
Dynamic Race Detection for Non-Coherent Accelerators

by

May Young

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

May 2020

c©May Young, 2020

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

Dynamic Race Detection for Non-Coherent Accelerators

submitted by May Young in partial fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Examining Committee:

Alan Hu, Computer Science
Supervisor

Guy Lemieux, Electrical and Computer Engineering
Supervisory Committee Member

ii

Abstract

Modern System-on-Chip (SoC) designs are increasingly complex and heteroge-

neous, featuring specialized hardware accelerators and processor cores that access

shared memory. Non-coherent accelerators are one common memory coherence

model. The advantage of non-coherence in accelerators is that it cut costs on ex-

tra hardware that would have been used for memory coherence. However, the

disadvantage is that the programmer must know where and when to synchronize

between the accelerator and the processor. Getting this synchronization correct can

be difficult.

We propose a novel approach to find data races in software for non-coherent

accelerators in heterogeneous systems. The intuition underlying our approach is

that a sufficiently precise abstraction of the hardware’s behaviour is straightforward

to derive, based on common idioms for memory access.

To demonstrate this, we derived simple rules and axioms to model the inter-

action between a processor and a massively parallel accelerator provided by a

commercial FPGA-based accelerator vendor. We implemented these rules in a

prototype tool for dynamic race detection, and performed experiments on eleven

examples provided by the vendor. The tool is able to detect previously unknown

races in two of the eleven examples, and additional races if we introduce bugs in

the synchronization in the code.

iii

Lay Summary

Modern systems-on-chip (SoCs) are integrated circuits that combine various com-

puter components onto a single chip. Their designs are increasingly complex and

heterogenous, where specialized hardware called accelerators and processors ac-

cess shared memory. In non-coherent and heterogeneous systems, the programmer

must know where and when to synchronize between the accelerator and the proces-

sor. Getting this synchronization correct is extremely difficult. Doing it incorrectly

can result in dangerous bugs known as data races.

We propose a novel approach to analyze code for data races in non-coherent

accelerators. We derived simple rules to model the interaction between a processor

and an accelerator provided by a commercial vendor. We implemented these rules

in a prototype tool, and performed experiments on eleven examples provided by the

vendor. The tool detected previously unknown races in two of the eleven examples,

and additional races if we introduce synchronization bugs in the code.

iv

Preface

The work presented in this thesis was performed in collaboration with my supervi-

sor, Dr. Alan Hu, and also with Dr. Guy Lemieux, who is the CEO of VectorBlox

and a Professor in the Department of Electrical and Computer Engineering. None

of the text of the dissertation is taken directly from previously published or collab-

orative articles.

The theoretical framework in Chapter 3 was designed by Alan Hu and me, and

was influenced by input and feedback from Guy Lemieux and Sam Bayless. The

proofs of the theorems in Section 3.4 were done by Alan Hu and me. The dynamic

race detection tool in Chapter 4 and the experiments in Chapter 5 were primarily

implemented and performed by me. The vector power experiment in Chapter 5

was completed by Guy Lemieux and me.

v

Table of Contents

Abstract . iii

Lay Summary . iv

Preface . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

Glossary . x

Acknowledgments . xi

1 Introduction . 1

2 Background . 4
2.1 Data Races . 4

2.2 Non-Coherent Accelerators . 5

3 Theory . 8
3.1 Simple Example . 9

3.2 Examples of Basic Rules . 15

3.3 Full Ruleset for a Non-Coherent Accelerator 18

3.4 Theorems and Proofs . 24

vi

4 Implementation . 32
4.1 VectorBlox Architecture . 33

4.2 Instrumentation and Execution 34

4.3 Trace Analysis . 36

5 Evaluation . 37
5.1 Experimental Setup . 37

5.2 Time Required for Analysis . 37

5.3 Experimental Results . 39

5.4 Injection of Bugs in Examples 43

6 Related Work . 46

7 Conclusions . 48

Bibliography . 50

vii

List of Tables

Table 3.1 Node semantics . 12

Table 5.1 Benchmark examples . 38

viii

List of Figures

Figure 2.1 Common data race example 5

Figure 2.2 VectorBlox architecture . 6

Figure 3.1 A simple program . 10

Figure 3.2 Graph of memory operations 11

Figure 3.3 Steps to build a graph . 15

Figure 3.4 Arrow from wb node to alloc node 24

Figure 3.5 Theorem 3.4.3 . 26

Figure 3.6 Propagate writebacks . 30

Figure 4.1 Workflow . 33

Figure 4.2 Instrumented simple program 35

Figure 4.3 Trace file . 35

Figure 5.1 Analysis runtime including the largest example 39

Figure 5.2 Vector addition graph showing a race 42

Figure 5.3 Sync in vbw vec power t example 45

Figure 5.4 Missing sync in vbw vec power t example 45

ix

Glossary

API Application Programming Interface

CPU Central Processing Unit

DMA Direct Memory Access

FFT Fast Fourier Transform

FIR Finite Impulse Response

FIFO First-In, First-Out

SOC System-on-Chip

x

Acknowledgments

I would like to thank my supervisor, Alan Hu, for his guidance and advice. I

would also like to thank Guy Lemieux for introducing the problem, giving me

the opportunity to present my thesis in the industry, and being the second reader.

Finally, I would like to thank my family, friends, and lab-mates who supported me

throughout my Master’s.

xi

Chapter 1

Introduction

Modern System-on-Chip (SoC) designs are increasingly complex and heteroge-

neous, featuring specialized hardware accelerators and processor cores. This is

largely due to the demise of Dennard scaling and today’s growing demands of

performance and energy efficiency, which are leading towards specialization and

accelerator-rich architectures.

Heterogeneous computing architectures generally consist of at least two com-

ponents: a processor and an accelerator, which improves overall performance [17].

In order to obtain the performance boost, the processor offloads some computation

for an application to the accelerator. During the computation, the processor does

not need to wait for the results; rather, it can continue executing other instructions

in parallel, or even contribute to the processing as well. Taking advantage of both

the processor and the accelerator simultaneously exploits the heterogeneity of the

platform, resulting in performance improvement and efficient use of the platform

in question.

Accelerators and processors commonly communicate with each other through

shared memory. This obviously introduces the problem of memory coherence,

since processors or accelerators may access stale data. In particular, non-coherent

accelerators read from and write to main memory via Direct Memory Access

(DMA), bypassing the processor’s cache(s). Thus, the processor must wait for

all DMA transfers to complete before accessing the data in main memory. Non-

coherent accelerators have the advantages of using less complex designs and fewer

1

resources to build, compared to both hardware and software cache coherence pro-

tocols.

However, using non-coherent accelerators puts more burden on the program-

mer to ensure that the program they are writing is race-free. For example, consider

an architecture consisting of one general-purpose Central Processing Unit (CPU)

with its own cache and an accelerator that cannot communicate with the CPU or

the CPU cache. The CPU, the CPU cache, and the accelerator are each connected

to main memory. Then, the conservative programmer would flush the entire cache

before each DMA read and before each DMA write in a program. In contrast,

the aggressive programmer would flush only the dirty data from the cache before

each DMA read, and flush any valid data before each DMA write. Therefore, the

aggressive programmer must know what is in the cache before they can safely exe-

cute a DMA operation (read/write). Of course, there may be a type of programmer

that falls in between these two sides of the spectrum.

Two problems can arise from programming in a non-coherent, heterogeneous

environment: (1) there can be unnecessary synchronization operations that the pro-

grammer included because they are not confident of what is in the cache at a certain

time; or (2) there can be missing synchronization operations because they failed to

properly analyze the code. This results in either inefficiency or potentially incorrect

behaviour.

In this thesis, we propose a novel approach to analyze code in software for

non-coherent accelerators in heterogeneous systems. We design and implement a

prototype tool that analyzes a trace of the memory operations in a single execution

of a program and detects races — if any — in it. We use a semi-automatic process

to instrument the program to print out each memory operation into a trace text file

when it is compiled and executed. The benefits of our approach over existing mem-

ory coherence schemes are that it is generalizable to any non-coherent architecture,

does not require additional hardware or new instructions, and is sound with respect

to an execution. A limitation of our approach is that it verifies only that single

execution.

Overall, the major contributions of this thesis include:

• A novel approach to find data races in software for non-coherent accelerators

2

in heterogeneous systems.

• Proofs of theorems that show the correctness and soundness (to an extent) of

our solution.

• A prototype of a dynamic race detection tool, which analyzed eleven open-

source examples provided by a commercial FPGA-based accelerator vendor.

The rest of the thesis is organized as follows: Chapter 2 provides background

knowledge needed to understand our solution; Chapter 3 describes our theoretical

framework; Chapter 4 presents and explains the implementation of the dynamic

race detection tool; Chapter 5 reports the examples and results used in the experi-

ments; Chapter 6 reviews related work; and Chapter 7 concludes.

3

Chapter 2

Background

2.1 Data Races
With more than one thread or hardware component being able to directly access

a shared resource such as main memory, the problem of managing concurrent ac-

cesses arises. Thus, errors in synchronization can cause data races, which nega-

tively impacts correctness. We formally define a data race as below.

Definition 2.1.1 (Data Race). A data race occurs when there are two or more

possibly unordered operations that access the same memory location, where at

least one of these operations is a write, and there is no happened-before relation

(explained further below) that forces an ordering between these operations.

One way to detect data races is to utilize Lamport‘s happened-before relation

[9], denoted by →. This relation is a strict partial ordering of events in a system

such that: (1) If a and b are events in the same process, and a comes before b, then

a→ b; (2) If a is the sending of a message and b is the receipt of the same message,

then a→ b; and (3) If a→ b and b→ c, then a→ c.

To detect data races, memory operations can be treated as events. For example,

a program first performs a cached write a, followed by an uncached read b. The

cached write happens before the uncached read due to program order. If we were

to put these operations into a simple graph, there would be a node representing the

cached write and another node representing the uncached read. An arrow would

4

(a) Process 1 writes the value of x after
Process 2, so the final value of x is 6.

(b) Process 2 writes the value of x after
Process 1, so the final value of x is 7.

Figure 2.1: This shows a data race between two different processes in regards
to who writes the value of the shared variable x last. Both (a) and (b)
assume that Process 1 always reads x before Process 2.

be drawn from the cached write node to the uncached read node, where the arrow

symbolizes that the write a happens before the read b.

There is a data race between two nodes in a graph if they access the same

memory location, at least one is a write, and there is no happened-before relation

that forces an ordering. A common example of a data race involves two different

processes where each reads a shared variable x, increments it, and writes the new

value back to x. Consider the example in Figure 2.1 where Process 1 adds 1 to x

and Process 2 adds 2. If x was initially 5, without any synchronization in place, the

final value of x could be 6 or 7 (Figure 2.1). Sometimes, it could be 6 (Figure 2.1a).

Other times, it could be 7 (Figure 2.1b). Thus, it is a race between Process 1 and

Process 2 to change the value of x; this is a data race. In this example, assume that

the correct result is 6, which means that, when these two processes are executed, at

times, x contains the correct value; other times, it contains the wrong value.

2.2 Non-Coherent Accelerators
The main idea behind non-coherent accelerators is that they access shared memory

through DMA, without having to go through the processor’s cache(s). This frees

up the processor to continue executing in parallel with the accelerator. It also

5

Figure 2.2: Example of an accelerator architecture taken from VectorBlox
[1]. This is a VectorBlox MXP [15] system with ARM Cortex-A9 in
Zynq-7000 FPGAs.

gives the accelerator much faster access to memory. A typical architecture is one

that is used at VectorBlox, a commercial FPGA-based accelerator vendor that we

collaborated with and whose examples we used. Figure 2.2 shows an ARM-based

architecture from VectorBlox that contains one processor and one accelerator on a

single FPGA board. The CPU accesses shared main memory through its caches.

On the other hand, the vector engine accesses main memory via DMA and only

when it receives such instructions from the CPU. In other words, the CPU offloads

some computation to the accelerator by placing the instructions associated with

this computation in a DMA First-In, First-Out (FIFO) queue, as seen in Figure 2.2,

from which the accelerator (i.e., the vector engine) grabs them to do its work.

According to [11], “a memory is coherent if the value returned by a read op-

eration is always the same as the value written by the most recent write operation

to the same address”. An accelerator architecture has more than one access path to

shared memory. Figure 2.2 exemplifies this as two different entities — a processor

and an accelerator — each have their own memory access path.

Giri et al. studied three accelerator cache-coherence models from an SoC per-

spective: non-coherent, coherent with the last-level cache (LLC-coherent), and

6

fully-coherent [8]. Non-coherent accelerators access shared memory via DMA,

bypassing the cache hierarchy. Therefore, the cache hierarchy must flush the ac-

celerator data region before accelerator execution. Fully-coherent accelerators are

coherent with the private caches of the processors, commonly through the MESI

or MOESI protocol, and do not require any cache flushing prior to accelerator

execution. LLC-coherent accelerators are an intermediate model, as they are co-

herent with the LLC (via DMA requests) but not coherent with the private caches

of the processors (hence, cache flushing is needed before accelerator execution).

One finding by Giri et al. concluded that non-coherent accelerators are more ef-

fective for large workloads, which takes advantage of the higher throughput that is

achieved from larger DMA bursts.

In addition, the non-coherent model has less hardware overhead than one with

some type of memory coherence protocol in place. No extra hardware required

also means a more cost-efficient model. However, a programmer must know when

and where to synchronize between the accelerator and the processor. Getting this

synchronization correct can be difficult.

7

Chapter 3

Theory

In order to detect races (which are defined in Definition 2.1.1), we construct a

graph of all memory operations in a program, where a node in the graph represents

a memory operation (or other relevant operation). An arrow from a node x to

another node y indicates a happens-before relation; that is, x→ y. The graph is

used to track enforced ordering of memory operations. The overall task of our

analysis is simply to check the graph for two unordered nodes that access the same

memory location, of which at least one is a write.

Our theoretical framework exists to make this task scalable as well as provably

sound, i.e., it cannot miss a possible race in a program execution. Other important

objectives are that our analysis not raise too many false alarms, and that it not

require excessively detailed hardware modeling.

A necessary condition for scalability is that our analysis be done “on-the-fly”,

i.e., creating the graph node-by-node according to the program execution and de-

tecting races as soon as possible, instead of trying to post-process an enormous

execution trace after-the-fact. However, a challenge arises because memory op-

erations do not have an obvious time at which they might occur. For example, a

cache line might fill from main memory at some unspecified time before a cached

read that would fill in that same line occurs. In fact, if the cache does prefetch-

ing, the allocate may happen without any CPU load instruction at all. Similarly,

writebacks from the cache might happen at a not precisely specified time after the

corresponding program instruction. Therefore, two problems might occur with on-

8

the-fly analysis: (1) false races could be flagged if nodes are added to the graph too

early, because the ordering becomes evident only after the current nodes are cre-

ated; and (2) races might not be detected if the conflicting nodes are added to the

graph too late, after other nodes that enforce an ordering (which retroactively close

a window of time during which a race could have happened). To prevent these two

situations from occurring, we enforce the following invariant:

Definition 3.0.1. A node exists in the graph iff a memory operation can happen

and the value being read or written by the operation is visible to the CPU or the

accelerator. (In other words, the operation corresponding to a node could happen as

soon as the node exists in the graph, but not before that point in time. Additionally,

the result of that operation must be observable by the CPU or accelerator.)

For example, since we don’t want to model the details of a cache’s detailed pre-

fetching and allocation policies, we must conservatively assume that a cache line

might pre-fetch from memory at any point in time. But if we created nodes for all

of these pre-fetch operations that might happen, we would create countless false

race detections between these mythical pre-fetches and any write operation to the

same address. Instead, we wait until we encouter an operation where the CPU does

a cached read, and then retroactively create a node for the cache line allocation that

must have happened before the cached read can happen. We prove in this chapter

that these sorts of modeling decisions are sound.

What exactly are the nodes being created? We track cached reads, cached

writes, uncached reads, uncached writes, DMA reads, DMA writes, flush instruc-

tions explicitly written by a programmer in a program, and sync operations. The

aforementioned cached/uncached operations relate to the cpu-cache (i.e., the CPU’s

data cache).

3.1 Simple Example
Perhaps it would be easier to introduce our theory with an example: Figure 3.1

shows a simple program that performs a Fast Fourier transformation (FFT) on input

microphone data. The flush of the array a, which stores the data, from the CPU

cache at line 13 ensures that the accelerator’s DMA read on line 15 gets the correct

values from main memory. Furthermore, the sync operation at line 19 guarantees

9

Figure 3.1: A simple program containing several types of memory operations
that we capture in a graph. The CPU reads in data from a microphone
(lines 8-11), offloads the Fast Fourier transformation computation to
the accelerator (lines 15-18), and finally reads the first value of the re-
turned data (line 22). The accelerator copies the mic data into its internal
(scratchpad) memory (line 15), performs work on it (lines 16-17), and
then copies the transformed data back into main memory for the CPU
to access (line 18).

that all DMA operations have finished, so the CPU can safely access the operated-

on data, such as the read on line 21.

Assuming the same typical architecture described in Section 2.2, the CPU is-

sues and executes the operations specified in an input program (e.g., cached write,

do dma read, etc.), which can then cause the cache or the accelerator to perform

an appropriate operation (e.g., a writeback or a DMA read, respectively). These

operations are defined in Table 3.1.

Suppose that the hexadecimals in Figure 3.2 are the memory addresses — or

more precisely, the address range — of the shared resource among the CPU and the

accelerator, that is, array a. Figure 3.2 shows a cached write (in the address range,

0xc0f45c70 to 0xc0f45c71, shortened to 0xc70 to 0xc71 onwards), as the first node

in the graph since it is the first memory operation in the program in Figure 3.1.

10

Figure 3.2: Graph of all memory operations from the program in Figure 3.1.
White nodes are operations issued and executed by the CPU; light grey
nodes are those executed by the CPU cache; and dark grey nodes are
those by the accelerator

This happens before the next operation (a cache flush), hence, an arrow from the

cached write node to the cache flusha node. Additionally, the CPU cache actually

writes the value at addresses 0xc70 to 0xc71 into the cache, which generates a new

cw node (the top right light grey node). The cache will eventually write back the

value to main memory at some unspecified time but after the cache brought the

value into the cache; thus, cw→ writeback wb. Finally, wb→ cache flush because

the writeback must occur before or at the same time as the cache flush. If it did not

happen before the flush, the cache flush would force the pending writeback data to

be written back to main memory as part of the flush.

11

These nodes and arrows were built using rules that we have painstakingly de-

vised, described later in this section (Section 3.2 and Section 3.3). We constructed

the rest of the graph in a similar way. The steps are visualized in Figure 3.3.

Table 3.1: Node semantics

Type of Node Semantics

cached read CPU reads data from cache

cr Cache returns data to CPU

alloc Cache reads data from shared memory

cached write CPU writes data to cache

cw Cache writes data into cache

wb Cache writes back data to shared memory

cache flusha CPU tells cache to remove data, performing wb if dirty

uncached read CPU reads data from shared memory, bypassing cache

uncached write CPU writes data to shared memory, bypassing cache

do dma read CPU tells accelerator to read from shared memory

dma r Accelerator reads data from shared memory

do dma write CPU tells accelerator to write to shared memory

dma w Accelerator writes data to shared memory

sync CPU waits for all DMA operations to complete

12

13

14

Figure 3.3: Steps to build a graph one node at a time for the program in Fig-
ure 3.1. Notice that new nodes are generated by an instruction, such as
in (a), (c), (d), and (f).

3.2 Examples of Basic Rules
We create a node and draw a happens-before arrow in the graph according to

our rules. A node is stored as a triple (name,addrRange,neighbours), where

addrRange is an inclusive address range [low,high].

As we parse a program line by line, we are only concerned with instructions

associated with accessing memory and case-split depending on the type of memory

operation. In each of these cases, we always construct a new node currNode with

a given name (e.g., “cached read”) which is the type of memory operation, and its

address range. If a previous node prevNode exists — in other words, if there is

15

another memory operation before currNode in the program — then we draw an

arrow from prevNode to currNode. This is summarized in pseudocode as:

currNode = new Node(op , addrRange) ;

i f (prevNode)

{
prevNode−>neighbours . append (currNode) ;

}

Firstly, handling uncached reads and writes are the simplest. After creating the

current node and possibly connecting it to the previous node, the only thing to do

consists of checking if there is a race from currNode to the last relevant writeback

(wb) node or to the last DMA operation node, where “relevant” means a dangling

node whose address range overlaps with that of currNode. Note that a dangling

node is one that has no children in the graph.

i f (op == “ uncached read ” | |
op == “ uncached wri te ”)

{
hasRace (lastWbs , currNode) ;

hasRace (lastDmaOps , currNode) ;

}

Secondly, we will explain the more complicated processing of cached reads

and writes. Again, we first create the cached read/write node and draw an arrow

from the previous node to it. For the cached read operation, we generate a new

node dubbed “cr” that symbolizes the cached read executed by the cache itself, as

well as a new predecessor node called “alloc” that represents the cache allocation

done by the cache.

The CPU and the CPU cache are treated as separate entities and, therefore, two

different nodes (one for each entity) are created for an operation executed by the

CPU that involves the cache. For instance, as seen in Table 3.1, a cached read

has a “cached read” node that is executed by the CPU, as well as a “cr” node

and an “alloc” node that are executed by the cache. This is the reason for the

different coloured nodes and groups drawn in Figure 3.2, where white nodes are

CPU executed and light grey nodes are cache executed.

We draw an arrow from the cache-executed “cr” or “cw” node to the next CPU

operation, if it exists. This is to symbolize that control goes back to the CPU from

the cache.

16

Cache allocation means fetching data from shared memory, and writebacks

write cache data into shared memory. Thus, they are both accessing a shared re-

source which the accelerator also accesses via DMA. Therefore, conflicts can oc-

cur between “alloc” and the last DMA operation, or between “wb” and the last

DMA operation, if there is no sync occurring between them and if they access any

overlapping addresses. Note that although we are not explicitly considering cache

prefetching, it is safe to model a cache allocation that is triggered by a cached read

the same as a prefetched cache allocation.

i f (op == “ a l l o c ” | |
op == “wb”)

{
/ / Assume currNode i s the “ a l l o c ” or “wb” node

hasRace (lastDmaOp , currNode) ;

}

Thirdly, cache flush nodes do not spawn any new nodes and are obviously

only applicable to cached writes, as cached writes may alter data values and cache

flushes forcefully write cache data into shared memory. Thus, all dangling write-

backs before a cache flush that have not been flushed already and that are in the

same address range have an arrow pointing to the flush node. This means that the

data in the flushed address range are no longer dirty in the cache.

Another type of node that does not generate any new nodes is the sync node.

The last DMA operation that has not yet been synchronized with the CPU code

has an arrow that points from it to the first sync node that happens after it. This

is because, upon executing a sync instruction, the CPU will wait for all previously

issued DMA operations to complete before continuing executing any further in-

structions.

Finally, we will describe DMA nodes. Recall that Direct Memory Access

(DMA) is the mechanism by which data transfers between shared memory and

the accelerator’s internal memory. We first create a do dma read or do dma write

node, which signifies that the CPU issues a DMA request to the accelerator. We

then generate a new node called “dma r” or “dma w”, respectively. Unlike “cr”

and “cw” nodes, “dma r” and “dma w” nodes do not have an arrow pointing to

the next CPU operation; if they did, it would indicate that there are no data races

between the accelerator and the CPU. Oftentimes, a program contains a burst of

17

several consecutive DMA requests if the processor communicates with the accel-

erator and vice versa. In this case, if there is no sync between two DMA nodes

(“dma r” and “dma w”), then there is an arrow from the earlier DMA node to the

later one, respecting the original program order.

DMA operations can conflict with relevant dangling writebacks due to the same

reasoning as how “wb” conflicts with the last DMA operation.

i f (op == “ dma r ”)

{
/ / Assume currNode i s the “ dma r ” node

hasRace (lastWbs , currNode) ;

}
i f (op == “dma w”)

{
/ / Assume currNode i s the “dma w” node

hasRace (lastWbs , currNode) ;

hasRace (l a s t A l l o c s , currNode) ;

}

For a summary of the semantics of each type of node, please see Table 3.1.

Now that we have covered the basics of how to construct nodes in a graph

of memory operations, consider again the simple program in Figure 3.1. Going

through its trace line by line means that we build the nodes of the correspond-

ing graph on the fly, one by one. The process of building this graph is shown in

Figure 3.3.

3.3 Full Ruleset for a Non-Coherent Accelerator
There are subtle details in our theoretical framework that are not mentioned in

the previous section (Section 3.2), which will be covered here. Below is the

full ruleset that our approach and our race detection tool follow when analyzing

a program intended for a non-coherent accelerator to find potential data races.

To facilitate describing the rules, let CPUop be the following set of CPU op-

erations: {cached read, cached write, cache flusha, do dma read, do dma write,

sync}. Also, DMAop is defined as {dma r, dma w}.
Several rules below use the concept of a bloated address range. Recall that

each node has an inclusive address range [low,high]. The CPU cache reads and

writes data from and to shared memory in chunks, where the size of the chunk

18

depends on the cache. The size of a read from shared memory is generally a mul-

tiple of the cache line size, which means that reads are cache line granularity.

A cache flush is also performed at cache line granularity. The size of a write to

shared memory is often a multiple of the cache line size as well but may differ

depending on the cache, and is thereby called the writeback granularity. There-

fore, to reflect the actual address range that the CPU cache touches in shared

memory, the address range of “alloc” and “cache flusha” nodes are modified so

that low and high are multiples of the cache line size, where these multiples still

cover the range [low,high]. Specifically, assuming that the bloated address range

is [bloated low,bloated high], bloated low is the largest address that is a multiple

of the desired granularity equal to or below low ; bloated high is the smallest mul-

tiple of the desired granularity that is larger than high, minus one. In addition, the

address range of “wb” nodes is likewise modified so that low and high are multi-

ples of the writeback granularity. For example, if an address range is [10,59] and

the granularity is 64, then the bloated address range would be [0,63].

1. If “uncached read”, generate an uncached read node with the specified ad-

dress range.

(a) If there was a previous CPUop, draw an arrow from it to the uncached -

read node.

(b) If there exist any previous dangling writebacks (wb nodes) whose ad-

dress range overlaps with this uncached read node’s address range,

then check if there is a path from each of those wb nodes to this un-

cached read node, or a path from this uncached read node to those wb

nodes. If there is no path either way — in other words, there is no

path both from a relevant wb node to this uncached read node and vice

versa1 — flag that there is a race and stop the analysis2.

1With the current ruleset, a path would not exist from the uncached read node to a previous wb
node. However, to the best of our knowledge, the vice versa check is a conservative approach to
cover any possible cases (perhaps, if more rules are constructed in the future) where such a path
could exist. The reasoning behind performing the vice versa check, though it is currently trivial
because there can be no such path, applies to all other vice versa checks in Section 3.3.

2In some processors, they may check uncached reads against dirty data in the cache. In such
processors, there is no race. Here, we choose to be agnostic and conservative, and report a race.

19

(c) Check a chain of past DMA writes (dma w nodes) back to the last

known sync or where there was a dma r or dma w that happened-

before. If any of these dma w nodes have an address range that overlaps

with this uncached read node’s address range, then check if there is a

path from that dma w node to this uncached read node, or vice versa.

If there is no path either way, flag that there is a race and stop the anal-

ysis. No check is necessary if the last DMA operation is a DMA read

(dma r node) because read/read is not a race.

2. If “uncached write”, generate an uncached write node with the specified ad-

dress range.

(a) If there was a previous CPUop, draw an arrow from it to the uncached -

write node.

(b) If there exist any previous dangling writebacks (wb nodes) whose ad-

dress range overlaps with this uncached write node’s address range,

then check if there is a path from each of those wb nodes to this un-

cached write node, or vice versa. If there is no path either way — in

other words, there is no path both from a relevant wb node to this un-

cached write node and vice versa — flag that there is a race and stop

the analysis3.

(c) Check a chain of past DMAop (dma r or dma w nodes) back to the

last known sync or where there was a dma r or dma w that happened-

before. If any of these DMAop nodes have an address range that over-

laps with this uncached write node’s address range, then check if there

is a path from that DMAop node to this uncached write node, or vice

versa. If there is no path either way, flag that there is a race and stop

the analysis.

3. If “cached read”, generate a cached read node with the specified address

range.

3Similar to uncached reads, we assume that the processor will bypass the cache. This is a safe
assumption because simple processors do this. Again, we choose to be conservative and report a
race.

20

(a) If there was a previous CPUop, draw an arrow from it to the cached -

read node.

(b) Generate a cr node with the same address range. Draw an arrow from

the cached read node to this cr node. When the next CPUop is known

in the future, draw an arrow from the cr node to it.

(c) If the read is aligned (the start address is a multiple of the cache line

size), generate an alloc node with a bloated address range, alloc1. Draw

an arrow from this alloc node to the cr node from Step 3b.

(d) If the read is unaligned and the specified address range fits in one cache

line, generate an alloc node with a bloated address range, alloc1. Draw

an arrow from this alloc node to the cr node from Step 3b.

(e) If the read is unaligned and the specified address range does not fit in

one cache line, generate two alloc nodes, each with a bloated address

range, alloc1 and alloc2. Draw an arrow from each alloc node to the

cr node from Step 3b. Note: Only one of {3f}, {3g, 3h}, or {3i} sets

of steps can happen at one time. For whichever set of steps occurs,

perform the same set of steps for both alloc1 and alloc2.

(f) If an alloc’s address range is the first cached operation after a flush with

which its address range overlaps, draw an arrow from the cr node from

Step 3b to that alloc node. Note that cache flushes, like allocs, are also

cache line granularity.

(g) If there is a previous dangling wb node whose address range overlaps

with that of alloc, draw an arrow from that wb to this alloc.

(h) If there is a previous dangling wb node (wb) whose address range over-

laps with that of alloc, generate a wb node (wb’) with the same address

range as that of the dangling wb node (wb). Draw an arrow from the cr

node from Step 3b (i.e., the parent of the alloc node) to this generated

wb node (wb’). The writeback node needs to be propagated because

this writeback could happen before or after the alloc node associated

with this cached read (see also Theorem 3.4.6).

(i) If there is a previous alloc node whose address range overlaps with that

of alloc, draw an arrow from that alloc to this alloc.

21

(j) Check a chain of past DMA writes (dma w nodes) back to the last

known sync or where there was a dma r or dma w that happened-

before. If any of these dma w nodes have an address range that overlaps

with the address range of the alloc node(s) (alloc1 and, if it exists from

Step 3e, alloc2), then check if there is a path from that dma w node to

alloc1 (and alloc2), or vice versa. If there is no path either way, flag

that there is a race and stop the analysis.

4. If “cached write”, generate a cached write node with the specified address

range.

(a) If there was a previous CPUop, draw an arrow from it to the cached -

write node.

(b) Generate a cw node with the same address range. Draw an arrow from

the cached write node to this cw node. When the next CPUop is known

in the future, draw an arrow from the cw node to it.

(c) If the write is aligned (the start address is a multiple of the writeback

granularity), generate a wb node with a bloated address range, wb1.

Draw an arrow from the cw node from Step 4b to this wb node.

(d) If the write is unaligned and the specified address range fits in one

writeback (i.e., the size of the writeback granularity), generate a wb

node with a bloated address range, wb1. Draw an arrow from the cw

node from Step 4b to this wb node.

(e) If the write is unaligned and the specified address range does not fit in

one writeback granularity, generate two wb nodes, each with a bloated

address range, wb1 and wb2. Draw an arrow from the cw node to each

wb node.

(f) If there is a previous dangling wb node whose address range overlaps

with that of any of the wb node(s) generated in this Step 4 (wb1 and

wb2), draw an arrow from that wb to this overlapping wb.

(g) Check a chain of past DMAop (dma r or dma w nodes) back to the

last known sync or where there was a dma r or dma w that happened-

before. If any of these DMAop nodes have an address range that over-

22

laps with the address range of the wb node(s) (wb1 and, if it exists from

Step 4e, wb2), then check if there is a path from that DMAop node to

wb1 (and wb2), or vice versa. If there is no path either way, flag that

there is a race and stop the analysis.

5. If “do dma read”, generate a do dma read node with the specified address

range.

(a) Generate a dma r node with the same address range. Draw an arrow

from the do dma read node to this dma r node. If there was a previous

DMAop, draw an arrow from it to the dma r node.

(b) Check if there is a path from any previous dangling writebacks (wb

nodes) whose address range overlaps with that of this dma r to this

dma r node, and vice versa. If there is no path either way, flag that

there is a race and stop the analysis.

6. If “do dma write”, generate a do dma write node with the specified address

range.

(a) Generate a dma w node with the same address range. Draw an arrow

from the do dma write node to this dma w node. If there was a previ-

ous DMAop, draw an arrow from it to the dma w node.

(b) If there exist any previous dangling writebacks (wb nodes) whose ad-

dress range overlaps with this dma w node’s address range, then check

if there is a path from each of those wb nodes to this dma w node, or

vice versa. If there is no path either way, flag that there is a race and

stop the analysis.

(c) If there exist any previous floating allocs (alloc nodes) whose address

range overlaps with this dma w node’s address range, then check if

there is a path from each of those alloc nodes to this dma w node, or

vice versa. If there is no path either way, flag that there is a race and

stop the analysis.

7. If “sync”, generate a sync node (with no address range).

23

(a) If there was a previous CPUop, draw an arrow from it to the sync node.

(b) Draw an arrow from the last DMAop to this sync node. This ends a

DMAop chain, and none of the DMAops in this chain are to be consid-

ered any longer.

8. If “cache flusha”, generate a flush node with a bloated address range.

(a) If there was a previous CPUop, draw an arrow from it to the flush node.

(b) Draw an arrow from any dangling wb nodes whose address range over-

laps with that of flush.

3.4 Theorems and Proofs
The following theorems justify the correctness of our approach. Each of the fol-

lowing theorems tie into the rules described in Section 3.3; which rules a theorem

supports are made explicit under each theorem in “Related rule(s)”. Assume that

the nodes discussed in each theorem access the same or overlapping memory range.

Figure 3.4: Assume each operation in the graph accesses the same part of
memory. Adding an arrow from a “wb” node to an “alloc” node does
not add more order, and adds more possible races. There is a missing
propagated “wb” node dangling from “alloc1” not shown here, as this
is due to another theorem (Theorem 3.4.6). For more details, please see
Figure 3.6.

Theorem 3.4.1. Adding an arrow from a “wb” node to an “alloc” node does not

add more order, and adds more possible races. The number of possible races is

positively monotonically increasing.

24

Related rule(s): 3g

Proof. Note that adding an arrow from a “wb” node to an “alloc” node signifies

that the writeback may happen before the allocation. However, it may not have

happened and could have happened after the allocation (i.e., the cached read); this

case is handled in Theorem 3.4.6. This means that there are strictly more writes

and reads, which means there are strictly more races possible. For example, in

Figure 3.4, the arrow from the “wb0” node to the “alloc1” node signifies that “wb0”

may happen before but certainly not after“alloc1”.

The problem that this theorem is addressing is how to make the write visible,

which occurs when the value written is transferred from the CPU cache to shared

memory. There are two situations that can transpire depending on when the write-

back occurs. First, it could be that the writeback does not happen (until later); thus,

the allocation also does not happen since the value can be read directly from the

cache. The generated nodes in light grey are “maybes”; they may happen. In this

case, to make the write visible, the “wb” node must be propagated after the cached

read and is left dangling (i.e., unordered). As an aside, this is a point to consider

in Theorem 3.4.6’s proof. Second, it could that the writeback does occur at that

moment in the program execution, resulting in an allocation for the succeeding

cached read operation. Then, the write has already been made visible since it has

been written back, and there seems to be no need to propagate the writeback in this

scenario. The proof of Theorem 3.4.6 shows otherwise.

Theorem 3.4.2. Adding an arrow from an “alloc” node to another “alloc” node

does not add more order, and adds more possible races. The number of possible

races is positively monotonically increasing.

Related rule(s): 3i

Proof. Again, note that adding an arrow from an “alloc” node to another “alloc”

node signifies that two allocations could occur. However, in reality, only one would

probably occur. Nonetheless, our model takes the conservative approach and fol-

lows the rule that every cached read node has an associated “alloc” node in order to

make handling cached reads consistent. Having an arrow from an “alloc” node to

another “alloc” node does not add new order because it follows cache order. Since

25

there are more “alloc” nodes (reads) than necessary, there can only be strictly more

races possible.

Figure 3.5: Handling cached memory operations appropriately after a CPU
cache flush, for instance, by following the rule outlined in Theo-
rem 3.4.3, allows for the race detection tool to avoid false warnings
of a potential race possibly after every cache flush.

Theorem 3.4.3. Assume there is no spontaneous prefetching done by the CPU

cache. Adding an arrow from a “cr” node to its “alloc” node after a cache flush,

if a cached read is the first cached memory operation after the flush, and another

arrow from the first cached memory operation after the flush to the next “alloc”

node, if the memory range it accesses overlaps with that of the first cached memory

operation after the flush, removes erroneous races that would otherwise be detected

by the race detection tool after a CPU cache flush.

26

Related rule(s): 3f

Proof. Since the CPU cache cannot do anything after a cache flush until a cached

operation occurs, drawing an arrow from the first cached memory operation after

a flush to that memory operation’s “alloc” node (if it is a cached read) and to the

next “alloc” node no matter what its address range follow cache order.

Figure 3.5 shows an arrow from “cr2” to “alloc2” as “cached read2” is the first

cached memory operation after a flush (“cache flusha1”). Therefore, the “alloc2”

node is not a floating node. Semantically, this means that the cache does not do

any work after a flush before there is an instruction to do so.

Furthermore, in Figure 3.5, the second cached read operation (“cached read6”)

accesses a memory region that overlaps with the first cached read. Hence, the

race detection tool draws an arrow from “alloc2” to “alloc6”. Without the Theo-

rem 3.4.3 rule, the tool would erroneously flag a race at the “cached read6” opera-

tion because “alloc6” would be unordered with respect to “dma w4” in Figure 3.5.

Theorem 3.4.4. Loop invariant: We have enough information to detect all possible

races as memory operations are added one at a time.

Related rule(s): 1b, 1c, 2b, 2c, 3j, 4g, 5b, 6b, 6c

Proof. The data race detection tool keeps track of only the nodes in the active

frontier, which provides enough information detect all possible races. The active

frontier is a set of nodes that are unordered in the graph, which implies that they are

the only nodes that could be part of a data race. Removing nodes from the active

frontier cannot eliminate any races, because they are only removed if they become

ordered during the program analysis as the graph is built one memory operation at

a time.

Recall that a race is defined in terms of an execution. Our analysis does not

create more edges than in a graph of all the memory operations in a given program,

referred henceforth as the “full graph”. If there is a race in the full graph, as long as

the tool creates the two nodes that are involved in the race, then there is a race in the

partial graph. (A partial graph consists of only the nodes in the active frontier; it is

a subgraph of the full graph.) This always happens since the tool builds the graph

27

one node at a time and does not add any extra edges compared to the full graph. In

particular, when the tool creates the two racy nodes, it is when they matter, in other

words, when they can execute under our abstraction model. This works because a

node follows an instruction.

The proof for the other direction — if the partial graph has a race, then the full

graph has a race — is discussed in the proof for Theorem 3.4.5.

Theorem 3.4.5. An active frontier is sufficient to be able to check for races and

thus, we can ignore all previous memory operations.

Proof. In order to prove Theorem 3.4.5, let’s consider the two following state-

ments:

• Any race that could happen in the full, unbounded graph can be detected

with only the active frontier.

• Conversely, any race in the active frontier is a race in the full, unbounded

graph.

If nodes are deleted from the analysis graph, then both the mistake of missing

a race in the full graph and the mistake of flagging a race that is not present in the

full graph must not happen. Theorem 3.4.4 has already shown that, if a race exists

in the full execution (full graph) and since the tool is guaranteed to build nodes

eventually and one at a time, creating fewer edges than in the full graph, then a

race exists in the partial execution (partial graph).

Consequently, the only case that would pose a problem in being able to detect

a data race with the active frontier is if one node is deleted (i.e., removed from the

active frontier), before the other is built by the tool. This leads to a case analysis.

Firstly, there are several scenarios where if the operation to be deleted first is a

writeback (wb), as listed below:

1. wb→ cache flush: wb must happen before the flush deletes wb. If the flush

comes before another conflicting node, then this is not a race. On the other

hand, if the flush comes after the conflicting node, the tool would detect a

race because wb has not yet been deleted by the flush.

Related rule(s): 8b

28

2. wb0 → wb1: In this case, wb1 is deleted. A conflicting node cannot be an

alloc or a wb because arrows are drawn from wb0. The conflicting node can

only be a node that does not participate in cache behaviour. If the conflicting

node is before wb1, then the tool would have flagged the race already. If the

conflicting node is after wb1, then there could be a race or no race with wb1.

If there is a race involving wb1, then our approach would have preserved a

race. If there is no race involving wb1, then there is also no race with wb0

because the racy node is guaranteed to be either before or after wb1; thus, a

race did not escape detection.

The only way that the tool would miss catching a race in this case is if the

conflicting node is after the second cached write (associated with wb1) but

is also somehow before wb1; however, this scenario is impossible with our

rules, which are fully defined in Section 3.3.

Related rule(s): 4f

3. wb→ alloc: wb is propagated further in this case (see Theorem 3.4.6). The

racy node that conflicts with wb would not be a cached operation because

cached operations are always in order. Recall that alloc is generated with a

cached read. Then, if wb happens before the cached read in program order,

the tool would catch the race before deleting wb. If wb happens after the

cached read and the alloc conflicts with the dangling wb, then a race would

have been preserved. Otherwise, if the alloc does not conflict with the prop-

agated, dangling wb, then it is also not a race with the deleted wb. It is

impossible for the conflicting node to occur between wb and alloc due to our

rules; there is no rule that would lead to this situation.

Related rule(s): 3g

Theorem 3.4.6. Propagate a new “wb” node after a “cr” node (as its child) if there

is a relevant dangling writeback before that “cr”, where “relevant” means that the

“wb” node and the “alloc” node associated with “cr” access overlapping memory

addresses. The “wb” and “alloc” nodes are used to check for relevancy because

29

Figure 3.6: Assume that each node accesses overlapping memory addresses.
wb1 is propagated as a child of cr1 since there is dangling write-
back (wb0) that accesses the same or overlapping memory region as
cached read1. The tool would miss a race if this writeback was not
propagated.

they both use a bloated address range, which help to detect issues similar to false

sharing (see Section 5.3).

Related rule(s): 3h

Proof. With this rule stated in Theorem 3.4.6, there are two writeback nodes that

signify the same writeback operation in the graph; there are two of them due to

propagation of the writeback. This does not pose any problems because still, only

one of them happens; the tool does not know when it happens — whether it happens

before or after the alloc associated with the cached read node. Bear in mind that if

the writeback does not happen, then the allocation also does not happen.

Figure 3.6 emphasizes the need for this rule. When the tool arrives at the un-

cached read node (uncached read2) during analysis, the tool should flag a potential

race with the writeback from cached write0 because it is unknown whether the

writeback has already happened or not at the time of this uncached read. There-

fore, the tool must propagate the dangling writeback by creating a new “wb” node

after the cr1 node. Now, with that propagated node, the tool is able to flag a poten-

tial race between the uncached read (the uncached read2 node) and the writeback

(the wb1 node).

Observe that Theorem 3.4.1, Theorem 3.4.2, Theorem 3.4.3, and Theorem 3.4.6

30

conservatively capture any possible race, therefore, making our approach sound.

31

Chapter 4

Implementation

Dynamic race detection aims to find data races in a program while it is executing. It

analyzes one execution of the program at a time. Dynamic race detection can detect

data races more easily than if done statically. Static race detection runs before the

program is executed. It is not as scalable as the dynamic approach, as it must

consider all the possible paths in the control flow of the program. Additionally, it

is difficult for static race detectors to perform alias analysis, let alone avoiding false

positives in results. On the other hand, dynamic race detectors know exactly the

memory locations of dynamically allocated variables and when they are accessed.

Hence, the current implementation performs dynamic race detection on a given

program in C; the workflow is shown in Figure 4.1. The program must be instru-

mented to keep track of every memory operation, compiled, and then executed.

The instrumentation causes the program to print the specific memory operations

that were done in that execution into a trace file. Then, our tool reads through the

trace file to detect whether there are any races or not in the recorded execution of

the program.

Firstly, Section 4.1 introduces the VectorBlox architecture which the imple-

mentation is tailored for. Next, Section 4.2 describes what happens in the transi-

tion from a program to its trace, i.e., the first arrow of the workflow in Figure 4.1.

Section 4.3 details how the following step — the trace analysis — is implemented

in the race detection tool.

32

Figure 4.1: The workflow starts from a given input program that is instru-
mented to print out every memory operation and then executed so that
the analysis is done on a single execution. The outputted memory op-
erations are aggregated if necessary into a final trace file that is read by
our dynamic race detection tool, which will inform the user of potential
races in that one execution.

4.1 VectorBlox Architecture
All devices see a single global address space. The processor possesses an instruc-

tion cache and a data cache, the latter of which we will denote as cpu-cache. We

consider only the data cache because only the values in the data cache that are

flushed to main memory can conflict with values originating from the accelerator.

Therefore, we are only concerned with addresses used to access external DRAM.

We assume that there exist only physical addresses (no virtual addresses). Also,

VectorBlox has no prefetching mechanism for the CPU cache. Nonetheless, it is

safe to model a cache allocation that is triggered by a cached read the same as

a prefetched cache allocation; there is no distinction between how we treat them

regardless of whether or not it is a prefetch.

The CPU component typically executes the following scalar instructions: load

(ld), store (st), and flush (flush). For each of these instructions, the CPU op-

erates on a given address, e.g., ld addr. At VectorBlox, the processor issues ld

and st in-order and synchronously before the next instruction. A flush addr

instruction probes the CPU cache for a specific address and evicts/writebacks if it

is present and dirty. This flush may touch other addresses as well if other addresses

are in the same cache line as the address that is being flushed.

DMA instructions consist of read (rd addr-range), write (wr addr-

range), and sync (sync), where addr-range is a (start-addr, length) pair. The

DMA rd and wr instructions are issued and executed in-order, one at a time until

33

the range is exhausted, but are also executed asynchronously (i.e., they are con-

current with future instructions). As for the sync operation, it is synchronous

blocking and only returns after all previously issued DMA operations have com-

pleted.

4.2 Instrumentation and Execution
Dynamic race detection needs a trace of all operations that could be involved in a

race and that were run during an execution of a program. In this case, the poten-

tially racy operations are all memory operations.

For the workflow demonstrated in this thesis, a user manually modifies the

code so that, for every memory operation, there is a print statement that prints out

the type of memory operation and the address range that was operated on. This

instrumentation could be automated instead but this is orthogonal to the thesis.

Figure 4.2 illustrates an instrumented program (the same program from Figure 3.1).

Compiling and executing this instrumented program produces a trace file, which

displays the memory address range of memory operations.

For efficiency purposes, some processing of the raw trace file consolidates con-

secutive memory accesses into one line into a new version of the trace. For exam-

ple, on line 10 in Figure 4.2, the program populates the entire a array through

cached writes. However, the printf statement prints out the address of each el-

ement one at a time, resulting in an unnecessarily verbose trace, especially if the

size of the array (N) is a large number:
cached wr i te 0x7ffd97898fd0−0x7f fd97898fd0

cached wr i te 0x7ffd97898fd1−0x7f fd97898fd1

. . .

cached wr i te 0x7ffd97898fd9−0x7f fd97898fd9

I wrote a Python program that condenses the trace file, if possible. For example,

the above lines can be combined into one line since they are the same memory

operation and the memory addresses are consecutive. This one line becomes:
cached wr i te cached wr i te 0x7ffd97898fd0−0x7f fd97898fd9

Figure 4.3 shows the final, condensed trace file for our running example.

This covers the first part of the workflow. The next section describes how we

use the outputted trace file to detect potential races.

34

Figure 4.2: A simple program (similar to Figure 3.1 but with a larger N) that
has been instrumented to print out every memory operation, including
the type of operation and the memory address range being manipulated.
vbx dma to vector function has the destination as the first parame-
ter and the source as the second parameter.

Figure 4.3: Consolidated trace file generated from the program in Figure 4.2,
where the hexadecimals are the memory address range of the variable
that is being accessed.

35

4.3 Trace Analysis
The race detection tool, written in C++, implements the rules delineated in Sec-

tion 3.3, building each node on the fly. It parses a trace file line by line in order to

build these nodes and uses map data structures to record nodes in the active fron-

tier1. When nodes in the active frontier become ordered in the graph, they can be

safely removed from the active frontier because either they cannot be racy or the

same race would affect a newer node in the active frontier. Therefore, the graph

that the tool builds can be pruned; in other words, the tool only tracks the nodes

in the active frontier, ignoring all other operations. This reduces the amount of

memory used for the analysis step.

1Recall from Section 3.4 that the active frontier consists of the nodes that could be involved in
a race in the future as of the point where the tool has come so far in analyzing the program. For
example, the newest write to a memory location is obviously part of the active frontier, whereas
writebacks that already have been flushed are not. Dangling writebacks and floating allocs are also
part of the active frontier, where a dangling writeback is a writeback node that the tool created at
the earliest point in time that the writeback could occur but it has not occurred yet for certain (the
writeback will take place at some later point in time), and similarly, a floating alloc node is created
retroactively when the node that requires the allocated cache line is created.

36

Chapter 5

Evaluation

Evaluation involved analyzing real-world examples for races using the dynamic

race detection tool implemented for this thesis, which applies the rules defined in

Section 3.3, and validating the effectiveness of the tool.

5.1 Experimental Setup
To analyze real-world examples, I ran my dynamic race detection tool on eleven

VectorBlox open-source examples1 provided on GitHub. Select examples in the

GitHub repository were chosen to be used in the experiments if they were non-

trivial and were written in C. All the examples were executed using a VectorBlox

simulator, assuming a single core with its own cache and one vector accelerator.

The examples included basic math computations (such as vector addition, etc.),

signal processing algorithms, and image processing algorithms (Table 5.1).

5.2 Time Required for Analysis
The shortest runtime took 30 milliseconds (ms) for 6,000 lines in the trace file

(vbw libfixmath example), and the longest runtime took approximately 815 million

ms, or around 9 days, for almost 29 million lines in the trace (vbw mtx sobel

example). The analysis for ten out of the eleven examples completed in less than

1Retrieved on November 21, 2019. Hash version c7a4894206.
https://github.com/VectorBlox/mxp/tree/master/examples/software/bmark

37

Table 5.1: Benchmark examples

Test Name Test Description

vbw libfixmath Square root and division

vbw mtx fir t 2D Finite Impulse Response (FIR) filter using matrices

vbw mtx median argb32 Median filter (using bubble sort) with 32-bit data type

vbw mtx median t Median filter (using bubble sort) with 8-bit data type

vbw mtx motest* Motion estimation

vbw mtx sobel Sobel filter (e.g., used in edge detection algorithms)

vbw mtx xp t Matrix transpose

vbw vec add t* Vector addition

vbw vec fft Fast Fourier Transform (FFT)

vbw vec fir t FIR filter using vectors

vbw vec power t Vector power
*This example contained a race.

45 minutes each. Figure 5.1 provides a visual outlook of the analysis runtime for

the examples that contained no races, as the tool stops at the first race detected.

38

Figure 5.1: This semi-log graph shows the log of the runtime in milliseconds
(ms) of each example that completed, i.e., had no races, with respect to
the number of lines in the respective trace.

5.3 Experimental Results
The tool found subtle races in two out of the eleven examples evaluated. One exam-

ple is the vector addition example called “vbw vec add t” in the GitHub repository,

which is a test to check that the vector accelerator works correctly. Excerpts of this

code from the GitHub repository will be shown below as an example. Firstly, the

test allocates various variables:

/ / Assume N i s the number o f elements i n an ar ray .

vbx mm t ∗ s c a l a r i n 1 = mal loc (N∗sizeof (vbx mm t)) ;

vbx mm t ∗ s c a l a r i n 2 = mal loc (N∗sizeof (vbx mm t)) ;

vbx mm t ∗ s c a l a r o u t = mal loc (N∗sizeof (vbx mm t)) ;

scalar x variables are named so because they will be manipulated by a scalar

processor. They are allocated using the standard library’s malloc, which means

that they are CPU cached variables; hence, any access to them are cached reads

or writes. Next, vector x variables are allocated using the VectorBlox Appli-

cation Programming Interface (API), vbx shared malloc, whose semantics

39

mean that they will be treated as uncached variables; they reside in shared mem-

ory.

vbx mm t ∗ v e c t o r i n 1 = vbx shared mal loc (N∗sizeof (vbx mm t)) ;

vbx mm t ∗ v e c t o r i n 2 = vbx shared mal loc (N∗sizeof (vbx mm t)) ;

vbx mm t ∗ vec to r ou t = vbx shared mal loc (N∗sizeof (vbx mm t)) ;

vector x variables will be mainly manipulated by a vector accelerator. Finally,

v x variables are allocated in the scratchpad, the accelerator’s internal memory, but

they are not considered by the tool because they are internal only to the accelerator.

vbx sp t ∗v in1 = vbx sp mal loc (N∗sizeof (vbx sp t)) ;

vbx sp t ∗v in2 = vbx sp mal loc (N∗sizeof (vbx sp t)) ;

vbx sp t ∗v ou t = vbx sp mal loc (N∗sizeof (vbx sp t)) ;

The vector addition test consists of two tests, performing the same vector addi-

tion computation twice, first by a scalar processor and then by a vector accelerator.

The first test, which is done by the processor, has two input arrays, scalar in1

and scalar in2, whose values are added together and put into an output array,

scalar out. After this test is completed, the next test executes, this time carried

out by the vector accelerator and where vector in1 and vector in2 are two

input arrays and vector out is the output array that contains the results.

The vector addition test starts by zeroing out the output arrays, scalar out

and vector out.

VBX T(t e s t z e r o a r r a y) (sca la r ou t , N) ;

VBX T(t e s t z e r o a r r a y) (vec to r ou t , N) ;

Then, it initializes the scalar in1 array. Afterwards, the values in the cached

variable, scalar in1, are copied into the uncached variable, vector in1, in

a loop.

VBX T(t e s t i n i t a r r a y) (sca la r i n1 , N, 1) ;

VBX T(t e s t c o p y a r r a y) (vec to r i n1 , sca la r i n1 , N) ;

Similarly, the test initializes scalar in2 before copying its values into vector -

in2.

VBX T(t e s t i n i t a r r a y) (sca la r i n2 , N, 1) ;

VBX T(t e s t c o p y a r r a y) (vec to r i n2 , sca la r i n2 , N) ;

40

The program calls the helper function test scalar to perform the test by

the CPU and then prints out the output array.

s c a l a r t i m e = t e s t s c a l a r (sca la r ou t , sca la r i n1 , sca la r i n2 , N) ;

VBX T(t e s t p r i n t a r r a y) (sca la r ou t , PRINT LENGTH) ;

To check that the vector accelerator can execute instructions correctly, the ac-

celerator first needs to obtain the input values via DMA. The CPU tells the acceler-

ator to do a DMA read through the VectorBlox API call, vbx dma to vector.

The code below shows DMA reads of vector in1 and vector in2 in main

memory.

vbx dma to vector (v in1 , (void ∗) vec to r i n1 , N∗sizeof (vbx sp t)) ;

vbx dma to vector (v in2 , (void ∗) vec to r i n2 , N∗sizeof (vbx sp t)) ;

The accelerator executes the vector addition in its scratchpad in the call, test -

vector, and then DMA writes the results into the uncached variable, vector -

out, with a call to vbx dma to host.

t e s t v e c t o r (v out , v in1 , v in2 , N, s c a l a r t i m e) ;

vbx dma to host ((void ∗) vec to r ou t , v out , N∗sizeof (vbx sp t)) ;

On the next line, the VectorBlox synchronization function, vbx sync, instructs

the CPU to wait until all previously issued DMA requests have completed. Due to

this sync, there is no race at the next CPU operation, which is to print the uncached

array, vector out.

vbx sync () ;

VBX T(t e s t p r i n t a r r a y) (vec to r ou t , PRINT LENGTH) ;

The last line in the vector addition test verifies that the results computed by the

scalar processor and the vector accelerator were equal, thereby confirming that the

accelerator works.

e r r o r s += VBX T(t e s t v e r i f y a r r a y) (sca la r ou t , vec to r ou t , N) ;

The tool detects a potential race at the first DMA read instruction in the “vbw -

vec add t” example. Specifically, the race occurs between a cached write and

a DMA read. This is made apparent in the graph generated by the tool (Fig-

ure 5.2), where the race is between the first writeback node (labelled “wb0”) and

41

Figure 5.2: This is part of the graph that is generated by our tool as it is ana-
lyzing the vector addition example. The large black oval in the middle of
the graph signifies that there are several other nodes that are in between
the nodes shown but are not important in illustrating the race present.

the first DMA read (“dma r14”). In the graph, there is a dangling writeback node

(wb0 0x11ff080 0x120f07f) that is unordered with respect to the first DMA read

node (dma r14 0x120f070 0x121f06f). Their memory address ranges — in par-

ticular, from 0x120f070 to 0x120f06f — overlap with each other. As only one

of these accesses is a write (wb0), this is a write-read case. Hence, this situation

fulfills the criteria of a data race stated in Definition 2.1.1.

In the code, the dangling writeback node and the DMA read node correspond

to the following two lines:

VBX T(t e s t z e r o a r r a y) (sca la r ou t , N) ;

. . .

vbx dma to vector (v in1 , (void ∗) vec to r i n1 , N∗sizeof (vbx sp t)) ;

The conflicting variables are scalar out, a cached variable that eventually

has its values written back when the test zeroes this array, and vector in1, an

uncached variable in main memory that is accessed by the accelerator. Although

42

they are two different data structures, our dynamic tool saw that they are mapped

to the same cache line due to them being allocated to consecutive memory loca-

tions. Therefore, due to writeback granularity, the scalar out writebacks can

overwrite the first few bytes of vector in1 in main memory. The DMA read of

vector in1 may thus read wrong data values. This is similar to false sharing

(see Theorem 3.4.6); however, this is a coherence error rather than a performance

issue.

The “vbw mtx motest” example contained the second race. The tool flagged a

potential race between a dangling writeback node from a cached write to scalar -

x input and a DMA write to the uncached variable, vector result. Specif-

ically, the race is between wb160616 0x1a29080 0x1a290bf and dma w160722 -

0x1a25070 0x1a3506c. The guilty lines in the program are below; the vbw mtx -

motest byte function does a DMA write to vector result at the end.

i n i t m o t e s t (s c a l a r x i n p u t , s c a l a r r e s u l t) ;

. . .

e r r o r r c = vbw mtx motest byte (v e c t o r r e s u l t , v e c t o r x i n p u t , v e c t o r x i n p u t , &m) ;

Similar to the first race condition, vector result and scalar x input

are two different data structures but overlap the same cache line because scalar -

x input is the next variable allocated after vector result. Again, this con-

dition satisfies the data race definition, as this is a write-write case that accesses the

memory address range, from 0x1a29080 to 0x1a290bf, simultaneously.

5.4 Injection of Bugs in Examples
To verify that the implemented tool was able to catch more types of races than

what were discovered in real-world examples, I also performed experiments in

which I introduced bugs in the VectorBlox code examples by removing necessary

synchronization. Not surprisingly, my race detection tool was able to detect these

bugs easily in all cases.

Interestingly, in at least one case, the VectorBlox simulator still showed the

test as passing, even though I had eliminated necessary synchronization. Note that

there exists other sync calls in the program but the particular sync that was re-

moved turned out to be essential to avoiding potential future problems. This high-

43

lights how data races can produce elusive bugs, which are not caught in debugging,

but emerge only late (and sporadically) in a production system — and hence the

importance of data race detection tools such as I propose.

To demonstrate the impact of these bugs, I will now go through one example

in detail, specifically, the VectorBlox example that calculated vector power. Fig-

ure 5.3 shows the operation immediately before the sync (do dma write) in the

program and immediately after the sync (uncached read). There is no race here

as the dma w node is ordered with respect to the sync node, and the sync node is

ordered with respect to the uncached read node as well. Since orders are tran-

sitive, the dma w node is guaranteed to happen before the uncached read node.

On the other hand, in Figure 5.4, where the sync has been removed, the dma w node

is now unordered with respect to the uncached read node because there is no

happens-before relation (or path from) the dma w node to the uncached read

node. Because the DMA write and the uncached read access overlapping memory

regions, there is a potential race.

44

Figure 5.3: The vbw vec power t VectorBlox example’s original program or-
der which includes synchronization.

Figure 5.4: Removed a sync operation in the vbw vec power t VectorBlox
example, thereby introducing a bug in the program. On the VectorBlox
simulator, the race does not happen, so the code behaves correctly, and
the test “passes”. However, there is no guarantee that any given imple-
mentation will happen to order the two operations in the same way that
the simulator did. Most importantly, the race detection tool is able to
detect this data race.

45

Chapter 6

Related Work

As we use Lamport’s happens-before relation, an obvious related work is the Lam-

port timestamps algorithm [9] and the more advanced vector clock method [5],

which builds on Lamport’s work. These two algorithms are used to determine or-

dering of events in distributed systems.

Lamport’s logical clocks are functions that assign a number to an event in a

process and do not necessarily have a relation to physical time. Essentially, each

process has a counter and increments it before any event occurs in that process.

This counter value is included in any message sent by the process. A receiving

process updates the counter to be the maximum of its current counter and the times-

tamp received in the message, and then increments that number by one to consider

the message received. Furthermore, Lamport’s timestamps satisfies the condition:

if event a→ event b, then C(a) < C(b), where C(x) is the logical clock of an

event x. However, the converse is not true. The vector clock method addresses this

limitation and satisfies that condition both ways.

Our solution differs from the Lamport timestamp and vector clock algorithms,

as we rely on program order to create partial ordering in the graph produced.

Causality between events is clear in a program because the CPU is the “master”

of the system, telling itself, its cache, and the accelerator what to do.

Multithreaded and concurrent programs have generated much research in both

static and dynamic race detection tools. For example, RELAY [18], Warlock [16],

RacerX [4], and Locksmith [12] statically check for races by performing lockset

46

analysis. rccjava [6],[2] (which uses extended static checking [3]) is another static

tool but uses theorem provers and type checkers. Although static detection tools

offer scalable solutions, they generally work with abstracted versions of a program

and thus, can produce a large number of false alarms.

Eraser [13] and FastTrack [7] are examples of dynamic race detectors. Eraser

tracks the set of locks held by each shared variable in a thread but is prone to false

alarms. FastTrack exploits lightweight vector clocks and performs comparably to

Eraser but is more precise and never reports false alarms. FastTrack claims that the

majority of data in multithreaded programs is either thread local, lock protected,

or read shared. Thus, it uses an adaptive representation for the happens-before

relation that requires only constant space for these common cases, without any

loss of precision or correctness. In contrast to a vector clock-based race detector

that records the clock of the most recent write to each variable x by each thread t,

FastTrack records the clock and thread identifier of only the very last write to x,

where this information is dubbed an epoch. The authors of FastTrack assert that all

writes to x are totally ordered by the happens-before relation, assuming no races

have been detected so far. Hence, the full generality of vector clocks is not needed

in this case. Similarly, since reads on thread-local and lock-protected data are

totally ordered — assuming no races have been detected — FastTrack records only

the epoch of the last read to these types of data. FastTrack adaptively switches from

epochs to vector clocks (and vice-versa) in order to guarantee no loss of precision.

To the best of our knowledge, there is no race detection approach in a non-

coherent and heterogeneous context, for which our work is targeted.

47

Chapter 7

Conclusions

In conclusion, this thesis presents a novel approach to detect data races in software

for non-coherent accelerators in heterogenous systems, and proves its correctness

and soundness. The approach generalizes to other hardware architectures and code

examples, not only by VectorBlox, because it is mostly architecture-independent.

It is mostly but not completely architecture-independent because the model still

includes a CPU cache and needs to know the size of the cache line and that of

the writeback granularity. Nonetheless, the model does not require any details of

how the cache works, which protocol it uses, etc., as our solution abstracts the

hardware’s behaviour. The approach is also generalizable in the sense that the

derived simple rules work for any non-coherent accelerator.

Furthermore, I have built a dynamic race detection tool that successfully found

two subtle races in real-world examples. Limitations of the current tool are due to

the fact that it performs dynamic race detection (as opposed to static), as well as

the fact that it works with an abstraction of the hardware. Dynamic race detection

is less sound than static race detection, which means that it can miss races (false

negatives), because it does not execute all possible paths in a program. However,

our analysis is sound with respect to the given exeuction, in that it is able to find all

potential races in that execution. On the other hand, the soundness comes with a

loss of precision. We are conservatively abstracting away some details of the hard-

ware’s behaviour, which can lead to flagging false alarms (false positives), since

the abstraction is an over-approximation and builds upon several assumptions. For

48

instance, one assumption is that a writeback can happen arbitrarily late but this

may not be true due to hardware details.

Future work include implementing a static version of the race detection tool

and automatically instrumenting an input program. For example, the static race

detection tool can use the LLVM framework [10] to help with the instrumentation

and analysis of a program. It would also be interesting to examine ThreadSanitizer

[14], a data race detector for C/C++, to see if our solution can work alongside or

within it, or to compare against it.

49

Bibliography

[1] VectorBlox MXP Programming Guide for Xilinx. URL
http://vectorblox.github.io/mxp/mxp guide xilinx.html. Accessed 2019-09-27.
→ page 6

[2] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race
detection for Java. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(2):207–255, 2006. → page 47

[3] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Research Report 159, Compaq SRC, 1998. → page 47

[4] D. Engler and K. Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. In ACM SIGOPS Operating Systems Review,
volume 37, pages 237–252. ACM, 2003. → page 46

[5] C. Fidge. Logical time in distributed computing systems. Computer, 24(8):
28–33, 1991. → page 46

[6] C. Flanagan and S. N. Freund. Type-based race detection for Java. In ACM
SIGPLAN Notices, volume 35, pages 219–232. ACM, 2000. → page 47

[7] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race
detection. In ACM SIGPLAN Notices, volume 44, pages 121–133. ACM,
2009. → page 47

[8] D. Giri, P. Mantovani, and L. P. Carloni. Accelerators and coherence: An
SoC perspective. IEEE Micro, 38(6):36–45, 2018. → page 7

[9] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978. → pages 4, 46

[10] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code
Generation and Optimization (CGO), pages 75–86. IEEE, 2004. → page 49

50

http://vectorblox.github.io/mxp/mxp_guide_xilinx.html

[11] K. Li and P. Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems (TOCS), 7(4):321–359, 1989. →
page 6

[12] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Practical static race
detection for C. ACM Transactions on Programming Languages and
Systems (TOPLAS), 33(1):3, 2011. → page 46

[13] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
A dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS), 15(4):391–411, 1997. → page
47

[14] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: data race detection in
practice. In Workshop on Binary Instrumentation and Applications (WBIA),
pages 62–71. ACM, 2009. → page 49

[15] A. Severance and G. G. F. Lemieux. Embedded supercomputing in FPGAs
with the VectorBlox MXP matrix processor. In 2013 International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 1–10. IEEE, 2013. → page 6

[16] N. Sterling. WARLOCK–a static data race analysis tool. In USENIX Winter,
pages 97–106, 1993. → page 46

[17] A. L. Varbanescu and J. Shen. Heterogeneous computing with accelerators:
an overview with examples. In 2016 Forum on Specification and Design
Languages (FDL), pages 1–8. IEEE, 2016. → page 1

[18] J. W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on
millions of lines of code. In ESEC/FSE, pages 205–214. ACM, 2007. →
page 46

51

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	2 Background
	2.1 Data Races
	2.2 Non-Coherent Accelerators

	3 Theory
	3.1 Simple Example
	3.2 Examples of Basic Rules
	3.3 Full Ruleset for a Non-Coherent Accelerator
	3.4 Theorems and Proofs

	4 Implementation
	4.1 VectorBlox Architecture
	4.2 Instrumentation and Execution
	4.3 Trace Analysis

	5 Evaluation
	5.1 Experimental Setup
	5.2 Time Required for Analysis
	5.3 Experimental Results
	5.4 Injection of Bugs in Examples

	6 Related Work
	7 Conclusions
	Bibliography

