
A Case for Soft Vector Processors in FPGAs

Jason Yu Guy Lemieux
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada V6T 1Z4

Email: {jasony,lemieux} @ ece.ubc.ca

Abstract

Embedded applications today require high compu-
tational power that is not met by current FPGA-based
soft processors. Although performance of data-parallel
applications can be addressed by custom-designed
hardware accelerators, such an approach is difficult
for embedded software developers with little hardware
design experience. Instead, vector processing can be
used to speed up these same data-parallel applications.
The vector programming model is easy to understand
by software developers, making it easier for them to
extract the parallelism without any hardware design
knowledge. This paper proposes a soft vector processor
for the Stratix III FPGA that can be scaled to different
levels of performance and resource utilization. It has
several configurable features that can be included or
excluded to optimize the soft processor for a given
application. Performance estimates of the soft vector
processor using three embedded benchmark kernels
show speedup of up to 16.6× over an idealized Nios II
processor while using 10.9× the area.

1. Introduction

Performance of software applications is determined
by a few hotspots in the program. This is especially
true for embedded media applications, which tend to
have tight, computationally-intensive inner loops [1].
However, current commercial FPGA-based soft-core
processors such as MicroBlaze and Nios II provide
only limited and non-scalable performance. The ef-
fectiveness of traditional architectural approaches to
improve soft-core processor performance is limited by
how well these architectures can be mapped into the
FPGA fabric. Techniques such as deep pipelining and
wide-issue superscalar do not work well in FPGAs,
usually because any potential performance gains they
offer are negated by reduced clock speed or prohibited
by the FPGA architecture itself. For example, it is
difficult to implement the several write ports needed
by a superscalar register file.

Instead, a vector architecture can be used to ac-
celerate applications that are rich in data parallelism.

Table 1. Configurable processor parameters

Parameter Description Typical V4/V8/V16

NLane Number of vector lanes 4–128 4/8/16
MVL Maximum vector length 16–512 16/32/64
VPUW Processor data width (bits) 8,16,32 32
MultW Multiplier width (bits, 0 is off) 0,8,16,32 16
LMemN Local memory number of words 0–1024 256
LMemW Local memory width (bits) 8,16,32 32

Although such applications would clearly benefit from
custom-designed hardware accelerators, doing this
would require a hardware designer to create and debug
a different accelerator for each application. In con-
trast, a vector processor can be easily programmed
by software developers without any hardware experi-
ence. Previous work such as [2], [3] have successfully
implemented vector processing in FPGAs for specific
tasks. In this work, we focus on creating a soft vector
architecture with a more general instruction set. We de-
scribe a range of soft vector processors using a few key
architectural parameters, enabling a software developer
to specify one implementation instance to meet given
performance and area requirements. Furthermore, one
soft vector processor instance can speed up several
different data-parallel applications with no additional
hardware design or device reconfiguration.

We propose that FPGA soft-core processors adopt
vector processing as a parallel programming model to
more efficiently run embedded software applications
containing significant data-level parallelism. To facili-
tate this, we demonstrate that a soft vector processor
maps efficiently into an FPGA. Furthermore, we show
that a wide range of configurable options are possible,
allowing a significant range of resource usage and per-
formance scalability that is unmatched by traditional
soft-core processors.

2. Soft Vector Processor Architecture

A soft vector processor architecture contains a fam-
ily of vector processors with varying performance
and resource utilization, and different features to suit
different applications. A generator program uses a

P C

I
D

A L U
I n s t r u c t i o n

M e m o r y
D a t a

M e m o r y

= S o u r c e
= D e s t i n a t i o n
= M A S K
= O P e x t e n s i o n
= S c a l a r r e g i s t e r
= B a s e a d d r e s s
= M e m o r y s t r i d e
= B a s e a d d r e s s i n c r e m e n t
= I n d e x e d a d d r e s s i n g o f f s e t

A , B
D
M
X
S
B A S E
S T R
I N C
O F F

S e l e c t e d I n s t r u c t i o n E n c o d i n g s
3 2

1 W r i t e p o r t
2 R e a d p o r t s

V e c t o r L a n e

S c a l a r C o r e

V M X - T y p e D F U N CM XB A S E

6 5 1 1 6

O P

6

0

16

O F F

V M S - T y p e D F U N CM XB A S EI N C

6 3 4 5 1 1 6

S T R O P

6

V S D - T y p e

6 6 1 1 6 6

F U N CM X O PA B

5

S 0

1

V S S - T y p e

6 6 5 1 1 6 6

F U N CM X O PD A S 0

1

V R - T y p e

6 6 6 1 1 6 6

F U N CM X O PD A B

J - T y p e I M M 2 6 O P

2 6 6

I - T y p e I M M 1 6 O PA D

55 61 6

R - T y p e A X

5 1 155

B D O P

6

Figure 1. Interaction between scalar and vector cores

number of parameters to define an application-specific
instance of the processor. The configurability of soft
vector processors in FPGAs gives significant flexibility
to trade-off performance and resource utilization. Re-
sources can be further trimmed by removing unneeded
processor features and instruction support.

Table 1 lists some of the configurable parameters
and features of our soft vector processor architecture.
The final resource usage of a soft vector processor
is very sensitive to many of these parameters. V4,
V8, and V16 are three sample configurations of the
processor. Our implementation is tailored to the Altera
Stratix III FPGA architecture. The sizes of embedded
memory blocks, functionality of the hard-wired DSP
blocks, and mix of logic and other resources in the
Stratix III family drove many of our design decisions.

Figures 1 and 2 illustrate our soft vector processor
architecture. It consists of a scalar core, a vector pro-
cessing unit, and a memory interface unit. The scalar
core is the single-threaded version of the UTIIe [4], a
32-bit Nios II-compatible soft processor with a four-
stage pipeline. The scalar core and vector unit share the
same instruction memory and instruction fetch logic.
Vector instructions are 32-bit, and can be freely mixed
with scalar instructions in the instruction stream. The
scalar and vector units can execute different instruc-
tions concurrently, but will coordinate for instructions
that require both cores, such as instructions with both
scalar and vector operands.

The vector processing unit is shown in detail in
Figure 2. The vector unit is composed of a number
of vector lanes, specified by the NLane parameter.
Each vector lane has a complete copy of the functional
units, a partition of the vector register file and vector
flag registers, a load-store unit, and a local memory if

parameter LMemN is greater than zero. The internal
data width of the vector processing unit, and hence
width of the vector lanes, is determined by the param-
eter VPUW. All vector lanes receive the same control
signals and operate independently without commu-
nication for most vector instructions. NLane is the
primary determinant of the processor’s performance.
With additional vector lanes, a fixed-length vector can
be processed in fewer cycles, improving performance.

Different from traditional vector architectures that
employ a large, centralized vector register file with
many ports, the soft vector processor uses a distributed
vector register file that is spread across vector lanes.
The vector register file is element-partitioned—each
vector lane has its own register file that contains all
the vector registers in the complete register file, but
only a few data elements of each vector register [5].
The partitioning scheme naturally divides the vector
register file into parts that can be implemented using
the smaller memory blocks on the FPGA, and allows
simultaneous access to multiple data elements in the
vector register file by functional units in the vector
lanes. Furthermore, the distributed vector register file
saves area compared to a large, multi-ported vector
register file. It is the abundance of these small memory
blocks (and multipliers) that makes modern FPGAs
exceptionally good at implementing vector processors.
The vertical gray stripes in Figure 2 represent one
vector register. The data elements of the vector register
are partitioned both across multiple lanes and within
each lane, with up to 4 elements in a lane. The
architecture defines 64 vector registers, which occupy
exactly one M9K RAM when 4 elements per vector
register are stored in each lane. For this reason, MVL
is typically 4 times NLane. To provide dual read ports,

+

M A C

+

M A C

A L U

D D R - S D R A M
o r o n - c h i p S R A M

L o a d - s t o r e
un i t

L o c a l
m e m o r y

V e c t o r
r e g i s t e r

e l e m e n t s

V e c t o r f l a g s

M e m o r y i n t e r f a c e

Vec to r r eg i s t e r pa r t i t i on i ng

S c a l a r r e g i s t e r i n p u t

A l i g n m e n t

1 2 8

V e c t o r o p
b y p a s s

A L U

L o a d - s t o r e
un i t

L o c a l
m e m o r y

V e c t o r
r e g i s t e r

e l e m e n t s

V e c t o r f l a g s

M A C
C h a i n

V e c t o r
C o n t r o l

R e g i s t e r s

A d d r e s s
g e n e r a t o r

Figure 2. Vector coprocessor system block diagram

this M9K RAM is duplicated.
The memory interface unit handles memory accesses

for both scalar and vector units. Scalar and vector
memory accesses are performed in program order.
No consistency checking against the scalar cache is
performed. The address generator generates addresses
for vector memory accesses, and controls the memory
alignment crossbar to align data to and from memory.
The crossbar supports memory accesses in granularity
of word, halfword and byte. The memory crossbar can
align up to 16 data elements per cycle for unit stride
and constant stride loads, and 4 elements per cycle
for stores. Indexed offset accesses execute at one data
element per cycle. The vector operation bypass path
allows the memory alignment crossbar to be used for
vector manipulation instructions such as extracting part
of a vector. The 128-bit memory system is intended to
be connected to a large on-chip SRAM or an external
DDR-SDRAM, both of which are well-suited for burst
reading and writing of long vectors.

The soft vector processor adopts a vector instruction
set similar to the VIRAM instruction set [6]. Condi-
tional execution is accomplished using mask registers.
For nearly all instructions, the processor can select
one of two execution mask registers in the instruction
opcode. A number of general-purpose vector flag reg-
isters that are written to by compare instructions and
operated on by vector flag logical instructions allow
manipulation of mask values for complex conditional
operations.

Two extensions were made to VIRAM to exploit
FPGA architecture for better performance: local mem-
ories and MAC chains. If LMemN is greater than zero,
a local memory is generated for each vector lane.
The vector lane local memory uses register indirect

addressing, in which each vector lane supplies the
address to access its own local memory. The memories
can also be written to by the scalar processor through
a broadcast operation that writes the same value to
all local memories (possibly to different addresses).
LMemW specifies the data width of the local memory
and the maximum address width. If LMemW is less
than VPUW, data to the local memory is truncated.
These memories are useful for accelerating histogram
or table-lookup operations such as AES encryption.

The second extension uses the MAC feature of the
Stratix III DSP blocks to efficiently implement the
addition reduction operation (i.e., sum all elements in
a vector), as shown in Figure 2. The vmac instruction
multiply-accumulates 4 pairs of inputs from 4 vector
lanes into each MAC unit. Furthermore, the cascade
chain in the Stratix III DSP blocks allows cascade
adding of partial accumulation results across several
accumulators, further accelerating the otherwise ineffi-
cient vector reduction operation. The vccacc instruc-
tion copies the result of the accumulate reduction to a
vector register. The MAC feature is used, for example,
in motion estimation to sum the absolute difference
between pixels.

3. Performance

Three representative data-parallel embedded appli-
cations were chosen to benchmark scalable vector
processing: 5 × 5 median filtering, motion estimation,
and AES encryption. The benchmarks include only the
main loop section of the kernels. Instruction counts are
obtained from compiling the kernels using the Nios II
version of gcc with –O3 optimization, and manually
counting the number of assembly instructions. This

Table 2. Estimated performance results

Proposed Vector Architecture
Nios II/s V4 V8 V16 V16W16

Area Estimate
ALM Count 489 4061 5450 8159 5306
DSP Elements Count 8 17 30 54 38
M9K Count 4 35 64 122 96
Fmax Estimate (MHz) 153 86 91 83 89
Instruction Count Estimate
Median Filtering (per pixel) 5,375 275 137 69 69
Motion Estimation 2,481,344 113,856 62,733 62,768 62,768
AES Encryption Round (per 128-bit block) 94 5.9 2.5 1.5 n/a
Clock Cycle Estimate
Median Filtering (per pixel) 5,375 753 377 188 188
Motion Estimation 2,481,344 492,736 260,050 150,442 150,442
AES Encryption Round (per 128-bit block) 94 23 12 6 n/a
Speedup Estimate
Median Filtering (per pixel) 1 4.0 8.5 15.5 16.6
Motion Estimation 1 2.8 5.7 8.9 9.6
AES Encryption Round (per 128-bit block) 1 2.3 4.8 8.8 n/a

code was then manually modified to use vector in-
structions.

We estimated both Nios II and vector perfor-
mance using idealized assumptions: scalar instructions
take 1 cycle, non-memory vector instructions take
�V L/NLane� cycles, and vector memory instructions
take 1+2×�V L/NLane� cycles. Area and Fmax es-
timates are obtained from Quartus II 7.1. The Nios II/s
processor is configured with 1 KB instruction cache,
64 KB each of on-chip program and data memory,
no debug core, and a single off-chip PIO. The HDL
for the vector processor is not yet fully debugged, so
we present our results as “estimates”. Speedup figures
include the impact of clock frequency.

Table 2 shows the estimated performance of the dif-
ferent processors for the three applications. V16W16
is a 16 lane, 16-bit processor (VPUW of 16) with no
local memory. It can execute the median filtering and
motion estimation kernels as they do not require 32-bit
processing, but not the AES encryption kernel. This
configuration illustrates how an application-specific
soft vector processor can yield significant resource
savings, and an increase in performance. All four
vector configurations show significant speedup over
idealized Nios II.

4. Conclusion

Many embedded applications today demand high
performance computing platforms that enable the
programmer to easily exploit data-level parallelism.
FPGAs are inherently parallel processors, but consid-
erable design effort and hardware design knowledge
is needed to design a custom parallel system in HDL.
Current FPGA soft processors do not provide enough
performance to meet these application requirements.
A soft vector processor platform can address these

deficiencies by providing a simple and familiar pro-
gramming model to describe data-level parallelism
for parallel computing. The FPGA-based soft vector
processor proposed in this paper efficiently maps the
vector architecture to a Stratix III FPGA. It leverages
the configurability of FPGAs to allow the designer to
trade-off performance level with resource usage, and
to optimize the processor for the target application by
generating an application-specific instance with only
the needed features—all with zero hardware design.

Acknowledgment

The authors would like to thank Blair Fort for pro-
viding the UTIIe processor, and Christopher Eagleston
for his help with analyzing the benchmarks.

References

[1] K. Diefendorff and P. Dubey, “How multimedia work-
loads will change processor design,” Computer, vol. 30,
no. 9, pp. 43–45, Sept. 1997.

[2] J. Cho, H. Chang, and W. Sung, “An FPGA based SIMD
processor with a vector memory unit,” in ISCAS, May
2006, p. 4.

[3] H. Yang, S. Wang, S. G. Ziavras, and J. Hu, “Vector
processing support for FPGA-oriented high performance
applications,” in ISVLSI, 2007, pp. 447–448.

[4] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A
multithreaded soft processor for SoPC area reduction,”
in FCCM, 2006, pp. 131–142.

[5] K. Asanovic, “Vector microprocessors,” Ph.D.
dissertation, EECS Department, University of
California, Berkeley, 1998. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/1998/6404.html

[6] C. Kozyrakis and D. Patterson, “Vector vs. super-
scalar and VLIW architectures for embedded multimedia
benchmarks,” in MICRO-35, 2002, pp. 283–293.

