=%module_top%>170; 
AddInstantiationInSelectedTiles = PE_Variant_1; 
 
# Instantiating PE tiles starting at INT_X17 
Set Variable=module_top Value="220"; 
SetLabel LabelName=LoopHead_2;  
AddBlockToSelection UpperLeftTile=INT_X17Y[%module_top%-1] 
LowerRightTile=INT_X17Y[%module_top%-1]; 
Set Variable=module_top Value=[%module_top%-20]; 
GotoLabel LabelName=LoopHead_2 Condition=%module_top%>170; 
AddInstantiationInSelectedTiles = PE_Variant_2; 
 
# Instantiating PE tiles starting at INT_X25 
Set Variable=module_top Value="220"; 
SetLabel LabelName=LoopHead_3;  
AddBlockToSelection UpperLeftTile=INT_X25Y[%module_top%-1] 
LowerRightTile=INT_X25Y[%module_top%-1]; 
Set Variable=module_top Value=[%module_top%-20]; 
GotoLabel LabelName=LoopHead_3 Condition=%module_top%>170; 
AddInstantiationInSelectedTile = PE_Variant_3; 
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The most essential part of the script that is employed in this process is shown in Figure 

4.7. In the script, the designer is instantiating a total of 9 PE tiles by relocating 3 pre-built 

PE tiles into a set of specific locations. The resulted circuit is shown in Figure 4.8 and it 

can be observed that each PE column is created by instantiating the same pre-built PE tiles 

multiple times. 

4.1.7 Interconnecting Adjacent PE Tiles 

In this case study, adjacent PE tiles are placed next to each other. By design, the floating 

 
 
 

Figure 4.8: Module Relocation and Instantiation 
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interconnect located along the zipping boundary of each tile perfectly aligns with each 

adjacent tile, so no additional routing is needed. Not having to use the router saves time 

and also avoids the potential for allocating additional logic or routing resources to form 

connections between mismatched components. This also helps achieve a size-independent 

clock rate for the overlay. 

4.1.8 Interconnecting the CGRA Design and the FPGA Driver 

After all the PE tiles are stitched together, the CGRA and the FPGA Driver are also 

automatically stitched together using similar netlist manipulation. Figure 4.8 presents the 

fully placed and routed CGRA system. The FPGA Driver was floorplanned and built in 

such a way that all of the IO ports of the FPGA driver correspond with its adjacent PE 

tiles. Since the FPGA Driver is a common part of the design and can be fit in the 

compilation process as a hard macro partition, the corresponding compile time is not 

included in the standard ISE flow nor the ROB methodology. Therefore, the CAD time 

for building the FPGA Driver is excluded from all experimental results presented in 

Chapter 5. 

 In the present CGRA system, the FPGA Driver is the only interface enabled in the 

ROB methodology to control data flow inside the CGRA and to carry out the 

personalization process of propagating the application bitstream to the PEs. 
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Figure 4.9: Physical Implementation of a 101-PE CGRA System 
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4.2 Application: CGRA Customization 

 In demonstrating the ROB methodology so far, a homogeneous array consisting of 

simple PE tiles was placed and routed. To demonstrate a more complex usage scenario, 

building a CGRA using PEs with both integer and floating-point capabilities is now 

considered. Such a general-purpose PE can dramatically simplify application development, 

but it comes with an unreasonably high resource requirement, as some PE functionality 

might commonly be left unused. Therefore, this section presents a case study below that 

customizes CGRA designs by applying specialization to the PEs using the ROB 

methodology. 

4.2.1 PE Specialization 

The overall architecture shares some concepts of the PACT-XPP CGRA architecture 

[35] with a customizable ALU. In the case study, the specialized PEs provide an integer 

ALU or single-precision floating-point instructions. 

A reference “complex PE” that features all supported operations was first implemented. 

Because of the PE performance and the CAD-tool times improve when defining area 

constraints for PEs (see Chapter 4), bounding boxes (Xilinx area group constraints) were 

defined for the placement of the primitives.  The complex PE implementation uses 812 

logic slices and 6 DSP blocks, while the clock speed was 51.4 MHz. With the size of the 

complex PE, the chosen Virtex-6 device in the case study can accommodate at most 24 

PEs in the CGRA. 
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Since this complex PE is very large and flexible, specializing the complex PE by ISA 

subsetting is considered to be effective in reducing the resource requirement for PEs. 

Specialized PEs, where each contains just one floating-point instruction, are placed and 

routed in the case study. The area results are shown in Table 4.5. The PE that provides the 

FMUL (floating-point multiply) operation takes most logic resources, requiring 312 logic 

slices and 3 DSP blocks. 

For this case study, all PEs are constrained and built to have the same tile size, so that 

the PEs can be reusable in the same CGRA floorplan scheme. This may introduce internal 

fragmentation, but it simplifies external tools and limits external fragmentation. The 

bounding box for each tile provides 320 logic slices, 4 DSP blocks and 4 BRAM blocks. 

To exploit the module relocatability and to reduce the number of required variants, 

modules using Slice-M logic are mapped to columns of Slice-L logic. With the specialized 

PEs, the Virtex-6 device can accommodate 76 PEs with just two variants of each PE. This 

is three times more PEs than the homogeneous case with much-larger complex PEs. The 

footprint masks of the two variants are {M, L, M, L, B, M, M, D, M, M} and {M, M, D, 

M, M, B, M, L, M, L}. 

Specialized 
PE 

Logic Slices DSP Blocks 
PE  

Variant 1 
PE  

Variant 2 
PE  

Variant 1 
PE  

Variant 2 
FADD 260 270 0 0 
FSUB 267 264 0 0 
FDIV 279 261 0 0 
FMUL 312 306 3 3 

FCONV 249 246 2 2 
ALU 152 136 3 3 

Complex PE 812 6 
 

Table 4.5: Resource Utilization of Specialized PEs 
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Specializing PEs can not only benefit from a reduced PE size, but might also improve 

the overall clock rate of the CGRA. By reducing the size of the fully featured PE, the PE 

becomes less complex and the critical path delay is shortened. Since the slowest PE tile 

determines the overall clock rate of the CGRA system, it is best to optimize the timing 

performance of each specialized PE tile. The component-based design flow presented in 

the ROB methodology provides such an option for designers, whereas the conventional 

Xilinx ISE compilation flow can only optimize timing performance to the bulk CGRA 

system. With a vendor tool called SmartXplorer, designers can run the PAR process 

multiple times with different implementation strategies to achieve timing closure 

individually for each specialized PE. Such an exploration process can also be fully 

parallelized to reduce the overall runtime by utilizing multiple processor cores to run 

individual strategies simultaneously. 

In addition to potentially improving the clock rate of the CGRA, the ROB methodology 

can also improve the predictability of the clock rate in the final physical implementation. 

This means the ROB methodology can implement size-independent CGRA designs with a 

consistent clock rate, as long as the same set of PE variants is used. Related experimental 

results are detailed in Chapter 5. 

4.2.2 CGRA Customization 

 Once the specialized PE tiles are built, designers can instantiate the specialized PE tiles 

according to the application mapping results. This process is called CGRA customization 

in this thesis. Although the application mapping process is not in the scope of this thesis, 
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instantiating specilized PE tiles accordingly can ultimately be scripted and run 

automatically. 

 Conventionally, with a complex PE that is without any type of specialization, the 

CGRA system only needs to be built once. However, such an implementation has its 

limitations in computation capacity as well as the circuit performance as described 

previously. CGRA customization using specialized PEs overcomes both limitations and 

promises higher computation throughput. One reasonable cost of CGRA customization is 

that the application mapping process needs to be tailored that at most one floating-point 

operation can be assigned to a specialized PE. This is because all pre-built specialized PEs 

are capable of executing at most one floating-point operation. 

 The CGRA customization process needs to be done whenever a change is made to the 

application. With the conventional Xilinx ISE compilation flow, this means 

re-implementing the CGRA by running the long PAR process, which takes hours to finish. 

With the stitching mechanism employed in the ROB methodology, the time of the 

re-implementation process is reduced to minutes. 

 As compelling as the ROB methodology currently seems, it can be further developed to 

support partial reconfiguration. This enables designers to change PE tiles dynamically by 

downloading the partial bitstream while the rest of the CGRA system continues to operate 

without interruption. Such an advanced use-case is promising, but it is also outside of the 

scope of this thesis. 
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4.3 Summary 

This chapter detailed the ROB methodology in seven tasks, including (1) resouce 

budgeting, (2) floorplanning, (3) initial PE building, (4) PE tile extracting, (5) PE tile 

instantiating, (6) interconnecting adjacent PE tiles and (7) interconnecting the CGRA with 

the FPGA Driver. The ROB methodology was first used to build a homogeneous CGRA 

with Simple PE. The CGRA customization process presented as an application of ROB, 

was also described in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

Chapter 5 

 

Results 

 

5.1 Introduction 

This chapter presents the experimental results of building the homogeneous CGRA and 

the customized heterogeneous CGRA described in previous chapters. All the experiments 

use a Dell Workstation T5500, which features an Intel Xeon 3.33GHz quad-core 

processor and 8GB RAM. Xilinx ISE 14.7 was used under Windows 7 (64-bit). The 

targeted FPGA device was a Xilinx XC6VLX240T-FF1156 with a -1 speed grade on an 

ML605 development board.  

5.2 Homogeneous CGRA Results 

This section first presents the effort in generating HDL code and accelerating the 

compilation process of building homogeneous CGRA designs in the standard Xilinx ISE 

flow. A comparison of the elapsed CAD time, logic utilization levels and clock rates 

resulting from the standard Xilinx ISE flow and the ROB methodology in building 

CGRAs of different sizes will then be given. 
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5.2.1 Standard Xilinx ISE Flow 

In this thesis, a number of experiments were conducted to compare the performance of the 

ROB methodology with the standard Xilinx ISE flow in building CGRAs. In all cases, the 

architectures used are the baseline homogeneous CGRAs that support integer-only 

instructions with the simple PE. 

 Before compiling a CGRA design using ISE, the HDL code representing the CGRA 

and the UCF representing the physical constraints of the CGRA need to be prepared. 

Handcrafting the HDL code takes a significant amount of time, since a large amount of 

signals for communication need to be properly instantiated and port mapped. Preparing the 

UCF requires designers to manually draw bounding boxes representing the PE tiles in 

PlanAhead. When conducting a new experiment with CGRAs of different sizes, a fair 

amount of changes still need to be applied to the HDL code and UCF. This is a tedious 

and error prone process. To improve productivity, several scripts are written to 

automatically generate the HDL file and the UCF for a rectangular CGRA of any chosen 

size. 

In the case study, several floorplan methodologies were attempted in order to explore 

the best way of compiling CGRA designs using the standard Xilinx ISE flow. The 

floorplan methodologies can be categorized into two different kinds: 

1) k PEs were grouped into a physical region (area group), where k = 1 … 8 PEs 

2) None of the PEs are physically constrained 

 The code-generator script described earlier can only generate the UCF for the floorplan 

that every PE resides in its independent physical region. Grouping PEs into physical 
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regions cannot be easily accomplished using scripts, since the floorplan becomes irregular 

when PEs are grouped. Therefore, grouping PEs together is a manual process that 

modifies the UCF. 

 It is important to understand that the only common constraint in these floorplan 

methodologies is that the region reserved for the FPGA Driver is prohibited for placement. 

In the experiments, it was found that the time consumption in the placement process 

dominated the total CAD time. Figure 5.1 shows the elapsed CAD time in building a 

101-PE CGRA. It is shown in the figure that the CGRA can be placed and routed with 

minimum CAD time when the design is physically partitioned into regions of 4 PE 

modules.  

 
 
 

Figure 5.1: Exploration for Optimal Physical Partitioning 
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CGRAs without any physical constraints were much more difficult to build. 

Constraining the area where the FPGA Driver locates leaves the CGRA a “C” shape for 

implementation. The irregular “C” shape dramatically increases the difficulty for ISE to 

find the optimal placement solution. The poor placement result instantly creates a difficult 

routing problem, which leads to an extremely long routing time. For example, Figure 5.2 

shows the routing progress of a CGRA that filled only 31% of the device (plus a 

prohibited region over the FPGA Driver area). After routing the CGRA for more than 5 

days, the number of unrouted nets is approaching 115,000 nets so slowly that further 

progress appears unlikely. For remaining experiments that use ISE only, we always use a 

floorplan with physical regions that hold 4 PEs in each partition.  

 
 
 

Figure 5.2: Routing Progression using Flat Floorplan 
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5.2.2 CAD Time Comparison 

To explore the CAD tool scalability in circuit size, CGRAs with eight different sizes are 

built, using the floorplans previously shown in Figure 4.3. In addition, our evaluation 

considers two user scenarios: (1) user builds CGRAs from scratch; (2) user builds CGRAs 

with pre-built PE tiles. 

 The elapsed CAD time for building the homogeneous CGRA is shown in Tables 5.1. In 

Table 5.1, the elapsed CAD time for both the standard Xilinx ISE, using 4 PE modules per 

region, is compared to that obtained using our new ROB methodology. However, since the 

FPGA Driver is a common part of the design and can be fit in the compilation process as a 

hard macro partition, the corresponding compile time is not included in the standard ISE 

flow nor the ROB methodology. 

 The process of building initial simple PE tiles takes 18 minutes. The time for 

implementing initial PE tiles is included in the total CAD time of the ROB methodology. 

In user scenario (1), the ROB methodology obtains a speedup from 2x to 5x in 

implementing CGRA designs compared to the standard ISE tool flow. 

 In user scenario (2), the time to build the initial PE tiles is excluded. This corresponds 

to a usage case where they have been pre-built, or cases where the initial PE tile build time 

can be amortized over a sufficiently large number of different CGRA builds. In these 

cases, the speedup of the ROB methodology increases up to 22x. 

 In all cases, the time consumed in the initial PE building process dominates the total 

runtime in user scenario (1), whereas the time consumed in the XDL conversion process 

dominates the total runtime in user scenario (2). 
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CGRA 
Size 

New ROB Methodology Time (seconds) Standard Xilinx ISE CAD Time (seconds) Speedup 
Initial PE 
Building Stitching XDL 

Conversion 
Total 
Time 

Synthesis and 
Translation Placement Routing Total 

Time 
User 

Scenario 1 
User 

Scenario 2 
18 PEs 1080 40 69 1189 572 1578 247 2397 2.0x 22.0x 
41 PEs 1080 56 210 1346 1210 1955 477 3642 2.7x 13.7x 
49 PEs 1080 78 277 1435 1270 2432 703 4405 3.1x 12.4x 
57 PEs 1080 81 377 1538 1197 3911 631 5739 3.7x 12.5x 
65 PEs 1080 88 449 1617 1006 3939 638 5583 3.5x 10.4x 
77 PEs 1080 106 695 1881 1137 7896 734 9767 5.2x 12.2x 
89 PEs 1080 113 844 2037 1253 7614 831 9698 4.8x 10.1x 

101 PEs 1080 125 1054 2259 1419 8483 1086 10988 4.9x 9.3x 

 
Table 5.1: CAD Time Comparison – Simple PE 
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To evaluate the scalability of the ROB methodology, Table 5.2 shows the average time for 

building one PE on the device. The build time per PE can be further broken down to the 

average time for stitching a PE tile with its adjacent tiles as well as the average time to 

convert the XDL netlists of a PE to NCD format. In Table 5.2, it clearly shows that the 

ROB methodology scales well and the XDL conversion process scales poorly with the 

CGRA size. This results in the increasing build time per PE as the CGRA size scales up in 

user scenario (2). 

 

5.2.3 XDL Conversion Limitation 

While exploring the scalability of the ROB methodology, it was found that the XDL 

conversion process dominates the time consumption in building CGRAs with pre-built PE 

tiles. To understand this bottleneck in the methodology, this subsection presents further 

analysis of the XDL conversion process. 

CGRA Size Stitching 
(seconds) 

XDL 
Conversion 
(seconds) 

Total Time (seconds) 
User  

Scenario 1 
User  

Scenario 2 
18 PEs 2.2 3.8 66.1 6.1 
41 PEs 1.4 5.1 32.8 6.5 
49 PEs 1.6 5.7 29.3 7.2 
57 PEs 1.4 6.6 27.0 8.0 
65 PEs 1.4 6.9 24.9 8.3 
77 PEs 1.4 9.0 24.4 10.4 
89 PEs 1.3 9.5 22.9 10.8 
101 PEs 1.2 10.4 22.4 11.7 

 
Table 5.2: Build Time per PE 
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 It is important to understand that a fully placed-and-routed design output from the ROB 

methodology is an XDL netlist. In order to generate bitstream, the XDL netlist has to be 

converted back to an NCD netlist. This process is done entirely by Xilinx tools. Figure 5.3 

shows the time consumption of the XDL conversion process and its proportion of the total 

time in building CGRAs. It shows that when scaling the CGRA size, the portion of the 

time consumed in the XDL conversion process increases from 63% to 89% for the 

simple-PE CGRAs. This indicates the poor scalability of the process in circuit size. It is 

unknown whether Xilinx can improve this runtime, but doing so would be highly 

advantageous for users of ROB. 

 
 
 

Figure 5.3: XDL Conversion Time Exploration 



52 

5.2.4 Utilization and Clock Rate Comparison 

In addition to speeding up the process in building CGRAs, maintaining high logic 

utilization levels and clock rates is also a goal of the ROB methodology. Figure 5.4 

illustrates that the logic utilization levels resulting from the ROB methodology are 

constantly lower than ISE in building the simple-PE CGRAs. This is because the initial PE 

tiles were implemented with their top and bottom rows of the resource in the bounding 

box prohibited for placement, as described in Chapter 4. The prohibition constraints forces 

ISE to apply a more compact slice packing that utilizes less logic primitives. 

 Figure 5.4 also shows that clock rates from the ROB methodology are consistent and 

always higher than ISE in building CGRAs. When increasing the size of CGRAs, the Fmax 

from ISE fluctuates between 88.1 MHz and 115.8 MHz, while the Fmax from the ROB 

 
 
 

Figure 5.4: Utilization and Fmax Comparison – Simple PE 
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methodology stays at 120.7 MHz. This shows how the ROB methodology is able to 

provide consistent timing performance. 

5.3 Heterogeneous CGRA Results 

For our heterogeneous CGRA results using complex PEs, the resource breakdown, the 

achieved clock frequencies and the full tool run-time to build each PE variant are listed in 

Table 5.3. 

 The complex PE, listed in the bottom row of the table as a reference, requires a tile 20 

columns x 30 rows. In contrast, each of the specialized PEs can fit into a tile just 10 

columns x 20 rows in size. The specialized PEs span a wide range of functions, where 

each one implements either a single floating-point operation, or an integer ALU. 

 The different footprints for a complex PE and specialized PE are illustrated in Figure 

5.5 (using the same scaling level). After considering external fragmentation, a 

homogeneous CGRA can only support up to 24 complex PEs. However, a customized 

CGRA using specialized PEs can accommodate up to 76 specialized PEs, which is an 

increase of 3.0x in capacity.
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Specialized 
PE 

Logic Slices DSP Blocks Fmax (MHz) tCAD (seconds) 
PE 

Variant 1 
PE 

Variant 2 
PE 

Variant 1 
PE 

Variant 2 
PE 

Variant 1 
PE 

Variant 2 
PE 

Variant 1 
PE 

Variant 2 
FADD 260 270 0 0 97.0 95.4 602 506 
FSUB 267 264 0 0 103.4 96.3 594 497 
FDIV 279 261 0 0 81.1 83.4 591 555 
FMUL 312 306 3 3 76.1 79.5 641 625 

FCONV 249 246 2 2 92.1 94.6 564 425 
ALU 152 136 3 3 118.7 118.7 444 372 

 
Complex PE 812 812 6 6 51.4 58.9 573 534 

 
Table 5.3: Resource Breakdown, Achieved Clock Speed and Tool Run-times of Specialized PEs 



55 

 Not only does the area efficiency improve significantly, there is also an increase in the 

maximum clock frequency. The slowest PE variant will determine the maximum clock 

frequency of the whole (heterogeneous) CGRA. In the CGRA with specialized PEs versus 

the complex PE, this is 76.1 MHz versus 51.4 MHz, an increase of nearly 50%. When 

combined with three times as many PE tiles, the net increase in peak performance is 

nearly 4.5x. 

 
 

Figure 5.5: Fully Featured Complex PE and Specialized PEs 
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5.4 Summary 

This chapter first presented and compared elapsed CAD times, resource utilization levels 

and clock rates resulted from the ROB methodology and the Xilinx ISE flow. The ROB 

methodology can obtain a speedup for up to 22x in building CGRA designs, compared to 

the standard ISE flow. It was identified that the CAD times resulted from the ROB 

methodology is scalable with the CGRA size. While ROB obtained considerable 

speedups in building CGRAs, the bottleneck of obtaining further speedups lies in the 

XDL conversion process. In addition, a speedup of 9.3x can still be obtained when logic 

utilizations reaches 89%. Lastly, the clock rates of the built CGRAs resulted from ROB 

are very consistent, size-independent and constantly higher than the ISE flow. As an 

application of the ROB methodology, we demonstrated a CGRA customization process 

that utilized specialized PEs to save resources and to improve timing performance of the 

CGRA. This confirms the efficiency of the ROB methodology in building CGRA 

designs. 
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Chapter 6 

 

Future Work 

 

This chapter presents the limitations of the thesis and the ideas of improving the ROB 

methodology that can be implemented in future work. 

 

6.1 Tool Flow Automation 

As described in Chapter 4, the ROB methodology can be divided into seven incremental 

tasks. Out of the seven tasks, the first two tasks, which were not made to be automatic, are 

(1) resource budgeting for a reference PE tile, and (2) floorplanning for CGRA designs. 

To automate these two tasks, it is important to first understand what the difficulties are in 

the automation process. 

 The goal of the resource budgeting process is to help designers to have a preliminary 

understanding of the resource requirement for a PE tile that can be used as a reference in 

during the floorplanning phase. However, several factors, including synthesis options, IP 

utilization options, physical constraints as well as timing requirement specified by users, 
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might affect the resource requirement of a PE. These factors create a huge exploration 

space for the users. It is important to understand that optimizing area of a PE tile may not 

be the only interest for the users in the use of the ROB methodology. Some users might 

also need options to optimize the timing and power performance of a PE tile. Therefore, 

experiments of careful and comprehensive sweep of these factors are required to find out 

what suits the users best. In future work, these experiments should be automated for the 

users to build the reference PE tile. 

 Once the reference PE tiles are built and chosen, floorplanning for CGRA designs is 

the next step to be automated. To effectively reduce the design space, it is important to 

understand that floorplanning the top PE row is decisive to the entire floorplan. This is 

because the heights and widths of PE tiles within the same PE column are the same. This 

simplifies the floorplanning problem from 2-dimension to 1-dimension. Furthermore, as 

the left and right sides of the device have similar footprint masks, the design space is 

further reduced by half. The next step in the floorplanning process is to determine the 

height of the PE tiles. With a different choice of heights, the widths of the PE tiles will 

also be different so as to provide sufficient resources within the tile. This process can be 

automated to calculate the corresponding external fragmentation with different choices of 

heights after instantiating a maximum number of bounding boxes, where each bounding 

box provides sufficient resources for one PE tile. If no additional requirement of the PE 

tiles is specified from the user, the floorplan candidate with the minimum external 

fragmentation will then be chosen. 

 



59 

6.2 Netlist Conversion Limitation 

In the ROB methodology, the output is XDL format netlists. Since Xilinx tool only 

accepts NCD netlists as input, the XDL netlists has to be converted to the NCD netlists 

first in order to generate bitstream using the vendor tool. However, the netlist conversion 

process dominates the runtime, and is the bottleneck of achieving further speedups in the 

flow.  

 One idea to accelerate the process is to abandon the original flow of converting XDL 

netlists back to NCD netlists for bitstream generation. Instead, a methodology may be 

developed to generate bitstream directly from the XDL netlists. However, the practice of 

this idea might not be feasible because of the proprietary nature of the bitstream 

generation process. 

 Another idea is to exploit parallelism to accelerate the netlist conversion process. 

Although this process is entirely done by the Xilinx tool, it may still be possible to solve 

the problem in a divide-and-conquer fashion. To do that, the XDL netlists need to be 

divided into multiple smaller parts first. The smaller XDL files are then converted to NCD 

files in parallel. Next, the smaller NCD files need to be merged together. In practice, it is 

already known that, XDL netlists of a circuit can be physically divided up into parts and 

each part of these XDL netlists can manage to be converted to NCD netlists in our 

experiments. The only uncertainty of this approach is the possibility of merging smaller 

NCD files into one complete NCD file. This problem can be further investigated in future 

work. 
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6.3 Partial Reconfiguration Capability 

To ultimately avoid the netlist conversion process, the ROB methodology can be further 

developed to support partial reconfiguration, which is a capability of downloading partial 

bitfiles for one module from the host platform while the rest of the system operates 

without interruption. 

 Although the ROB methodology can zip pre-built PEs very fast, the netlist conversion 

process is inevitable and is the major obstacle that limits the speedup of the methodology. 

With the capability of partial reconfiguration, users will no longer concern about the CAD 

time of building CGRA designs. Instead of zipping PE tiles statically, the bitstreams of the 

PE tiles are generated and stored in the host platform. According to the demand of the user, 

the bitstreams of the PE tiles are invoked, downloaded and reconfigured in the FPGA 

fabric. The FPGA Driver instantiated in the CGRA system not only feeds application data 

and the personalization bitstream into the CGRA, but also communicates with the host 

platform rapidly, which enables rapid partial reconfiguration. This capability can be 

further developed in future work. 

6.4 Bitstream Verification 

Although bitstream can be generated from the fully placed and routed CGRA system, the 

CGRA system has not been verified on an actual device whether it functions correctly. In 

future work, the output design from the ROB methodology should be treated with some 

level of skepticism and the bitstream need to be verified on an actual device. 
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Chapter 7 

 

Conclusions 

 

This thesis presents the Rapid Overlay Builder (ROB) that efficiently builds CGRA 

designs on Xilinx FPGAs. Unlike the traditional place-and-route process, the ROB 

methodology accelerates the process of building CGRA designs by utilizing and relocating 

pre-built PE tiles according to predefined floorplans. To improve the relocatability of PE 

tiles and logic utilization levels, PE variants that provide the same functionality but are 

built on different resource footprints are introduced. To further accelerate the building 

process, a routerless stitching mechanism that we call zipping is employed such that the 

interconnections between adjacent PE tiles are established without any logic overhead and 

without any additional routing step. 

 In this thesis, two CGRA architectures are employed to demonstrate the use of the 

ROB methodology. The first one is a homogenous array of simple PEs that support integer 

operations only. The second one is a heterogeneous array of specialized complex PEs that 

support both integer and floating-point capabilities. This thesis first demonstrates the ROB 

methodology as a case study to build the homogeneous CGRA. The case study details 

major steps required in the building process. These steps include (1) resource budgeting 
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for PE tiles, (2) floorplanning for the CGRA design, (3) initial PE variants building, (4) PE 

tiles extracting, (5) instantiating relocatable PE tiles on the device, (6) interconnecting 

between adjacent PE tiles, and (7) interconnecting the FPGA Driver with the CGRA 

design. The heterogeneous CGRA is demonstrated as an application of the ROB 

methodology, which utilized specialized PEs for customizing CGRA designs. The CGRA 

customization process reveals the use of the ROB methodology in saving resources and 

maximizing clock speeds, which in return confirms the efficiency of building CGRA 

designs using the ROB methodology. 

 In experiments of the ROB methodology, it is found that the ROB can obtain a speedup 

for up to 22x in building CGRA designs, compared to the standard Xilinx ISE flow. It is 

also identified that the CAD times resulted from the ROB methodology is scalable with 

circuit size, even when the logic utilization level reaches 89%. The bottleneck of obtaining 

further speedups lies in the netlist conversion process, which is entirely done by Xilinx 

tools. The clock rates of the CGRAs resulted from ROB are very consistent, 

size-independent and constantly higher than the ISE flow. In the best-case scenario, the 

clock rate resulted from ROB can be 1.37x higher than that can be achieved by the ISE 

flow. In experiments of customizing CGRA designs, the ROB methodology utilizes 

specialized PEs that triples the number of general-purpose PEs that would be instantiated 

on the targeted device. In addition, the clock rates of the specialized PEs are improved by 

50% compared to the general-purpose PE. With the efficient builds of CGRA designs, the 

ROB methodology promises to yield higher computation throughput. 

 Limitations of the ROB methodology are revealed in Chapter 6. Future work can be 

done to fully automate the ROB methodology, to accelerate the netlist conversion process, 
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and to enable the partial reconfiguration capability so that the CGRA system can evolve 

during runtime according to the needs of users. 

 By applying the ROB methodology presented in this thesis, we anticipate that overlays 

can be implemented more quickly and with lower area overhead and more consistent clock 

rates. 
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