
A Combined Clustering and Placement
Algorithm for FPGAs

by

Mark Yamashita

B.A.Sc., The University of Toronto, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

The University Of British Columbia

November, 2007

c© Mark Yamashita 2007

Abstract

One of the major drawbacks of reprogrammable microchips, such as field-programmable gate arrays

(FPGAs), is an inherent speed disadvantage over ASIC technologies.To mitigate this speed disad-

vantage, this thesis presents a novel algorithm to improve timing performance at the possible ex-

pense of area and runtime. The algorithm presented leverages node duplication and a depth-optimal

initial clustering to provide a starting point for a non-greedy, iterative optimization technique using

detailed placement and timing information to develop the final clustering and placement solutions.

For a set of benchmarks commonly used in FPGA research, the proposedalgorithm achieves an

11% critical-path delay improvement compared to the VPR academic tool flow. This performance

improvement is obtained at the expense of a 44% increase in area usage and a 26x increase in

maximum runtime. Techniques have also been implemented to sacrifice performance to moderate

the area or runtime increases. For a 1% critical-path delay penalty, the runtimecan be improved by

a factor of 4. The algorithm also provides facilities to impose area restrictions, in which case timing

degradation is proportional to the area saved.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vii

List of Figures . viii

Glossary . x

Acknowledgements . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 4

1.4 Thesis Organization . 4

2 Background . 6

2.1 FPGA Technology Overview .6

2.2 FPGA CAD Flow . 9

2.2.1 Synthesis . 9

2.2.2 Technology Mapping . 9

iii

Table of Contents

2.2.3 Clustering . 10

2.2.4 Placement . 15

2.2.5 Routing . 16

2.3 Previous Work . 17

2.3.1 Versatile Place & Route (VPR) . 18

2.3.2 Simultaneous Placement with Clustering and Duplication (SPCD) 22

2.3.3 Improving Timing-Driven FPGA Packing with Physical Information

(DPack) . 22

2.3.4 iRAC . 22

2.3.5 Using Logic Duplication to Improve Performance in FPGAs 23

3 Combined Clustering and Placement Algorithm Overview 25

3.1 Algorithm . 25

3.2 Microcluster Formation . 26

3.3 Placement . 27

3.4 Microcluster Compaction with Orchestrator .28

4 Phase 1: Microcluster Formation . 29

4.1 Introduction and Motivation . 29

4.2 Algorithm Description . 30

4.3 Step 1A - Handling of Sequential Circuits .31

4.4 Step 1B - Lawler Levitt Turner Algorithm .32

4.5 Step 1C - Node Duplicate Reduction Algorithm 35

4.5.1 NDR Algorithm Description . 35

4.5.2 Relabelling . 36

4.5.3 Pruning to Correct CLB Violations . 38

4.5.4 NDR Algorithm Results . 39

iv

Table of Contents

4.6 Additional Duplicate Reduction Through Depth Relaxation 39

4.7 Analysis and Results . 42

4.7.1 Node Duplicate Reduction Results . 42

4.7.2 Analysis of Microcluster Formation Results 43

4.8 Summary . 46

5 Phase 2: Microcluster Compaction with Orchestrator 47

5.1 Introduction and Motivation . 47

5.2 Algorithm Description . 48

5.2.1 Description of Inputs . 49

5.2.2 Orchestrator Preliminary Operations . 49

5.2.3 Orchestrator Operational Overview . 50

5.2.4 Orchestrator Timing Model and Timing Graph 51

5.2.5 Orchestrator Main Operation . 53

5.2.6 Duplicate Analyzer . 55

5.2.7 Microcluster Relocation . 57

5.2.8 Microcluster Relocation During the Reduction Stage 64

5.2.9 Pad Relocation . 65

5.2.10 Compaction . 68

5.3 Analysis and Results . 69

5.3.1 Timing Results . 70

5.3.2 Orchestrator with Area Restrictions . 71

5.3.3 Timing vs. Area Performance . 72

5.4 Orchestrator Summary . 73

6 Final Results . 75

6.1 Timing Performance . 75

v

Table of Contents

6.2 Depth . 78

6.3 Routing Resource Usage .79

6.4 Area Usage . 81

6.5 Runtime Performance . 82

7 Conclusion, Contributions and Future Work . 85

7.1 Conclusions . 85

7.2 Contributions . 86

7.3 Future Work . 88

7.3.1 Microcluster Formation Phase . 88

7.3.2 Orchestrator . 89

Bibliography . 91

Appendices

A Microcluster Statistics . 99

B Margin Interval Test . 101

vi

List of Tables

2.1 Commercial FPGA Device Sizes in total basic logic elements 8

2.2 Summary of Different Clustering Techniques 14

4.1 LLT/NDR Results Normalized to T-VPack . 43

4.2 Depth Analysis of Benchmarks .44

5.1 Duplication Limiting Final Settings . 72

5.2 Orchestrator Results for Various Area Restrictions, Normalized to T-VPack 73

6.1 Timing Results for Different Clustering Algorithms76

6.2 Depth - Timing Improvement Comparison . 79

6.3 Minimum Channel Width Comparison . 80

6.4 CLB Usage Comparison . 81

6.5 Total Area Comparison [min. sized transistors] 82

6.6 Run Time Results [min] . 84

vii

List of Figures

2.1 Basic Logic Element . 7

2.2 Configurable Logic Block . 7

2.3 Technology Mapping Example (from [30]) 10

2.4 Clustering Example (from [30]) .11

2.5 Placement Example (from [30]) .15

2.6 Routing Structure (from [22]) .. . 17

2.7 T-VPlace Pseudocode (from [40]) 24

3.1 VPR and Proposed Design Flows .. 26

4.1 Microcluster Formation Flow . 31

4.2 Node Duplication Example . 33

4.3 Motivation for NDR . 34

4.4 Reduction of Blocks After Using NDR .40

4.5 Duplicate Reduction Results . 41

4.6 Depth Increase vs. Duplication Limit .42

4.7 Grid Size - Avg Net Length Relationship .45

5.1 Orchestrator Flow Chart .50

5.2 Flow Chart of Timing Graph Update for a Block Move 52

5.3 VALID LOCATIONS Masking Example . 60

5.4 Compaction Routine Example (from [37]) .68

viii

List of Figures

5.5 Critical-Path Delay Results . 70

5.6 Duplication Limiting Test Results . 71

5.7 Orchestrator Area vs. Timing Performance 74

6.1 Depth Improvement vs. Timing Improvement . 78

A.1 Average Blocks Per Microcluster .. . 99

A.2 Microcluster Size by Circuit . 100

B.1 Margin Interval Test Results .. 101

ix

Glossary

Application Specific Integrated An integrated circuit that is designed and manufactured for a specific
Circuit (ASIC): task, as opposed to a reprogammable circuit such as an FPGA.

Basic Logic Element (BLE): A logic entity in the FPGA consisting of a LUT and a flip-flop.

Computer Aided Design Software tools that assist designers in building complex systems.
(CAD) Tool:

Configurable Logic Block (CLB): A group ofN BLEs

Field Programmable Gate A customizable integrated circuit that can be programmed to
Array (FPGA): perform a given function.

Look Up Table (LUT): A logic element that can compute any function of up tok inputs.

Microelectronics Corporation of A set of FPGA benchmark circuits commonlyused in
North Carolina (MCNC) Circuits: academic research.

T-VPack: The most commonly used academic clustering tool.

Versatile Place & Route (VPR): The most commonly used academic place and route tool.

x

Acknowledgements

First, I would like to thank my supervisor Guy Lemieux for his support and guidance. Without him

this work would not have been possible. I would also like to thank other memberof the SOC Lab,

past and present, for their help and expertise. Particularly Dave Grant,Marvin Tom, Eddie Lee,

Karim Allidina, Julien Lamoureux, Scott Chin, Natalie Chan, Andrew Lam, Paul Teehan, Jason Yu

and Roberto Rosales.

I would also like to acknowledge Konrad Walus for generously allowing me to use his computer

cluster and Nick Geraedts who administers the cluster.

I am grateful to my friends and family for their support. Especially my girlfriend Anya, who

has provided constant encouragement over the past two years.

Finally, I would like to thank my parents. To my mother who has always had faith inme, and to

my father, who I know would be proud.

xi

Chapter 1

Introduction

1.1 Motivation

A field-programmable gate array (FPGA) is a customizable integrated circuit that can be pro-

grammed to perform a given function. The programmability of the device stems from a highly

flexible routing architecture and programmable logic elements. The standard approach to using FP-

GAs is to describe a logic circuit in a hardware description language (HDL)such as Verilog and use

an FPGA computer-aided design (CAD) tool to produce a bitstream that will program the routing

architecture and logic elements. It is the job of the CAD tool to produce a result that satisfies the

requirements of the user, in terms of such metrics as delay, area and power.

The most definitive advantage an FPGA has over a design in a comparable technology, such

as an application specific integrated circuit (ASIC) or standard cell design, is a low non-recurring

engineering (NRE) cost and fast time to market. Though an ASIC may be faster and have a lower

unit cost, the cost to design, verify, and produce a chip can be prohibitively expensive for low

to medium volume designs. A modern ASIC design requires considerable man-hours, a mask-set

that can cost up to $1.5 million USD for 65-nm technology [31], and possiblyseveral months for

the design to be fabricated. An FPGA design is comparatively simpler, has noupfront production

costs and requires only that the FPGAs be programmed instead of manufactured at a foundry. As

mentioned, though, these advantages are obtained at the expensive of unit cost, power consumption,

and speed. According to [28], in a 90nm process technology, an FPGAsuffers a 4 times speed

disadvantage and 14 times increase in dynamic power when compared to an ASIC.

1

Chapter 1. Introduction

As process technologies shrink and circuits become larger, the absolute performance gap be-

tween ASICs and FPGAs will continue to increase. To remain competitive, FPGA technology must

close this performance gap. One of the most direct ways to improve FPGA performance is to create

better CAD tools.

In the clustering step of the FPGA CAD flow, the majority of algorithms are basedon a greedy

approach. While a greedy algorithm is fast and effective, it is limited by an inability to adjust the

clustering solution during later stages of the CAD flow and it provides no direct means for node

duplication, a method that can reduce interconnect delay by reducing logicdepth.

FPGA clustering algorithms that use node duplication, do so either in excess,or as a mechanism

for tuning the solution. When node duplication is done solely at the clustering stage, because

of a lack of accurate timing information, a large amount of duplication is required to ensure a

performance improvement. Using duplication to tune the clustering solution, either after placement

([3], [53]) or after each iteration of the simulated annealer ([9]), may limit the performance gains

achievable through node duplication.

Previous research has also tried to combine the clustering and placement steps of the FPGA

CAD flow. The approach used by [9] is to integrate clustering changes intoa simulated annealing-

based placer. While this approach is effective in making incremental improvements to the clustering

solution, it still lacks the ability to fully utilize accurate timing information when making fundamen-

tal clustering decisions.

Finally, one feature not present in current clustering tools is the ability to trade off area for

performance. If the final routed solution does not meet the timing requirements of the design, the

designer has no opportunity to expend additional resources to improve thetiming of the circuit.

1.2 Objectives

The algorithm presented in this thesis leverages node duplication and a depth-optimal initial clus-

tering to provide a starting point for a non-greedy, iterative optimization technique using detailed

2

Chapter 1. Introduction

placement and timing information to develop the final clustering and placement solutions. The main

goal is to improve timing performance at the possible expense of area and runtime.

To combine the clustering and placement steps in a runtime-efficient manner, the program must

first create an initial clustering solution. This solution is comprised of a set ofmicroclusters, which

are small groups of connected blocks. The formation of microclusters provides the algorithm with a

means to create a preliminary placement from which accurate timing information can be extracted.

As the composition of microclusters usually persists through the remainder of the CAD flow, it is

the aim of the Microcluster Formation Phase to create microclusters that are small, highly-cohesive

entities that facilitate a low critical-path delay.

During the initial clustering phase, a depth-optimal clustering solution is created. This means

that the worst-case number of clusters traversed along any path from input to output is minimized. It

will be shown that this depth advantage translates into a critical-path delay advantage after routing.

Therefore, the clustering and placement algorithm should strive to maintain control over the depth

of the circuit.

From an initial placement of microclusters, the program can create an accurate timing model of

the circuit. With this comprehensive timing and placement information, the goal ofthe algorithm is

to use this information to make informed decisions about how to alter the clusteringand placement

solutions. Making a change to the organization or composition of the microclusters constitutes

a change in both the clustering and placement solutions. Therefore, the program should use all

timing and placement information available to ensure each change maximizes the benefit to timing

performance, area and routing resource usage.

Node duplication can be instrumental in helping reduce the critical-path delay of the circuit.

Node duplication refers to replicating the same logic function, with the same inputs, in different

locations on the chip. Duplication can reduce delay by allowing successor blocks to take inputs

from a local copy to improve timing, rather than taking it from a distant original.The objective of

the algorithm is to use node duplication as effectively as possible to reduce delay on the critical path,

3

Chapter 1. Introduction

while not impeding the algorithm from meeting the imposed area restrictions. The approach taken is

to create a large amount of duplication during the Microcluster Formation Phase and then reduce the

amount of duplication as required throughout the remainder of the algorithm.It is therefore essential

that when removing duplication, the algorithm retains those nodes that are themost beneficial to

timing performance.

One final objective is to allow the user to sacrifice area for an improvement intiming perfor-

mance. If the user has already purchased a chip that is larger than required for the circuit, it is the

goal of the algorithm to take full advantage of the additional logic to increaseperformance. This

relies on the principle that more node duplication can reduce the critical-path delay of the circuit.

The trade-off between area and performance should be a continuous function, where the greater the

area increase, the greater the performance gain, up to a certain point.

1.3 Contributions

This thesis introduces a combined clustering and placement algorithm consisting of two unique

algorithms, the Node Duplicate Reduction algorithm and the Orchestrator algorithm. The Node

Duplicate Reduction (NDR) algorithm provides a proficient means of reducing the node duplication

of a label and cluster solution, while maintaining a specified depth. The Orchestrator algorithm

introduces a novel strategy for using placement and timing informationto make informed decisions

concerning how to reorganize and consolidate the initial clustering from theNDR algorithm to

reduce area usage and critical-path delay.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 provides a concise overview of

modern FPGA technology, associated state of the art CAD tools and previous work which is related

to the subject of this thesis. Chapter 3 provides a broad overview of the algorithm presented in the

4

Chapter 1. Introduction

thesis. Phase 1 of the algorithm is described in Chapter 4, and Phase 2 of the algorithm is described

in Chapter 5. Chapter 6 compares the results of the proposed algorithm with other academic tools.

Finally, Chapter 7 presents conclusions drawn from this research, as well as contributions made and

possible future work.

5

Chapter 2

Background

This chapter first presents an overview of modern field-programmable gate array (FPGA) technol-

ogy. It then describes the computer-aided design (CAD) flow used to map acircuit on to an FPGA.

For each step in the CAD flow, a short description of the function of that step is given, along with

a survey of common tools used for the given step, with particular emphasis placed on the cluster-

ing and placement steps. Finally, a more thorough review of work most similar tothis thesis is

presented.

2.1 FPGA Technology Overview

The primary building block of an FPGA is the basic logic element (BLE), consisting of ak-input

look-up table (LUT) and a flip-flop. Ak-input LUT can perform any Boolean logic function of up

to k inputs. The BLE can either be used in sequential mode, where the output is taken from the

flip-flop, or in combinational mode, where the output is supplied by the LUT. In this thesis, a BLE

is referred to as ablockor anodewhen representing a netlist entity and as a BLE when representing

an architectural entity.

Modern FPGAs such as the Xilinx Virtex-5 [24] and Altera Stratix III [15] group a number of

BLEs into a configurable logic block (CLB). A CLB provides fast local interconnect to directly

route signals between resident BLEs. This allows the CAD flow to place related BLEs in the same

CLB to reduce delay incurred between them. A CLB is characterized by the number of BLEs in the

cluster (N) and the total inputs to the cluster (I). It is assumed that each BLE may draw inputs from

6

Chapter 2. Background

Figure 2.1: Basic Logic Element

any of theI cluster inputs or any BLE output within the CLB. In this document CLBs are referred to

asclusterswhen representing a netlist entity and as CLBs when representing an architectural entity.

k

BLE

k

BLE

k

BLE

. . .

I

Figure 2.2: Configurable Logic Block

Generally, an FPGA is arranged so that the CLBs form a grid. The routingarchitecture forms

routing channels between each row and column of CLBs. A channel segment is the portion of

a channel that spans one CLB. The number of signals that can occupy agiven routing channel

segment is termed thechannel width of the FPGA. It is the responsibility of the CAD flow to

ensure that the maximum number of signals routed through any channel is less than or equal to the

channel width. If the channel width is exceeded, the circuit is said to be unroutable.

During the design process of commercial FPGAs, a single tile is designed consisting of a CLB

and its adjacent routing resources. For all devices in that family, the FPGAconsists of an array of

those tiles in different size grids. So, for a given FPGA family,k, N, I and the channel width are

7

Chapter 2. Background

fixed, and the variant is the number of tiles on the chip. The following table shows the number of

BLEs in two popular FPGA families.

Stratix III (Altera) k=6, N=10
EP3SL50 EP3SL70 EP3SL110 EP3SL150 EP3SL200 EP3SE260 EP3SL340
19,000 27,000 42,600 56,800 79,560 101,760 135,200

Virtex-5 (Xilinx) k=6, N=8
XC5VLX30 XC5VLX50 XC5VLX85 XC5VLX110 XC5VLX220 XC5VLX330

19,200 28,800 51,840 69,120 138,240 207,360

Table 2.1: Commercial FPGA Device Sizes in total basic logic elements

For this thesis, unless otherwise noted, the followingde factostandard FPGA architecture is

assumed:

• Lut size:k = 4

• Cluster size:N = 10

• Inputs per CLB:I = (k/2)∗ (N+1) = 22, as recommended by [1]

• wirelength = 4 (a single wire spans 4 CLBs)

• I/O ratio = sufficient to ensure circuit is logic limited

• Switch block type = subset

• Connection block input connectivity = 0.4

• Connection block output connectivity = 0.125

• Connection block pad connectivity = 1

• Switch type = buffered

For a further description of these architectural features, please see [5].

8

Chapter 2. Background

2.2 FPGA CAD Flow

The purpose of the FPGA CAD flow is to produce a bitstream used to program the device from

a hardware description language (HDL) specification of the circuit. The bitstream designates the

function of all BLEs and specifies how the routing architecture should route signals between them.

The CAD flow must ensure that no architectural limitations are exceeded andshould attempt to

optimize a given set of metrics, such as delay, area and power.

The FPGA CAD flow is generally broken into 5 steps: synthesis, technologymapping, clus-

tering, placement and routing. In the standard flow, each step is performed in turn with no back-

tracking. What follows is a brief description of each step, with particular emphasis on steps that are

related to this work.

2.2.1 Synthesis

In the synthesis step, the HDL description of the circuit expressed in a language such as VHDL

((Very-High-Speed Integrated Circuits) Hardware Description Language) or Verilog is translated

into a gate-level description of the circuit. Technology-independent logicoptimization is also per-

formed during this step.

2.2.2 Technology Mapping

The technology mapping step takes the netlist produced by the synthesis stepand maps the circuit

into a series ofk-input LUTs and flip-flops. Figure 2.3 shows an example of technology mapping,

where a netlist described as a directed acyclic graph (DAG) is mapped to 4-input LUTs. The goal

of technology mapping can be reduce the number of LUTs used ([46], [20], [26], [52]), delay ([11],

[10], [21], [47]), or some combination of the two. The technology mappingproblem generally

equates to finding sets of Boolean gates with a total of no greater thank inputs, and implementing

these gates within a LUT.

When optimizing for delay, the goal is to minimize the LUT depth of the circuit. The LUT depth

9

Chapter 2. Background

Figure 2.3: Technology Mapping Example (from [30])

is defined as the maximum number of LUTs traversed from circuit input to circuit output. The most

well-known academic tool for delay-driven technology mapping is FlowMap[11]. FlowMap will

find a solution that has an optimal LUT depth in polynomial time.

For the MCNC benchmark circuits used in this thesis, all technology mapping ofcircuits was

performed by running FlowMap [11] for depth optimality followed by FlowPack [12] for area re-

duction. Next, SIS [55] was run with the scriptsscript.ruggedandscript.algebraic, and the lower

area solution out of the two was chosen.

2.2.3 Clustering

The function of the clustering step is to assign blocks to clusters that will fit in aCLB to reduce

the delay and routing resource usage of the circuit. The CLB has its own routing structure that, in

general, fully connects all block inputs to: 1. the inputs of the CLB and 2. theoutputs of all resident

BLEs. This fully-connected intracluster routing is faster than the generalrouting resources, so any

signals that can be routed intracluster will incur a smaller delay. Additionally, using the CLB’s

routing structure reduces the stress on the general routing architecture, resulting in a lower required

channel width. An example of the clustering process is shown in Figure 2.4.

The simplest clustering algorithms are based on a greedy approach, whereby a single block is

chosen as a seed, and other blocks are added to the cluster depending on their relation to that seed,

10

Chapter 2. Background

Figure 2.4: Clustering Example (from [30])

until the capacity constraints are met. Being greedy, there is typically no backtracking; once a

block is placed in a cluster, it remains in that cluster for the duration of the CADflow. Many such

greedy algorithms exist, all with distinct goals. Such algorithms include VPack [4], which tries to

minimize the total number of inputs per cluster; T-VPack [41], which tries to reduce the number

of intercluster nets on the critical path; RPack [7], which attempts to reduce the routing effort of

the circuit by enclosing intercluster nets in clusters; a timing-aware version of RPack, T-RPack [6],

which assigns a criticality to each net to aid in deciding which nets to make intracluster; and finally

iRAC [57] which attempts to minimize routing channel width by completely enclosing low-fanout

nets within a cluster. Greedy clustering algorithms are fast and area efficient, but due to a lack of

backtracking, they can get trapped in local minima.

The next group of algorithms are termed label and cluster, where two passes of the circuit

are made. The first assigns a label to each node, relative to the minimum time required before it

produces a result; the second pass groups nodes into clusters using thelabels previously assigned.

The origin of the label and cluster method is the Lawler Levitt Turner (LLT) algorithm [32], which

produces the smallest maximum circuit depth, but at the expense of 2-3x area overhead. A more

generalized delay model, where gate delays are included, is presented in [45]. Rajaraman and

Wong [51] presented a performance-driven optimal clustering algorithmintroduced in [45], based

on dynamic programming. This algorithm also suffers from a high area overhead through node

11

Chapter 2. Background

duplication.

A number of attempts have been made to build upon the algorithm presented in [51]. The

clustering algorithm presented in [63] extended the algorithm by introducinga post-clustering node

duplication reduction technique, rooted cluster elimination, which eliminates a cluster when the

root of that cluster can be replaced by one of its duplicates without affecting timing. Timing Driven

Clustering followed by cluster Packing (TDCP) [16] builds upon [51]’s algorithm by using a slack

based node duplication control, whereby any node with a slack greater than some predetermined

amount is not duplicated, even if it detrimentally effects circuit delay. In bothtechniques, node

duplication reduction is performed during the clustering step. This limits the amount of timing

information available, subsequently restricting the algorithm’s ability to make informed clustering

decisions.

Multi-level clustering algorithms, though targeted to hierarchical FPGAs, can lend important

innovation to clustering as a whole. Two-level clustering (TLC) [13] buildsupon the dynamic

programming algorithm in [51], and also introduces the node duplication reduction technique of

refusing to duplicate nodes exceeding a certain slack. The multi-level clustering tool presented in

[60] performs clustering by using the algorithm from [51] at each level. As with the label and cluster

techniques, multi-level clustering addresses node duplication reduction asa post-clustering step.

Work has also been done on clustering performed in unison with other stepsin the FPGA design

flow. The algorithm presented in [39] performs simultaneous technology mapping and clustering.

Through this, they can make area-aware technology mapping decisions to reduce area usage. The

Simultaneous Placement with Clustering and Duplication (SPCD) algorithm, presented in [9] in-

corporates incremental changes to the clustering solution during annealingand allows duplication

insertion after each iteration of the annealer. The algorithm is limited by the factthat duplication

and clustering changes are only employed to provide incremental improvements to the solution; the

initial clustering is taken directly from T-VPack [41].

A modified clustering and placement algorithm is presented in [53], where certain CLBs are

12

Chapter 2. Background

only partially filled during clustering, and node duplication is performed afterplacement to reduce

the critical-path delay. Duplication is performed after routing in [3] to straighten critical paths,

reducing the delay incurred on them. In these last two techniques, placement is performed with no

information on where duplication will exist. Therefore, it has no ability to account for duplication

during placement to improve performance.

Finally, DPack [17] creates a fast, min-cut partitioning based placement ofBLEs to provide

placement information during the clustering stage. The placement information isused in a greedy-

based clustering tool which integrates the placement information into the algorithm’s cost function.

While this algorithm demonstrates the merit of including placement information during clustering,

the placement information is not accurate enough to provide a useful timing model. Also, it does

not consider the benefits of duplication.

A summary of the clustering methods mentioned above is provided in Table 2.2.

13

C
hapter

2.
B

ackground

Reference Algorithm Name / Title Clustering Approach Duplication

[4] VPack Greedy none
[41] T-VPack Greedy none
[7] RPack Greedy none
[6] T-RRack Greedy none
[57] iRAC Greedy none
[32] Lawler Levitt Turner (LLT) Label and Cluster during clustering
[45] Generalized LLT Label and Cluster during clustering
[51] Optimum Clustering for Delay Label and Cluster during clustering

Minimization
[63] CLUSTER Label and Cluster during clustering w/

post-clustering reduction
[16] Timing Driven Clustering followed Label and Cluster limited amount during clustering

by Cluster Packing
[13] Two-Level Clustering Label and Cluster limited amount during clustering
[60] Multilevel Circuit Clustering Label and Cluster during clustering w/

post-clustering reduction
[39] Simultaneous Mapping and ClusteringLabel and Cluster during clustering w/

with Tech. Mapping post-clustering reduction
[9] Simultaneous Placement with Greedy with during placement

Clustering and Duplication Post-Clustering Modification
[53] Using Logic Duplication to Improve Greedy post-placement

Performance in FPGAs
[3] Timing Optimization of FPGA Greedy post-routing

Placements by Logic Replication
[17] DPack Greedy w/ placement informationnone

Table 2.2: Summary of Different Clustering Techniques

14

Chapter 2. Background

2.2.4 Placement

The job of the placer is to assign a unique location in the FPGA to each block or cluster in the circuit.

The placement algorithm may try to optimize for delay, routing resource usageor a combination of

the two. Placement algorithms for FPGAs generally fall into two categories: simulated annealing

and analytical placement. Figure 2.5 shows an example of placing clusters, labelleda throughn,

into a 5x5 grid.

Figure 2.5: Placement Example (from [30])

Simulated annealing was first proposed by [27] as a general optimization algorithm. As it re-

lates to the FPGA placement problem, the idea is to start with a random placement of CLBs, a cost

function that acts to assess the metrics of the placement, and some temperature T. For a certain

number of iterations, two randomly chosen clusters tentatively swap locations. If the change causes

a decrease in the cost function, the change is kept. If the change causes an increase in the cost func-

tion, the probability of keeping the change is dependent on the current temperature of the annealer.

Detrimental changes may benefit the overall solution by preventing the solution space from getting

trapped in local minima. As the algorithm progresses, the temperature is slowly decremented. This

causes unfavourable moves to become less likely, thus allowing the solution to find a stable mini-

mum. Examples of simulated annealing tools are TimberWolf [54] for standard cell placements, and

Versatile Place & Route (VPR) [5] for FPGAs. The VPR Placement algorithmis further explained

15

Chapter 2. Background

in Section 2.3.1.

Analytical placers represent the placement problem with a system of equations, which are then

solved numerically. Force-directed placement [49] is one type of analytical placer that models the

system as a series of particles and springs. When applied to the FPGA placement problem, each

cluster is analogous to a particle and each net is modelled as a spring with a force constant relative to

the criticality of the net. Any given cluster will be under the force of a numberof nets. The problem

then reduces to solving the system such that each cluster reaches a state of rest, where the forces

from all incident nets sum to zero. One significant drawback to these analytical techniques is the

overlapping of clusters. A valid solution requires that each cluster have aunique discrete location,

therefore the placer must legalize the placement by separating overlappingclusters. Solutions to

this problem include repulsive forces for overlapping blocks [49], attractive forces to low density

areas [18], and disallowing overlap by forcing one CLB to swap out another [56]. Force-directed

placers for VLSI, standard cell and macro-cell designs include [43],[62] and [23], respectively.

There has been little work done on force-directed placement for FPGAs.One notable exception is a

comparison of placement techniques in [44] where they implemented the forcedirected placement

algorithm described in [56]. The results of [44] show similar performance tothe VPR placement

tool when allowed similar run times. Force-directed placement is applied to hierarchical FPGAs

in [38] by using a force-directed scheme for coarse net-level placement and a similar process for

detailed logic cell placement.

Additional placement algorithms exist for FPGAs, such as min-cut partitioningalgorithms and

other analytical placers. For brevity, a complete description of these algorithms is not included.

2.2.5 Routing

The final step in the FPGA CAD flow is routing all signals that connect to multiple CLBs. This

is accomplished by setting programmable switches, buffers, or pass transistors in the switch and

connection blocks. In Figure 2.6, CLBs are labelled L, switch blocks are labelled S, and connection

16

Chapter 2. Background

blocks are labelled C. Connections blocks connect routing track signals toCLB inputs and switch

blocks connect different routing tracks to each other. The goal of therouter may be to either mini-

mize the channel width of the circuit, achieve the lowest critical-path delay or acombination of the

two.

Figure 2.6: Routing Structure (from [22])

The routing problem can potentially be broken into two stages, a global routing stage and a

detailed routing stage. The global router chooses the path through the gridfor each net and the

detailed router assigns the actual wire segments for each net. Examples of algorithms that perform

routing in two distinct steps include Course Graph Expansion [8], SEGmentAllocator [35], FPR

[2] and [36]. Pathfinder [42] and VPR [5] are examples of routers that combine global and detailed

routing into single-step routing.

2.3 Previous Work

In the realm of FPGA clustering and placement, there has a been a great deal of research, some of

which has been cited in Section 2.2. In this section, a more comprehensive analysis will be presented

of algorithms considered to be particularly relevant to the work in this thesis. Considerable attention

is paid to the VPR suite, as this not only represents the baseline for comparison, but the simulated

annealing engine is employed by the work here.

17

Chapter 2. Background

2.3.1 Versatile Place & Route (VPR)

The 4.30 release of VPR is considered the academic standard for FPGA Clustering, Placement and

Routing. It combines a timing-driven clustering tool, T-VPack [41], a simulated annealing placer,

T-VPlace [40] and a router based on Pathfinder [42].

T-VPack

As mentioned earlier, T-VPack is a greedy clustering tool with the goal of reducing the number

of intercluster nets on the critical path. The first step is to estimate the critical path of the circuit.

Assuming logic has a delay of 0.1, intracluster nets have a delay of 0.1 and intercluster nets have a

delay of 1.0, T-VPack builds a timing model with all nets initially intercluster. When packing the

next clusterC, a seed is chosen as the unclustered block driven by the most-critical connection in

the circuit. The algorithm continues to add the block with the most-critical connection to cluster

C until the cluster is full or all inputs are used. In this manner, T-VPack attemptsto maximize the

number of critical connections made intracluster, thus reducing the expected delay.

T-VPack tends to produce high-quality, efficient clustering results. Depending on the number

of inputs per cluster, T-VPack will usually use the fewest possible CLBs (⌈total BLEs/N⌉) and in

general has a low critical-path delay. One significant limitation of this approach is the inability to

backtrack, or change decisions previously made. Once a block is packed into a particular cluster, it

will remain there through the remainder of the clustering phase, and throughplacement and routing.

Slack Definition

Slack is a measure of how much we may delay the output of a block, before it causes a new critical

path to form. Prior to examining the VPR Placement Algorithm, it is important to understand the

concept of slack and how it is computed. This is used by both VPR and the timingmodel of this

research to compute a slack estimate.

For a given blockb, with predecessorsp1, p2...pn, each of which produces an output at times

18

Chapter 2. Background

t1, t2...tn, the completion time ofb is defined as:

t completion(b) = max{t1 +delay(p1,b), t2 +delay(p2,b)...tm+delay(pn,b)}

+ logic delay(b)

Wheredelay(pi ,b) is a function used to describe the delay of routingpi to b, andlogic delay(b) is

the intrinsic logic delay of nodeb. Once the completion time of all blocks in the circuit have been

computed, we can define the critical-path delay as:

tcrit = max∀ j ∈ out pads{t completion(j)}

At this point, the slack for each circuit output,out padi , can be set as:

slack(out padi) = tcrit − t completion(out puti)

In terms of connections, slack is defined as the additional amount of delay that can be incurred

before the connection becomes critical. Therefore, for a connection from blocki to block j:

slack(i, j) = (t completion(j)− logic delay(j)+slack(j))− t completion(i)−delay(i, j)

Finally, slack is set for all other blocks in a backwards traversal from outpad to inpad. If blockb has

successorss1,s2...sm,

slack(b) = min∀successorssk{slack(sk)+ t completion(sk)

−logic delay(sk)−delay(b,sk)− t completion(b)}

If a block has zero slack, it is said to becritical .

19

Chapter 2. Background

VPR Placement Algorithm - T-VPlace

The VPR placement algorithm is of particular importance to this work, as the embedded simulated

annealing engine is modelled to emulate VPR’s simulated annealer. Note that VPR moves entire

clusters at a time, not individual blocks. The first step is to randomly place all CLBs and pads. To

track the quality of the current placement a cost function is necessary. The cost function takes into

account both the aggregate bounding box area and timing cost of all nets.The bounding box cost

function is:

BB cost=
Nnets

∑
n=1

q(n)

[

bbx(n)

Cav,n(n)
+

bby(n)

Cav,y(n)

]

such thatbbx(n) andbby(n) are the bounding box values for netn, Cav,n(n) andCav,y(n) are the

average channel capacities acrossn’s bounding box (which are both assumed to equal 100) andq(n)

is a bounding box correction factor. The correction factor compensatesfor fact that bounding box

estimation underestimates wirelength for high fanout nets.

q(n) = 2.79+0.02616∗ (numterminals−50)

The second cost function attempts to minimize the length of critical nets close together. The

timing cost function is a summation over all source-sink pairs (i, j).

Timing cost= ∑
(i, j)⊂circuit

delay(i, j)∗criticality(i, j)criticalityexponent

where the criticality of the connection is defined as:

criticality(i, j) = 1−
slack(i, j)

t crit

The criticality exponent is used to heavily weight critical nets. It is varied from 1.0 to 8.0 through

the course of the algorithm.

To evaluate the merit of a move, the total change in cost,∆C is computed as follows:

20

Chapter 2. Background

∆C = λ ·
∆Timing Cost

PreviousTiming Cost
+(1−λ) ·

∆BB Cost
PreviousBB Cost

Unless otherwise noted,λ is always 0.5, equally weighting the bounding box and timing cost.

To begin the algorithm, an initial temperature is found by performing a number ofmoves and

setting the temperature high enough that almost all move are accepted. For a given temperature,

10· (Nclusters)
1.33 moves are attempted. The temperature is then lowered, with the objective of

maintaining a 44% acceptance rate as prescribed in [29] and [59].

The current temperature value,tempcurrent is important when evaluating bad moves. If a swap

produces a negative∆C, the move is considered good, so it is kept. If a swap produces a positive

∆C, the swap is kept only if:

e
−∆C

tempcurrent > rand(0,1)

Therefore, the probability of a bad move being accepted is increased if∆C is small or if

tempcurrent is large. Initially, whentempcurrent is large, most swaps are accepted. As the tem-

perature decreases, fewer and fewer bad moves are accepted. Thisallows the placement to slowly

settle to a good solution. The algorithm terminates whentempcurrent = 0.005·Cost/Nnets.

While the VPR simulated annealing placer is very proficient at its task, it lacks the ability to

adjust the clustering to improve the solution. The pseudocode for the T-VPlace placement algorithm

is shown in Figure 2.7.

VPR Routing Algorithm

The VPR Routing algorithm is based on the Pathfinder [42] router, which in turn is modeled after

the A* router by [48]. All of these algorithms utilize the Lee maze router algorithm [33], which can

find the shortest path between two terminals, provided one exists.

21

Chapter 2. Background

In the Pathfinder algorithm, all nets are routed using the A* router, disregarding the resource

usage of other nets. The routing usage is then analyzed, and any resource that exceeds its capacity

is assigned a cost. All nets are then re-routed and penalized for using resources that have assigned

cost. The cost associated with an overused resources accumulates with successive iterations until it

becomes so high a sufficient number of nets avoid it. In this way, overusedresources are brought

within their capacity limits and the circuit can be routed.

2.3.2 Simultaneous Placement with Clustering and Duplication (SPCD)

SPCD [9] is based on a simulated annealing placement algorithm. The annealingengine is modified

to allow incremental changes to the clustering solution and the introduction of duplication after each

iteration of the annealer. Starting from a T-VPack clustering solution, the SPCD algorithm permits

the annealer to make block-level moves in much the same was as cluster-level moves. After each

iteration of the annealer, duplication is performed on nodes residing on the critical path to reduce the

critical-path delay. The work cites a 18% critical-path delay improvement overVPR with a cluster

size of 4 and wirelength of 1.

2.3.3 Improving Timing-Driven FPGA Packing with Physical Information (DPack)

DPack [17] is a greedy algorithm which incorporates placement informationinto the clustering step.

Using a min-cut partitioning-based placer, a fast placement of blocks is created. This placement

information is used to create another term in the clustering tool’s cost function. The work cites an

8% reduction in critical-path delay and a 19% reduction in channel width.

2.3.4 iRAC

iRAC [57] is greedy-based clustering tool that is specifically concernedwith reducing the routing

resource usage of the circuit. In FPGA CAD, iRAC is considered state of the art in terms of achiev-

ing the lowest channel width for a circuit. The goal of the algorithm is to make as many low-fanout

22

Chapter 2. Background

nets intracluster as possible. It accomplishes this by choosing seeds with a high number of incident

nets and a low number of associated terminals. It then packs clusters in sucha way as to encompass

as many nets as possible into the cluster. The iRAC tool can reduce the routingchannel width by an

average of 34% compared to T-VPack, without substantially altering the timing performance.

2.3.5 Using Logic Duplication to Improve Performance in FPGAs

Work by Schabas et al. [53] describes an algorithm that inserts logic duplication after placement to

improve the critical-path delay of the circuit. During the clustering phase, an approach similar to

T-VPack is employed, but some clusters are left under-full. In the paper, the clustering algorithm

leaves a minimum of 4 blocks empty in a cluster of 10, for clusters deemed to be onthe critical path.

After a simulated-annealing placement of the circuit, the algorithm inserts duplicates along timing-

critical paths to reduce the overall circuit delay. The paper cites a 14.1% decrease in critical-path

delay for a 20% increase in area. This area increase roughly equates toincreasing the grid size by 2

rows and 2 columns.

23

Chapter 2. Background

Figure 2.7: T-VPlace Pseudocode (from [40])

24

Chapter 3

Combined Clustering and Placement

Algorithm Overview

The algorithm presented in this thesis leverages node duplication and a depth-optimal initial clus-

tering to provide a starting point for a non-greedy, iterative optimization technique using detailed

placement and timing information to develop the clustering and placement solutions. The main

goal is to improve timing performance at the possible expense of area and runtime. This chapter

describes the algorithm at a high level and presents rationale for the approach.

3.1 Algorithm

The clustering and placement steps of the FPGA CAD flow require assigningeach pad, LUT or

flip-flop to a CLB, and assigning each CLB to a location on the FPGA. The inputs to the combined

clustering and placement algorithm are:

• A description of the logic circuit defined by a set ofk-input LUTs, flip-flops and pads.

• An architectural description of the target FPGA.

The outputs are:

• A netlist describing the clustering solution.

• A file describing the placement solution.

25

Chapter 3. Combined Clustering and Placement Algorithm Overview

Logic Optimization (SIS)
Technology Map to LUTs (FlowMap)

Circuit

T-VPack
group Logic Blocks in Clusters

Placement and Routing Output Files,
Placement and Routing Statistics

.blif Logic Description

.net Netlist File

Logic Optimization (SIS)
Technology Map to LUTs (FlowMap)

Circuit

VPR
Detailed Routing

Placement and Routing Output Files,
Placement and Routing Statistics

.blif Logic Description

Orchestrator
Consolidate micro clusters and create new

placement

.net Netlist File VPR Placement File

VPR Design Flow Proposed Design Flow

Microcluster Formation
group Logic Blocks into micro clusters

VPR
Fast Placement

.net Netlist File VPR Placement File

.net Netlist File

VPR
Detailed Routing

VPR
Placement

VPR Placement File

Phase 1

Phase 2

}

}

Figure 3.1: VPR and Proposed Design Flows

As shown in Figure 3.1, the proposed design flow is broken into two phases, the Microcluster

Formation phase and the Microcluster Compaction with Orchestrator phase. The term microcluster

is used to describe a group of logic blocks that will be put into the same CLB, but may still leave

room in the CLB for additional microclusters.

3.2 Microcluster Formation

The purpose of the Microcluster Formation stage is to construct microclusters by grouping con-

nected blocks in a depth-controlled manner. Creating a solution with a minimum possible depth

requires introducing node duplication into the circuit. This phase is also responsible for managing

the amount of duplication in the intermediate solution that is passed to the Microcluster Compaction

phase.

26

Chapter 3. Combined Clustering and Placement Algorithm Overview

To create microclusters, the Lawler Levitt Turner algorithm [32] is used to create a clustering

solution with a minimum circuit depth. To create a minimum-depth clustering, the LLT algorithm

requires a great deal of duplication. Some amount of duplication is desirable, as it will be used to

improve performance. Conversely, too much duplication may limit the ability of the algorithm to

meet the area restrictions imposed by the user. Therefore, a Node Duplicate Reduction (NDR) tech-

nique is presented to reduce the amount of duplication in the initial clustering solution. Using these

two techniques in tandem, an initial clustering solution is created where the amount of duplication

is customized to the area constraints of the circuit.

For subsequent steps in the CAD flow, grouping blocks into microclusters provides certain ad-

vantages over using individual blocks as basic entities. These advantages include:

• reduced runtime in creating an initial placement as there are fewer entities to place

• a more useful placement model, as microclusters are more representative of a CLB than indi-

vidual blocks

• a controlled depth that the Microcluster Compaction Phase can use to delivera critical-path

delay improvement over a clustering approach with no depth control

The Microcluster Formation phase produces a set of microclusters, where each microcluster is a

group of connected blocks of size 1. . .N, with up toI external inputs. A microcluster is essentially a

precursor to a cluster, but conforms to the same restrictions as a cluster. The Microcluster Formation

phase is described in detail in Chapter 4.

3.3 Placement

After Microcluster Formation, but before Microcluster Compaction, a placement of the microclus-

ters is created with the VPR simulated annealer using the -fast flag. A fast placement is sufficient as

the Orchestrator tool produces similar results with either a full placement or fast placement. Dur-

27

Chapter 3. Combined Clustering and Placement Algorithm Overview

ing this stage, each CLB is limited to hold only 1 microcluster, regardless of how many blocks it

contains. The VPR Placement algorithm is described in Section 2.3.1.

The placement of microclusters provides the Microcluster Compaction phasewith a detailed

estimate of circuit timing, which is then used to produce the final clustering and placement solution.

3.4 Microcluster Compaction with Orchestrator

The goal of the Microcluster Compaction phase is to reorganize and consolidate the microclusters

created in the Microcluster Formation phase to better match CLB capacity. This will reduce the

number of CLBs required, improving area efficiency, wirelength and delay. Using the fast placement

result, the algorithm builds an accurate timing model of the circuit. Using this timing information,

the algorithm iteratively moves microclusters to locations that improve delay and CLB usage.

To move a microcluster, the algorithm analyzes all predecessor and successor microclusters to

build a set of source and sink positions. From this, a set of possible move locations are generated that

would place the microclusters in a position that is more advantageous from a timingperspective.

If multiple move locations are found, they are ordered by how they affect the bounding box cost

of the circuit. The algorithm then attempts each move location, in order, until a legal move is

found, or until the algorithm reaches the microcluster’s current location.Through this technique,

the algorithm can compact the placement and iteratively reduce delay on critical or near critical nets

and gradually lower the overall critical-path delay.

The Orchestrator algorithm can also try to force a circuit to conform to a given area restriction.

If the user provides a maximum grid size, the algorithm will reduce superfluous duplication and

CLB usage while moving microclusters. This allows the designer to trade-off area for performance

in a controlled fashion.

The final output of the Orchestrator algorithm is a valid clustering and placement solution that

can be routed by VPR.

28

Chapter 4

Phase 1: Microcluster Formation

The Microcluster Formation routine groups individual blocks into microclusters. Using the Lawler

Levitt Turner (LLT) algorithm, a depth-optimal clustering solution is formed. To reduce the total

amount of node duplication in the clustering solution, a Node Duplicate Reduction (NDR) algorithm

is used. The NDR algorithm takes advantage of depth slack to reduce duplicates. Finally, if further

duplication reduction is required, the NDR algorithm can increase the depth tofacilitate a greater

reduction in duplication.

4.1 Introduction and Motivation

To goal of the Microcluster Formation phase is to create a set of highly cohesive microclusters that

provide good opportunity for subsequent steps in the algorithm to achievelow delay. In forming

microclusters, the algorithm does remove some freedom in altering the clustering solution during

later steps. As microclusters usually persist for the duration of the CAD flow, there is little oppor-

tunity to undo the initial clustering. Therefore, it is important to create microclusters that promote

low delay throughout the circuit.

When forming microclusters, to facilitate lower delay in the final routed solution,the concept

of cluster depth (or microcluster depth, depending on the context) is important. Microcluster depth

(or hereafter referred to simply as depth) is the worst-case number of microclusters traversed along

any combinational path through the circuit. Circuit depth directly influences critical-path delay as

the depth indicates the number of intercluster nets that must be traversed in therouted solution. As

29

Chapter 4. Phase 1: Microcluster Formation

intercluster nets have larger delay compared to intracluster nets and logic delay, they tend to dictate

the delay on the critical path. Therefore, it is in the best interest of the algorithm to minimize circuit

depth during the Microcluster Formation phase.

Another important consideration when forming microclusters is node duplication. Node dupli-

cation refers to creating a block with the same inputs and same functionality of another block, but

in a different microcluster. As will be shown, node duplication is used to reduce depth and critical-

path delay, but this comes at the expense of increased area. The objective for the duplication is

to provide more opportunity for critical-path delay reduction in subsequentphases by strategically

placing duplicates.

For a combined clustering and placement approach, a placement of individual blocks would

require significant runtime for large circuits. Even if such a placement were possible, without

any clustering information, the timing information available would be of little merit. To allow the

program to create a meaningful initial placement, the Microcluster Formation phase must create a

set of microclusters. During Phase 2 of the algorithm, groups of microclusters are consolidated and

placed to form the final clusters. Since microclusters will not be broken apart later, they provide the

opportunity to reduce the amount of effort required during placement. Ifleft as individual blocks,

even more runtime would be needed due to the increased amount of flexibility.

This chapter begins with a complete description of the Microcluster Formation algorithm, bro-

ken into 3 steps labelled 1A, 1B and 1C. Step 1C is described in Section 4.5.1 asit is quite long.

Section 4.6 explains how NDR algorithm is used to further reduce duplication by relaxing circuit

depth. Finally, the results of the Microcluster Formation Phase are presented and analyzed in Sec-

tion 4.7.

4.2 Algorithm Description

As shown in Figure 4.1, the Microcluster Formation phase is broken into 3 steps: 1A - Handling of

Sequential Circuits, 1B - LLT algorithm, and 1C - NDR algorithm. In this section,each of the these

30

Chapter 4. Phase 1: Microcluster Formation

steps is explained in detail.

1A :Break FFs
into Virtual

Inpad/Outpad

1B:LLT algorithm

Label

Cluster

1C:NDR algorithm

Relabelling

Pruning

Logic Description

Microclusters

progress?

Figure 4.1: Microcluster Formation Flow

4.3 Step 1A - Handling of Sequential Circuits

When performing clustering and placement, special consideration must be given to sequential circuit

elements, namely blocks which use a flip-flop. As a flip-flop is a delimiter for the critical path, any

output of a flip-flop starts a new path through the circuit, and any input to a flip-flop finishes a

path. In this work, a flip-flop is treated as two elements, a virtual input and a virtual output. After

Microcluster Formation is completed, the flip-flops are re-inserted to the circuit. Depending on the

positioning of the flip-flops, Phase 2 will either assign each flip-flop its own BLE, or match it with

a LUT and combine the two elements into a single BLE.

31

Chapter 4. Phase 1: Microcluster Formation

4.4 Step 1B - Lawler Levitt Turner Algorithm

The Lawler Levitt Turner (LLT) algorithm [32] was originally devised as apacking algorithm for

digital networks, but has found relevance with FPGAs. This relevance isfirst due to the unit delay

model, which to a first order approximation, can be applied to FPGAs. This delay model assumes:

1. all BLEs have zero delay,

2. intracluster connections have zero delay, and

3. intercluster connections have one unit delay.

This algorithm produces a clustering solution with the lowest possible maximum depth, which gen-

erally translates into a low critical-path delay. However, the algorithm has a drawback, which we

will try to fix later in Step 1C: an excessive amount of duplication is required.

The LLT algorithm is comprised of two phases, the labelling phase and the clustering phase. In

the labelling phase, each noden is assigned a label,l(n) representing the worst-case delay to that

node, under the unit delay model. The labelling phase proceeds as follows:

1. Label all primary/virtual inputs 0.

2. Find an unlabelled noden, such that all predecessors ofn have been labelled. Letk be the

largest label of any predecessor node, and let the setPk be all ancestors ofn with labelk.

i f |Pk|+1 > N, l(n) = k+1, otherwise, l(n) = k

3. Continue until all nodes are labelled. In this manner, for any noden of labelk, the number

of predecessors ofn with labelk, plusn itself, is always less than or equal toN (maximum

blocks per cluster).

32

Chapter 4. Phase 1: Microcluster Formation

The clustering phase uses the labels to create a depth-optimal clustering solution. During the

clustering phase, inpads and outpads are ignored (as they are not assigned to clusters) and latches

are treated as virtual outputs. The clustering stage proceeds as follows:

1. Find a noder with label k, such thatr is a virtual output or all successors ofr have labels

greater thank. This noder is referred to as amicrocluster root.

2. Form a microcluster which includesr and all predecessors ofr with labelk.

3. If unclustered nodes still exist, return to step 1.

At the conclusion of the clustering phase, all nodes (except inpads andoutpads) should be

assigned a microcluster. Instances may also exist where a single block exists in a number of micro-

clusters. This is referred to asnode duplication. In Figure 4.2, two microclusters exist, one rooted

at node D, the other rooted at node E. As node B is a predecessor of both D and E, and shares the

same label, it must exist in both microclusters. Therefore, a block will exist intwo microclusters,

rooted and D and E, with equivalent logic and the same set of inputs.

Figure 4.2: Node Duplication Example

Node duplication is not only essential in producing a depth-optimal clusteringsolution, it can

also have a large effect on delay, area and routing resource usage.If, in the previous example,

microclusters D and E were on different sides of the chip after placement, without duplication the

33

Chapter 4. Phase 1: Microcluster Formation

signal originating at B would have to be routed to both microclusters. With duplication, we are no

longer required to route the signal originating at B to two different microclusters, as a copy of B

will exist in both microclusters. This can reduce delay, as D and E no longerincur the large delay

of an intercluster wire, but the comparatively smaller delay of an intraclusterwire.

The effect of node duplication on routing resource usage is difficult to quantify. On one hand,

the output of the duplicated block now requires no general routing resources. On the other hand, by

duplicating a node, each input net to that node may have to route an additional terminal.

Finally, node duplication has an affect on the area usage of the circuit. Excessive duplication

can cause a substantial increase in the logic usage of the circuit. Compounding this problem is the

fact that the LLT algorithm makes no attempt to completely fill microclusters. This fragmentation

also contributes to area overhead. The problem of under-utilized CLBs will be addressed in Chapter

5.

Figure 4.3: Motivation for NDR

34

Chapter 4. Phase 1: Microcluster Formation

4.5 Step 1C - Node Duplicate Reduction Algorithm

The LLT algorithm in the previous section produces a minimum-depth clustering.Figure 4.3 shows

there is a 112% increase in block usage after LLT due to node duplication. LLT minimizes depth

for all paths in the circuit, so a certain amount of slack exists on all non-critical paths. The Node

Duplicate Reduction algorithm attempts to convert this slack into a reduction in node duplication

and an improvement in the number of nets enclosed within a microcluster.

The driving observation here is that non-critical paths may be delayed, provided it does not

cause that particular path to become critical. This allows the algorithm to delay a block’s result

(i.e., its label), forcing it into a different microcluster(s). Through this technique, NDR attempts to

find the position for all nodes which will minimize node duplication, maximize net absorption and

retain a predetermined maximum depth. A complete description of the NDR algorithmis presented

in Section 4.5.1.

To further reduce duplication, we may increase the maximum depth of the circuit to provide all

nodes with some degree of slack. This allows the algorithm a greater range of possible relabels.

This technique is further explored in Section 4.6.

4.5.1 NDR Algorithm Description

The NDR algorithm proceeds by iteratively applying to following steps:

1. Determine the set of labels to which a block may graduate.

2. Score each of these new labels in terms of how it will affect node duplication, intercluster

nets and input sharing.

3. Update the labelling and re-clustering the circuit.

4. Prune microclusters which exceed cluster size or input limits.

35

Chapter 4. Phase 1: Microcluster Formation

After each iteration, the algorithm assesses if any progress has been made. Small oscillations in the

number of blocks used can occur between iterations, therefore progress is made only if the algorithm

has reduced the overall block usage to a new low. If no progress is madeafter a defined number of

iterations (default=10), the program terminates successfully.

Using this process, the NDR algorithm can achieve a predetermined maximum depth with sig-

nificantly less node duplication, and hence area overhead, than the LLT algorithm. Each of these

step is now described in detail.

4.5.2 Relabelling

The first step is to determine the applicable label increases for all clusterable nodes in the circuit. If

the current node under consideration is nodea, with label l(a), having successorss1,s2 . . .sm, then

the maximum label possible fora is lmax(a) = min{l(s1), l(s2) . . . l(sm)}. In this manner, no node

may graduate to a higher label than any of its successors. Intuitively,lmax(a)− l(a) is representative

of the slack of nodea. Once anlmaxhas been associated with all nodes, the next step is to score each

possible move in terms of how it will affect the clustering solution. For each node, an influence

array is created with indices froml(a) to lmax(a): Il(a) . . . Ilmax(a). The largest influence value will be

used to determine the new label. The influence value for a given relabelling has two components,

a weighted score which depends on how the change will affect duplication, net usage and input

sharing, and an element of randomness.

The calculated portion for the influence value is a weighted sum of the change in node dupli-

cation (∆duplication), intercluster nets (∆intercluster), and shared inputs (∆sharedinputs). To

determine∆duplicationfor relabelling blocka to l(a)+ i we must examine all ofa’s predecessors

and successors at the same label.

∆duplication= max{0, |succclusters at l(a)+ i|−1}− |duplicated preds at l(a)|

Intuitively, ∆duplicationcounts the net change in the number of duplicates. It is larger when re-

36

Chapter 4. Phase 1: Microcluster Formation

labelling a to l(a)+ i forcesa to be duplicated for existence in multiple successor microclusters,

and smaller when relabellinga to l(a)+ i causes duplicated predecessors in the current microcluster

rooted ata to be dissolved. These dissolved duplicates can be replaced by the outputof some other

microcluster at a lower label thanl(a)+ i. For example, if blockb1 existed in microclusterA andA

was dissolved by relabellinga, a different copy ofb1 in another cluster,b2, could now supply the

successors ofb1.

Similarly, ∆interclustercounts how many intercluster nets are made intracluster during a rela-

belling. If a is relabelled tol(a)+ i, it is increased by the number of intracluster nets to a predecessor

that are made intercluster, and it is decreased for each intercluster net toa successor made intraclus-

ter.

∆intercluster= |predecessors at l(a)|− |succclusters at l(a)+ i|

Next, ∆sharedinputs is a count of how many blocks share the same input to a cluster.

∆sharedinputsis found by comparing the distinct inputs to each successor microclusterCsucc a(j)

at l(a)+ i with the inputs toa itself. Any netn which exists in both sets will reduce its total number

of sinks by one ifa is promoted tol(a)+ i.

∆sharedinputs= ∑
Csucc a(j) at l(a)+i

|distinct inputs to Csucc a(j)|∩ |inputs to a|

The final element to the influence value calculation is the weighting factorsγ1,γ2,γ3, which can

be adjusted by the user. The final influence value is calculated as:

Il(a)+i = −γ1 ·∆duplication− γ2 ·∆intercluster+ γ3 ·∆sharedinputs+ρ

Note that negative values for∆duplicationor ∆interclusterare good, since we want to promote

a reduction in node duplication and intercluster nets. Through empirical tests, weighting factors

37

Chapter 4. Phase 1: Microcluster Formation

are selected as[γ1,γ2,γ3] = [100,4,8]. These values can be changed to reflect a higher priority for

certain metrics.

The random element is an integer,ρ ∈ [0,TEMP], whereTEMPis a value that is decremented

by TEMP STEPafter each iteration of the algorithm. As the chief factor in the influence value

is the duplication term, the initial temperature value is chosen to be proportional topost-LLT node

duplication:

initial TEMP = (avg duplicatesper node)2

TEMP STEP= avg duplicatesper node

The ρ term causes nodes to promote to labels which may not be the most effective during the

initial iterations, but can prevent the solution from settling to a local minima. In thenext section it is

shown that a node relabelling may be undone. Therefore, a degree of uncertainty can combat cycles

from forming in the relabelling process by having nodes attempt to relabel to different values when

multiple options exist.

4.5.3 Pruning to Correct CLB Violations

After the relabelling phase, the possibility exists that some microclusters have greater thanN blocks

or I distinct inputs. Therefore, NDR traverses through each microcluster in abackwards breadth

first order starting at the outputs and prunes blocks from illegal microclusters until all constraints

are met. Pruning begins at the outputs, so that if a pruned node causes a predecessor microcluster

to overfill, that microcluster will be reached later and pruned accordingly.

For a given microcluster, each valid candidatec is assigned a score,P(c), where a greater

P(c) translates into a higher probability of the node being pruned from the current microcluster. A

valid candidate is any leaf node whose label may be reduced by one withoutbecoming less than

38

Chapter 4. Phase 1: Microcluster Formation

its original label assigned by the LLT algorithm. We restrict all nodes to remainat or above their

original LLT label to avoid instances where the algorithm would be forced todemote a node below

label zero.

Pruning scores are determined in a similar manner as influence scores:∆intercluster and

∆duplicationare found for relabellingc to l(c)−1, and the pruning score is calculated as:

P(c) = −γ1 ·∆duplication− γ2 ·∆intercluster

Note that pruning ignores input sharing and declines the random element for simplicity. The

largestP(c)i will decide which node reduces its label by one.

4.5.4 NDR Algorithm Results

Using this technique, node duplication can be reduced by an average of 40%, compared to the orig-

inal LLT algorithm. Figure 4.4 shows the block usage results for T-VPack,the LLT algorithm and

the NDR algorithm. While the post-duplication reduction results still have a 39% block overhead

from T-VPack, it is much less than the LLT algorithm.

4.6 Additional Duplicate Reduction Through Depth Relaxation

The NDR algorithm trades off slack on non-critical paths for a reduction inblock usage. A way to

further decrease duplication is to increase the maximum depth of the circuit, thereby creating some

degree of slack along all paths. This technique can be especially usefulwhen a tight area restriction

is imposed, since reducing area usage during the initial clustering phase maybe less detrimental

than reducing area during a subsequent phase.

Duplication limiting is implemented as follows:

• The user defines a duplication limit,duplication limit , relative to the total number of original

blocks in the circuit. Therefore, ifduplication limit = 20%, the algorithm is permitted, at

39

Chapter 4. Phase 1: Microcluster Formation

Figure 4.4: Reduction of Blocks After Using NDR

most, a 20% increase in block count.

• After each iteration of the program, the number of blocks used in the circuit iscounted. If the

block usage is within the predefined limit, the program terminates successfully.

• If the algorithm’s progress count expires without reaching the pre-defined duplication limit,

the depth of the circuit is increased by 1. The algorithm then resets the progress count and

continues running with the new maximum depth. A limit (default=5) is set on the maximum

depth increase that is allowed. When this limit is reached without meeting the duplication

limit, the algorithm terminates and produces a netlist for the current clustering solution.

To determine the effect this technique has on timing performance and area usage, a comparison

was performed with a number of different settings. The results are shownin Figure 4.5. CLB usage

and timing results are post-routing values, where T-VPack uses the VPR placement engine and all

other tests use the Orchestrator tool presented in Chapter 5. All results are geometric means across

40

Chapter 4. Phase 1: Microcluster Formation

the largest 20 MCNC benchmarks. The different clustering settings shown in the figure are:

• T-VPack, with VPR placement

• LLT clustering with Orchestrator placement and compaction

• LLT with a single pass NDR (Section 4.5.1) and Orchestrator placement and compaction (no

duplication limiting)

• LLT with multi-pass NDR using a duplication limit of: 5%, 10%, 20%, 30%, 50%, and 70%

Figure 4.5: Duplicate Reduction Results

Figure 4.5 shows the timing results as squares and the CLB usage as diamonds. These results

show that the Additional Duplicate Reduction technique is effective at reducing the CLB count, but

at the expense of critical-path delay. Timing results also show that, with the exception of the LLT

clustering, more duplication results in better timing performance.

Since the multi-pass NDR technique sacrifices the depth advantage established by the LLT al-

gorithm to reduce node duplication, it is important to understand how much of thedepth advantage

is exhausted. Table 4.6 shows the depth increase for different duplication limits, averaged across

41

Chapter 4. Phase 1: Microcluster Formation

the 20 largest MCNC benchmarks. Note that in some cases the depth increase limit of 5 is reached

and the duplication limit is ultimately not met.

Figure 4.6: Depth Increase vs. Duplication Limit

4.7 Analysis and Results

The analysis and results presented in this section are meant to demonstrate to the reader that the

Microcluster Formation phase provides a valuable contribution to the clustering and placement al-

gorithm, but that further work is required.

4.7.1 Node Duplicate Reduction Results

In this section, results are provided for the Lawler Levitt Turner Algorithmdescribed in Section 4.4

and the Node Duplicate Reduction Algorithm described in Section 4.5. The purpose of presenting

these results is to demonstrate the merit of the Microcluster Formation phase.

To provide a fair comparison of each algorithm, the clustering solutions fromeach algorithm are

placed and routed with VPR, in the same manner baseline results are produced with T-VPack. For

all tests the standard architecture, as described in Section 2.1 is used, with critical-path delay found

42

Chapter 4. Phase 1: Microcluster Formation

using a fixed channel width of 100. All results are a geometric mean acrossthe 20 largest MCNC

benchmarks. Table 4.1 presents results for T-VPack, the LLT algorithm and LLT with a single pass

of the Node Duplicate Reduction algorithm.

Tcrit # Blocks # CLBs Channel
TVPack 12.99 ns 2388.1 blocks 241.6 CLBs 43.6 tracks
Lawler 1.06 2.11 5.22 0.40

NDR 0.99 1.39 3.24 0.52

Table 4.1: LLT/NDR Results Normalized to T-VPack

The results show that the LLT algorithm achieves an average critical-path delay which is 6%

worse than T-VPack. This is likely because of large amounts of node duplication and high fragmen-

tation. The NDR results illustrate how effective the NDR algorithm is at reducing duplication, and

that this results in a noticeable performance improvement. Even with a 3x increase in CLB count,

the NDR timing performance is at par with T-VPack.

The final column shows that, in general, the channel width is reduced in the Lawler and NDR

solutions. This is primarily due to spreading smaller clusters outs across a larger grid size. A

larger grid has more routing channels overall, therefore the routing usage is spread out over more

resources.

4.7.2 Analysis of Microcluster Formation Results

To understand the LLT/NDR results better, it will be shown that there are twocompeting factors

influencing the performance of the routed solution. The first is the depth ofthe circuit, the second

is the grid size.

The depth of the circuit is important because it directly affects the number ofintercluster nets on

the critical path. As the delay of intercluster nets is more substantial than logic delay or intracluster

net delay, in most circumstances it the primary factor in the delay of the criticalpath. Table 4.2

provides depth information for each of the 20 largest MCNC benchmarks.Lawler Depth specifies

the lowest achievable clustered depth of the circuit under the architectureconstraints. Actual Critical

43

Chapter 4. Phase 1: Microcluster Formation

Path Depth is calculated by the VPR Router and it specifies the depth of the critical path. It should

be noted that the final cluster depth may be less than the Lawler Depth if the critical path is along a

route with larger interconnect delays.

Lawler Depth/ Actual Critical Path Depth (Post-Routing)
File NDR Single Pass Depth TVPack NDR Single Pass
alu4 5 5 5

apex2 5 6 5
apex4 4 6 4

bigkey 3 3 2
clma 7 10 6

des 4 7 4
diffeq 6 5 5

dsip 3 3 2
elliptic 5 8 4
ex1010 5 7 5

ex5p 4 7 3
frisc 8 16 7

misex3 4 5 4
pdc 5 9 5

s298 8 14 7
s38417 6 8 4

s38584.1 5 9 4
seq 4 6 4

spla 5 7 5
tseng 5 8 4

Geomean: 4.88 6.01 4.25

Table 4.2: Depth Analysis of Benchmarks

Overall, the critical-path depth of the T-VPack solution is 30% larger than the NDR clustering

solution. It is interesting to note that for some circuits the routed depth of T-VPack is particularly

high. For benchmarks elliptic, frisc, s298, s38417, and tseng, the T-VPack clustering solution has a

depth at least twice that of optimal. Conversely, T-VPack does well in terms of depth for a number of

circuits, such as alu4, bigkey and diffeq. The correlation between depthreduction and critical-path

delay reduction is shown later in Section 6.2.

If depth were the only consideration for performance, the LLT algorithm would be substantially

44

Chapter 4. Phase 1: Microcluster Formation

better compared to T-VPack than what is presented in Table 4.1. The major downside of the LLT

algorithm is the amount of area required due to node duplication and fragmentation. This affects

the critical-path delay of the circuit by increasing the average net length.

For a larger grid, it is reasonable to assume that a net, on average, must travel farther to con-

nect two terminals. This will require more delay, and therefore, the delay through the circuit will

increase. Figure 4.7 shows a plot of grid size versus average net length across the 20 largest MCNC

benchmarks. The average net length is produced by the VPR Router andspecifies the average

number of wire segments (of length 4) used across all nets.

Figure 4.7: Grid Size - Avg Net Length Relationship

The trendlines in Figure 4.7 show a weak correlation between grid size and average net length

for T-VPack and the NDR algorithm. Although the correlation is low, it does show that small circuits

have low average net lengths, and most large circuits have high averagenet lengths.

The previous analysis shows that the NDR algorithm has an advantage over the greedy approach

in terms of depth. This advantage is counteracted by the increase in area usage of the NDR algorithm

which leads to an increase in the average net length. This makes it extremely important to compact

the microclusters into a smaller grid.

45

Chapter 4. Phase 1: Microcluster Formation

4.8 Summary

This chapter has described how the Microcluster Formation Phase createsan intermediate clustering

solution that:

• group blocks into entities (microclusters) that are large enough to ease subsequent placement

steps

• introduces a controlled amount of duplication to improve critical-path delay

• has a controlled depth, typically being the minimum possible depth, unless additional node

duplication is required

An analysis of the NDR algorithm results show that a performance advantage is gained by

having a lower circuit depth, which results in fewer intracluster nets in the final solution. This

advantage is mitigated by the area increase required by the solution, which results in an increase in

average net length. This implies that subsequent phases of the algorithm should attempt to reduce

the area usage of the circuit without altering the depth. This provides the motivation for the next

phase of the algorithm, Microcluster Compaction with Orchestrator. In Appendix A, we present a

breakdown of microcluster sizes for the interested reader.

46

Chapter 5

Phase 2: Microcluster Compaction with

Orchestrator

After the Microcluster Formation Phase is complete, the next portion of the algorithm further con-

solidates the microclusters into CLB-sized clusters to reduce the number of CLBs. This should

result in a grid and net length reduction to improve critical-path delay further. For simplicity, this

portion of the tool is called Orchestrator. Figure 3.1 highlights where in the CAD flow the Orches-

trator tool resides.

5.1 Introduction and Motivation

As was shown in Section 4.7, Phase 1 produces a set of microclusters with an optimal depth, but

high fragmentation (under-filled CLBs) and duplication. The goal of Phase 2 is to reorganize micro-

clusters to reduce fragmentation and CLB count. It will also attempt to improve critical-path delay

by considering detailed placement and timing information while finishing the clustering.

The primary activity of the Orchestrator tool is to move microclusters to improve the timing and

area efficiency. With clustering and placement information available, the algorithm can build an

accurate timing model of the circuit. With this timing information, the algorithm iterativelymoves

microclusters to reduce the critical-path delay and consolidate microclusters.The final result of the

Orchestrator algorithm is a valid clustering and placement solution that can berouted by VPR.

When an area restriction is given, the Orchestrator tool strives to meet thisrestriction in a way

47

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

that is least detrimental to timing performance. The Orchestrator uses techniques to reduce node

duplication and vacate CLBs to gradually reduce area usage until the restriction is met. The area

restriction imposed by the user carries a higher precedence than critical-path delay, so increases in

the critical path, though undesirable, are tolerated.

The main focus of this chapter is Section 5.2, which explains the Orchestratoralgorithm. After

the algorithm description, an analysis of the results is presented, and a summary of the Orchestrator

algorithm concludes the chapter.

5.2 Algorithm Description

The Orchestrator tool proceeds in an iterative fashion, with two distinct stages. The first stage

relocates microclusters with the sole objective of reducing the critical path ofthe circuit. The

second stage is invoked if the area constraints are not met. This stage works to reduce area usage by

removing duplication and relocating the set of microclusters to fit into fewer CLBs.

During each iteration of the algorithm, Orchestrator attempts to move each microcluster. A

microcluster may move to a location which is already occupied, provided the aggregate of all mi-

croclusters at that location still meet the CLB constraints of the architecture (≤ N blocks,≤ I

inputs). In this chapter, location and CLB are used interchangeably to represent an (x,y) location

that coincides with a CLB in the final solution. At the completion of the Orchestrator algorithm,

all microclusters that reside at the same location are combined in a single cluster. Through this

consolidation process, the Orchestrator tool has the ability to alter the clustering solution.

To improve the timing of the initial solution, the Orchestrator tool relocates microclusters to

reduce the critical-path delay of the circuit. In relocating a microcluster, the algorithm analyzes

predecessors and successors of the microcluster to create a set of possible move locations. The

set of possible move locations is chosen such that moving the microcluster will not increase the

critical-path delay of the circuit, and may even reduce it. Once a set of possible move locations

has been established, the algorithm will either move or swap the microcluster, provided a gain in

48

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

performance or bounding box cost is achieved.

5.2.1 Description of Inputs

The Orchestrator tool takes a number of inputs:

1. A BLIF description of the circuit, required to build a list of all blocks and nets in the circuit.

2. A VPR-style Netlist (.net) which describes the initial clustering solution found in the previous

stage.

3. A VPR-style Placement (.p) showing the location of all microclusters and pads in the circuit.

It should be noted that if no placement file is specified, the Orchestrator tool will use its

embedded simulated annealing engine to perform a fast placement equivalent to VPR -fast.

4. A VPR-style Architecture file (.arch) that is used to build a timing model of the FPGA.

5. A grid size which the algorithm attempts to fit the circuit to. If no grid size is given, the

algorithm assumes that no area restrictions are imposed.

5.2.2 Orchestrator Preliminary Operations

Once the circuit description has been read in, a number of preliminary tasksmust be performed.

These include:

1. Remove all unused elements in the circuit (blocks, flip-flops or inpads without any succes-

sors).

2. Pack blocks and flip-flops together where possible. This requires finding all blocks that have

a single flip-flop successor, and combining the two elements into a single BLE. The resul-

tant BLE will reside where the block originally existed. We will continue to refer to these

BLEs as blocks when we are discussing the netlist, and as BLEs when discussing the FPGA

architecture.

49

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

The final step before the main operation of the algorithm is to build the timing model of the circuit.

This is described in detail in Section 5.2.4.

5.2.3 Orchestrator Operational Overview

Figure 5.1 shows a high-level flow chart of the Orchestrator algorithm.

Orchestrator Main Loop

Microclusters from
Phase 1

Placement from VPR
Fast Placement

Remove unused circuit
elements
pack blocks and
flip-flops together

netlist file placement file

Peephole optimization

Clustering and
Placement Solution

iteration
> 100

grid size met
OR iteration >

200

Duplicate Analyzer

Microcluster Move

Pad Move

Figure 5.1: Orchestrator Flow Chart

The main loop of the Orchestrator algorithm is responsible for moving microclusters and pads,

removing duplicates and readjusting the grid size. The objective of the main loop is to reduce the

grid size to that specified by the user while maintaining a low critical-path delay. The main loop is

described in Section 5.2.5.

Once the main loop of the program has completed, one final ”peephole optimization” is per-

formed on the duplicates to improve routability. Using the Duplicate Analyzer (see Section 5.2.6),

each sink selects the closest duplicate as its source, provided this does not increase its arrival time.

The program is forced to keep all duplicates. However, each sink chooses the duplicate that both

meets its timing requirements and has the smallest Manhattan distance. While this may increase de-

50

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

lay on non-critical paths, it does not affect the critical-path delay because sinks continue to enforce

their timing requirements. This improves the routing resource usage of the circuit. The average

channel width across the 20 largest MCNC benchmarks is 43.74 without thefinal adjustment, and

41.46 with it. The maximum channel width is 100 without the final adjustment, compared to only

78 with it.

After the peephole optimization, the program merges all microclusters at a given (x,y) location

into a single cluster. The resulting cluster will obey all constraints assigned toa CLB (LUTs, inputs,

etc.).

To allow the circuit to be routed, the clustering description (.net) and a placement file (.p) of the

solution are output. If requested, the program will also produce a BLIF file representing the final

logic description of the circuit. This can be useful when performing formalverification to ensure

the final circuit is logically equivalent to the original. Finally, the program completes by reporting

statistics on the clustering/placement solution.

5.2.4 Orchestrator Timing Model and Timing Graph

The Orchestrator timing model is similar to the VPR timing model in most respects, except for a

simplified wire delay estimation routine. When a net delay is requested, the timing model deter-

mines the minimum number of wire segments required, multiplies the number of wire segments by

the wire segment delay, and finally, adds the delays associated with connection blocks and CLB

internal routing. The wire segment delay is calculated using an Elmore delay model [19].

Using this model, a timing graph is constructed for a circuit in order to compute:

• the arrival time of a signal at a node,

• the completion time of a node (when the node produces an output) or the arrival time of a

node (time at which all inputs to the node have arrived),

• the delay incurred along a net between any two terminals, and

51

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

• the slack of any node or net as described in Section 2.3.1.

Generally, the timing graph keeps an up-to-date value for all block completiontimes and slack

values, and computes net delays and net slack estimates as required. Figure 5.2 shows a flow chart

explaining the process by which the timing model is updated after a block is moved. When multiple

blocks are moved, all arrival times are updated as shown in the left of the figure, then all slack

estimates are updated as shown in the right of the figure.

update net delay for all
connections to b / recompute
arrival time for b, push b to

stack updated_block

for successor s of b, update
arrival time

did the arrival
time of s
change?

have we
examined all

of b's
successors?

NO

NO

Recurse
Entry

push s to updated_block
recurse on s from " Recurse

Entry"

is s a
virtual/primary

output, and have
we changed the

max arrival time?

NO

update
remaining

arrival times,
recompute all

slack
estimates

DONE

YES

pop block k from stack
updated_block

At this point, we should have all successors or b, for
which their arrival times have changed in updated_block
The program must now reverse back through the list
and update the slack estimates for the set of all predecessors
of all blocks in updated_blocks

YES

YES

examining all
successors of k,

calculate new slack
estimate for k

did the slack
estimate for k

change?

is
updated_block

empty?

NO

NO

push all predecessors
of k onto

updated_blocks

YES

Block b is moved to a
new position

DONE

YES

Figure 5.2: Flow Chart of Timing Graph Update for a Block Move

52

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.2.5 Orchestrator Main Operation

This portion of the thesis describes the operation of the main loop in the Orchestrator program.

The main loop has two distinct stages:ReorganizeandReduction. The Reorganize stage re-orders

the microclusters with no emphasis paid to reducing the area/CLB usage; its primary focus is to

reduce the critical-path delay of the circuit. The Reduction stage is executedafter the circuit has

reached a steady-state during the Reorganize stage, but has still not metthe grid size requirement.

The Reduction stage actively removes duplicates and attempts to reduce the number of CLBs used,

so that the circuit will fit within the specified grid.

The default behaviour is for the Reorganize stage to run for 100 iterations, and if required, the

Reduction stage to run for up to 100 further iterations. In most circuits, a steady-state is reached

in the Reorganize stage prior to 100 iterations, but as run-time is not a major concern at this time,

we use 100 iterations as a safe margin to ensure the Reorganize stage has completed. The default

number of iterations can be changed by providing the program with a different value at run-time, but

for simplicity, this document will assume default values. If run-time was a concern, the Reorganize

stage could conclude after a number of iterations without the algorithm making any progress in

terms of area and delay.

1. If the main loop is in the Reduction phase (iterations≥ 100), and the grid size is still not met,

do the following two substeps:

(a) Perform Duplicate Reduction as described in Section 5.2.6. The slack steal parameter

is computed asslack steal= iterations−100
100 . The duplicate reduction step will remove all

duplicates that it deems superfluous, allowing the program touseslacksteal percent of

the slack of any given sink block to aid in duplication reduction.

(b) The most aggressive technique the algorithm uses to reduce cluster count is to force

a given location to expel all of its microclusters. This is done through ane ject flag

associated with each CLB location. Thee ject flag will be set for a percentage of the

53

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

least-critical CLBs and all empty CLBs. The algorithm strives to gradually reduce the

cluster count of the circuit while minimizing the impact this has on critical-path delay.

The goal is to finish the Reduction stage at iteration 150. Define a variablee ject pct,

where

e ject pct = (used clbs−desired grid size2)
used clbs if iteration< 150

e ject pct = 0.02 if iteration≥ 150

Notice that if the area is not met by iteration 150, a fixed 2% of locations are expelled

until the area requirement is met.

Thee jectflag is set for all empty CLBs, and thee ject pct% least-critical of all occupied

locations. A location’s criticality is the inverse of the minimum slack of all its blocks.

If the e ject variable is set for a cluster, the algorithm will not move any microclusters

into it; it will only move microclusters away from that location even if this means an

increase in critical-path delay. The usage of thee jectflag is further explained in Section

5.2.8.

2. Order all microclusters according to criticality:

• First priority is the minimum slack of all blocks in the microcluster.

• Second priority is the average slack of all blocks in the microcluster. If multiplemi-

croclusters have the same minimum slack, the average slack across all blocks in the

microcluster is used as a tie-breaker.

3. For each microcluster, in descending order of criticality, attempt to move each microcluster.

See Section 5.2.7 for details on the moving process.

4. For each pad, in no particular order, attempt to move. See Section 5.2.9.

54

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5. Perform compaction if enough free space exists to fit the circuit into a smaller grid size.

AssumingGcurrent is the length/width of the current grid (excluding pads), a grid compaction

is possible if the following equation is satisfied:

(Gcurrent−1)2 ≥ total clusters

Compaction is performed by an incremental placer described in Section 5.2.10.

6. The main loop of the program exits when all of the following conditions havebeen met:

• The program has completed at least 25 iterations since the last compaction (Step 5). This

criteria is in place to give the algorithm sufficient opportunity to recover anydetrimental

effects the compacting/annealing may have had on the critical path.

• The program has run the predefined minimum number of iterations (default 100) AND

met the desired grid size

• The program has not yet reached a hard limit on iterations (default 200).

If any of these conditions have not been met, return to Step 1.

5.2.6 Duplicate Analyzer

input: float slacksteal∈ [0,1]

The job of the Duplicate Analyzer is to remove node duplication in an effort to meet the area

specification of the design. Under no circumstances should the Duplicate Analyzer remove a du-

plicate which causes the critical-path delay to increase. The Duplicate Analyzer may remove a

duplicate which causes the completion time of a non-critical block to increase. The slack steal

variable specifies, as a percentage, the amount of slack that can be sacrificed in order to further

reduce the number of duplicates. An initial step the Duplicate Analyzer performs is to merge all

duplicates that exist at the same (x,y) location but in different microclusters. This requires migrating

55

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

all successors to one of the duplicates and removing the unused ones. This not only simplifies the

task of the Duplicate Analyzer, it prevents certain errors from occurring.

The main portion of the Duplicate Analyzer works by traversing all blocks in abreadth-first

order starting at the primary outputs. Starting from the outputs will prevent the Duplicate Analyzer

from accommodating a sink that will later be removed. For each set of duplicates that has not yet

been analyzed:

1. Assemble lists of 1. all clones and 2. all sinks

2. Create a set of sets, theclone usage set, where each internal set represents all clones which

satisfy the timing requirements a given sink. A clone is said to satisfy a given sink, provided:

completiontime(clone)+net delay(clone,sink)< arrival time(sink)+[slack(sink)∗slack steal]

Theslack stealvariable is used to trade off slack for node duplicate reduction. It allows the

algorithm to exhaust the slack of some nodes to find a smaller set of duplicateswhich satisfy

the requirements of all sinks.

3. From the clone usage set, find a hitting set. The hitting set is a set of clonessuch that at least

one element from the hitting set exists for each internal set in the clone usage set. Intuitively,

this creates a set of clones (possibly smaller than the original set) that are able to satisfy the

timing requirements of all sink blocks. The hitting set is an NP-Complete problem [25], so a

simple greedy heuristic is required. The algorithm gives precedence to clones with a higher

cardinality.

To find the hitting set:

• Start by adding all blocks that are essential to a given sink. If we conclude thatsinkA

can only be satisfied bycloneB, automatically includecloneB in the hitting set.

• Remove internal sets of clone usage set that are satisfied.

56

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

• Provided internal sets remain in the clone usage set, find the clone that can satisfy the

most remaining sinks. Include that clone.

• Remove internal sets of clone usage set that are satisfied.

• If sinks remain to be satisfied, return to first step. Otherwise, return hitting set.

4. For each sink, update its input to the clone in the hitting set that will producethe earliest

arrival time of that signal.

5. Remove all duplicates that are not in the hitting set.

6. Update timing graph.

5.2.7 Microcluster Relocation

input: microcluster MC

The microcluster relocation routine will attempt to moveMC to a new location, with respect to

the following objectives, in order of priority:

• the validity of the solution is maintained (no cluster constraints are broken),

• the critical-path delay of the circuit is not increased,

• the arrival time for successors ofMC is minimized, and

• the overall bounding box cost is minimized.

If possible, the algorithm will moveMC to a location which reduces the delay on a critical path; this

may occur at the expense of slack on other non-critical paths.

The microcluster relocation routine works by maintaining a two dimensional array of possible

move locations. By analyzing the predecessor nodes and successor nodes ofMC, the algorithm

constructs a set valid move locations and attempts to relocateMC to one of these locations.

57

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

The first step of the microcluster move routine is to check thatMC can be moved from its current

location. A microcluster cannot be moved out if its removal would increase thenumber of inputs to

the location and cause a violation of the input constraints. This may happen if the output ofMC is

used within the location by another microcluster.

ProvidedMC is movable, the microcluster move routine is performed as follows:

1. Create two arrays, equal in size to the current grid. The first,VALID LOCATIONS, is an

array ofbools, where each element specifies whether a given (x,y) location meets the timing

requirements for microclusterMC. Initialize theVALID LOCATIONS so that all pads are false

and all CLBs are true. The second array,BB OVERLAP, is an array ofintegers, where each

element specifies how many bounding boxes of nets incident toMC overlap a given (x,y)

location. Initialize all elements to 0.

2. Compute theBB OVERLAP array. TheBB OVERLAP array is used to assess how a move will

affect the bounding box cost of the circuit. For all input netsnii to the microcluster:

• Compute the bounding box ofnii ignoring any blocks in microclusterMC. Ignoring

MC’s current position prevents a biasing towardsMC remaining where it is.

• For all locations that fall outside of the bounding box ofnii , increment the corresponding

BB OVERLAP element by 1.

For all output netsnoi of the cluster:

• Compute the bounding box ofnoi , ignoring the source location and any sinks that are

intracluster.

• For all locations that fall outside of the bounding box ofnoi , increment the correspond-

ing BB OVERLAP element by 1.

The BB OVERLAP array now represents how many bounding boxes will increase in size if

microclusterMC is moved to any location on the grid.

58

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

3. Next, theVALID LOCATIONS array is constructed. From the input nets to the microcluster,

form a set of valid move locations. A move location is valid provided that performing the

move does not cause the completion time of any block inMC to increase beyond its slack

margin. To create the set of valid move locations, iterate through all input netsnii and do the

following:

• Determine the time at which the source ofnii produces a result,source f inish. The

value is calculated to the point when the signal leaves the CLB of the source block.

• Find the sink ofnii in MC with the earliest arrival time,sinkMCi . ForsinkMCi , compute

required arrival(sinkMCi) = arrival time(sinkMCi)+slack(sinkMCi)

− tCLB input− tLUT input

tCLB input is the delay through the connection block to the CLB input pin,tLUT input is

the delay from a CLB input pin to a BLE input pin.

• The time allowance of netnii is defined as the difference between the required arrival of

sinkMCi andsource f inish.

input allowance(nii) = required arrival(sinkMCi)−sourcefinish

Intuitively, MC must be positioned such that the signal fromnii can reach it in the time

allowance, or risk creating a critical path.

• As we have sufficient placement and timing information, we can determine exactly

which locations can meet the constraint of the timing allowance. From the timing model,

the delay of a wire segment is known to beTdel wire. Therefore,

hops= ⌊input allowance(nii)/Tdel wire⌋

59

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

is the number of wire segments that netnii has to reachMC. So, for all locations not

within hopsof the source ofnii , mark corresponding element ofVALID LOCATIONS as

false.

Figure 5.3 presents an example of theVALID LOCATIONS masking procedure. In the

example,MC is shown in blue and predecessors ofMC are shown in red. Examining the

predecessor to the bottom-right ofMC, assumehopsis found to be 3. In Figure 5.3b, the

VALID LOCATIONS array has been masked such that all invalid move locations farther

than 3 hops are shown in grey. By definition,MC’s current location will always be a

valid move location, as it is known to meet the timing requirements ofMC.

Figure 5.3:VALID LOCATIONS Masking Example

After all input nets have been examined, theVALID LOCATIONS should have a number of

elements marked true (at the very least, onlyMC’s current location is marked true). The

elements marked true represent (x,y) locations thatMC can move to and still meet the timing

requirements of all blocks inMC. If the only valid location isMC’s current location, return

from the microcluster move routine, leavingMC where it is.

4. The next step requires the program to impose some unobtainable timing restrictions on the

output nets of the microcluster, and slowly relax those restrictions until a suitable move loca-

60

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

tion is found. The idea is to find a location to moveMC to that satisfies the tightest restrictions.

The hope is that this will in turn cause the arrival time of successor blocks todecrease.

To proceed, the algorithm must find a starting point that is guaranteed to be unobtainable. Find

successorsmin, such thatarrival time(smin)+slack(smin) is the lowest value for all successor

blocks. Define a variablemargin, and set it to:

margin= arrival time(smin)+slack(smin)− tCLB input− tLUT input

The margin variable is used to adjust the restrictions on the output nets. This initial value is

shown to be unobtainable later in this section.

5. The process of finding a valid move location for MC is as follows:

• For each output netMC outi , provided it has at least one intercluster connection, mask

the VALID LOCATIONS for each sink. First compute the time at which the signal

MC outi leaves microclusterMC.

completiontime(MC outi) = completiontime(source block o f MCouti)+ tLUT out put

wheretLUT out put is the delay from the output of a LUT to the output pin of the CLB.

Next, for each sinksinkk of MC outi :

– Calculate the arrival time ofsinkk minus the time required to route a signal from

the CLB input to BLE input:

CLB arrival(sinkk) = arrival time(sinkk)

− tCLB input

− tLUT input

61

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

– For netMC outi , completiontime(MC outi) is the time at which the signal leaves

microclusterMC. CLB arrival(sinkk) is the time at which netMC outi must reach

sinkk to prevent the arrival time ofsinkk from increasing. Theout put allowance

value is calculated as:

out put allowance= CLB arrival(sinkk)+slack(sinkk)

− completiontime(MC outi)

− margin

The out put allowancevalue is the delay permitted for signalMC outi to reach

sinkk. If the program can successfully find a position for microclusterMC where

theout put allowancevalue is less than current net delay, it may cause a reduction

in arrival time for sinkk. The slack(sinkk) term increasesout put allowanceby

depleting the slack of non-critical blocks. Themarginvariable is used to adjust the

timing restrictions for blocksinkk.

Note that with an initial margin value ofarrival(smin)+ slack(smin)− tCLB input−

tLUT input, if sinkk == smin, terms one and two will be cancelled out by themargin

term, leavingout put allowanceless than or equal to zero. Therefore, we guarantee

our initial value is unobtainable.

– In order to meet the allowance delay, microclusterMC must be within

hops= ⌊allowance/Tdel wire⌋ of sinkk. Therefore, mask all elements of

VALID LOCATIONS, which are not withinhopsof sinkk, as false.

6. Once theVALID LOCATIONS has been masked for all sinks of all output nets, there may or

may not be a some elements which are still marked as valid locations. If there areno valid

locations (implying the timing restriction is too tight), do the following:

• restore theVALID LOCATIONS array computed after masking the input net sources

62

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

• decrement the margin variable byTdel wire/4

• return to Step 5

Decrementing margin byTdel wire/4 was determined by experimentation described in Ap-

pendix B.

If valid locations are still present, the algorithm attempts to find the best candidate for reloca-

tion. The algorithm has four possible outcomes at this stage, here listed in descending order

of desirability:

(a) move microclusterMC to a new location

(b) swap microclusterMC with a less critical microcluster, provided it results in microclus-

terMC adhering to a tighter timing restriction

(c) retain microclusterMC at this current position

(d) if no valid moves or swaps can be found, andMC’s current position does not meet this

timing restriction, decrement margin and perform another iteration

7. The first step in attempting to relocateMC is to sort the valid move locations. The metric

used is the number of bounding boxes that are not increased by relocating the microcluster.

Using theBB OVERLAP array computed earlier, order all valid relocation candidates.

8. For each valid relocation candidate(x j ,y j), in ascending order of maintained bounding boxes:

• If this is MC’s current position, concede the fact that no timing improvement can be

made from movingMC during this iteration. Any move that can be made will result in

an overall increase in bounding box cost; if a swap exists, no timing improvement will

be gained. Return from the microcluster move routine.

• If microclusterMC can not be legally moved to(x j ,y j) (violates a cluster constraints -

inputs/cluster, BLEs/cluster), advance to the next valid relocation candidate.

63

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

• If microclusterMC can be legally moved to(x j ,y j), perform the move. Update the

timing graph to reflect the change. Return from the microcluster move routine.

9. If no legal moves can be found, andMC’s current position is not a valid relocation candidate,

swappingMC with a less critical microcluster may result in a decrease in timing cost. So, for

each valid relocation candidate(x j ,y j), in ascending order of maintained bounding boxes:

• For all microclusters in(x j ,y j), try to find the least critical,MC¬critical such that moving

MC to (x j ,y j) while movingMC¬critical to MC’s current position is legal for both. If no

swap partner can be found, proceed to the next valid relocation candidate.

• If a valid MC¬critical is found, perform the swap. Update the timing graph to reflect the

change. In the event that the critical-path delay of the circuit has increased, undo the

move. This can occur if movingMC¬critical is so detrimental that it causesMC¬critical to

become highly critical and create a new critical path. If the swap does not increase the

critical path, return from the microcluster move routine.

If no valid swaps can be found:

• restore theVALID LOCATIONS array computed after masking the input net sources

• decrement the margin variable byTdel wire/4

• return to step 5

5.2.8 Microcluster Relocation During the Reduction Stage

During the reduction stage, the microcluster relocation routine is modified to aid inarea reduction.

It breaks non-critical microclusters into individual blocks and uses themto fill up other clusters. In

Step 1b of the main loop body, thee jectflag is set true for a number of locations. Thee jectvariable

indicates to the microcluster relocation routine:

1. not move any microclusters into this location

64

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

2. not swap any microclusters into this location

3. move all resident microclusters away from this location if possible, even ifit means a critical-

path delay penalty

This technique allows the algorithm to reduce the CLB usage to the prescribedlimit.

The microcluster relocation routine during the Reduction stage is very similar to the normal

routine, with a few distinct modifications:

• If the current position of microclusterMC has itse jectflag set, do not attempt any swaps.

• When ordering the valid move locations in Step 8, ignore any locations with a sete jectflag.

• When relocating a microclusterMC, in a location with thee ject flag set, breakMC into its

constituent blocks, with each block now existing in its own microcluster. This technique is

especially useful when the circuit is highly utilized as a single element microcluster has more

freedom to move than a near-full microcluster.

• Provided thee ject flag of MC’s current location is set, leavingMC (or its derivative micro-

clusters) in its current position is not a preferable option. Therefore, avalid move location

may only be found by movingMC to a location which causes a critical-path delay increase.

In this instance the algorithm is forced to sacrifice performance to obtain the required area.

In rare circumstances, no valid move location exists; ifmargin ever becomes negative, the

algorithm gives up and leavesMC in its current position.

5.2.9 Pad Relocation

input: pad p

The pad relocation routine is used to move inpads and outpads to improve the circuit performance.

65

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Outpads

In the architecture model assumed here, outpads may only be driven by a single source. When

relocating outpads the algorithm attempts to reduce the Manhattan distance between the pad and its

predecessor. Consider an outpadp, with predecessorppred located at(xpred,ypred). The process for

moving p is as follows:

• Determine the current Manhattan distance fromp to ppred, manhcurrent.

• Create a list of possible move locationsattemptlocations, organized in ascending order of

Manhattan distance to(xpred,ypred). For all I/O locations,(xi ,y j), compute the Manhattan dis-

tance to(xpred,ypred), manhi, j . If manhi, j < manhcurrent, insert(xi ,y j) into attemptlocations.

• If attemptlocationsis empty, the pad relocation routine terminates, otherwise, traverse the

attemptlocationslist in order.

• For each location(xk,yl) ∈ attemptlocations, provided(xk,yl) has space for an additional

pad, and movingp does not increase the critical-path delay of the circuit, movep to (xk,yl).

If the move is successful, the pad relocation routine updates the timing graph and terminates.

If the move is not successful, advance to the next location.

• If the attemptlocationslist is exhausted, terminate without movingp.

Inpads

An inpad may supply a number of different successors, therefore it requires a more complicated

algorithm which is based on the same principles used in the microcluster relocation routine. The

process to move an inpadp proceeds as follows:

1. Create an array ofbools equal in size to the current grid,VALID LOCATIONS. Each element

specifies whether a given (x,y) location meets the timing requirements for padp. Initialize

theVALID LOCATIONS so that all I/Os are true and all CLBs are false.

66

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

2. Next, set the initial value of themarginvariable. For all successorssi of p, set:

margin= min{arrival(si)+slack(si)}∀si

3. For each successorsk, compute the signal time allowance as:

allowance= arrival(sk)+slack(sk)−margin

4. Therefore,p must be withinhops= ⌊allowance/Tdel wire⌋ wire segments ofsk. Mask the

VALID LOCATIONS grid as shown in Figure 5.3, where all locations farther thanhopsare set

to false.

5. If no locations ofVALID LOCATIONS remain true after masking for all successors, reset the

VALID LOCATIONS array, decrement the margin byTdel wire/4 and start again.

6. If legal move locations do exist, randomly choose one location(xi ,y j).

• If (xi ,y j) is p’s current location, the routine terminates without movingp.

• If (xi ,y j) has sufficient space for an additional pad, movep to (xi ,y j), update the timing

model and return.

• If (xi ,y j) does not have sufficient space, mark(xi ,y j) as false and randomly choose

another location.

While the microcluster relocation routine is more deterministic, the pad relocation routine is

allowed to have a degree of uncertainty. This allows inpads to explore different locations, which may

allow the microcluster relocation routine to achieve a lower critical-path delay, while guaranteeing

that the critical path will never increase by moving an inpad. This method was found to be more

effective than trying to use the bounding box cost as a tie-breaker, as isdone in the microcluster

relocation routine.

67

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.2.10 Compaction

The compaction routine uses an incremental placement algorithm designed byDavid Leong [37]. It

is used to reorganize all CLBs into a smaller grid whenever:

(Gcurrent−x)2 ≥ total used CLBs

x is chosen as the largest integer value that will satisfy the inequality. This means that the grid is

compacted as much as possible after each iteration of the program.

The compaction algorithm works by defining a sub-grid of sizeGcurrent− x within the current

grid. All CLBs that exist outside this sub-grid are said to be illegal. The illegalarea of the original

grid is split into 8 regions: 4 sides adjacent to the sub-grid and 4 corners diagonally connected to

the sub-grid. For each region which contains illegal CLBs, all free space in the sub-grid is move

adjacent to the side or corner in question. The algorithm then moves the strayCLBs into the sub-

grid. This continues until all CLBs are contained within the sub-grid.

Figure 5.4: Compaction Routine Example (from [37])

Figure 5.4 shows an example of the compaction process. The far left image shows a circuit

which is to be compacted into the sub-grid outlined in red. Notice the two illegal blocks north

of the sub-grid. The second image shows the result of the compaction routine. All free space in

the sub-grid is moved adjacent to the illegal blocks, and the illegal blocks aremoved into the sub-

grid. The third image shows the circuit after the refinement anneal has been performed. The fourth

68

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

image is the result of a complete anneal of the circuit into the smaller grid. Notice from the block

colouring that the compaction/refinement anneal provides similar results to a full anneal, but with

less computation time.

After a compaction, a fast refinement anneal is performed to recover any quality degradation

caused by the compaction. The refinement anneal uses the programs embedded simulated annealer,

based on the VPR annealer described in Section 2.3.1. The refinement anneal differs from a com-

plete anneal in that it assumes the current solution is already close to a goodsolution. Provided

the compaction step does not drastically alter the circuit placement, a low temperature anneal will

recover the bound box and timing cost increases caused by the compaction.

Specifically, the refinement anneal differs from a complete anneal, described in Section 2.3.1,

in the following ways:

1. The initial temperature is set to achieve a 44% acceptance rate from the start of the refine-

ment. Assuming the compaction routine has not changed the placement too severely, the local

minimum should coincide with the global minimum.

2. The move range for a CLB is set to 12.5% of the grid width. This limits how much the anneal

may perturb the current placement.

3. The temperature reduction factor is set to 0.8. This causes the refinement annealer to reduce

the temperature more quickly than the VPR annealer, and therefore allow the refinement

annealer to run faster.

The refinement anneal will decrease the timing and bounding box cost of the circuit to a level similar

to the pre-compaction state of the circuit.

5.3 Analysis and Results

This section provides initial timing results to compare Orchestrator with T-VPack/VPR. A more

extensive comparison of results appears in Chapter 6.

69

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.3.1 Timing Results

The combined clustering and placement algorithm presented here achieves, on average, an 11% tim-

ing improvement over T-VPack. The maximum timing improvement obtained was 20.3% (s38417).

Orchestrator failed to improve timing for only one of the twenty circuits (diffeq), which suffered a

3.5% performance degradation. All results are for no area restrictions and a fixed channel width of

100. Figure 5.5 shows a graph of timing performance for T-VPack and Orchestrator in ascending

order of T-VPack critical-path delay. Full numeric results can be found later in Table 6.1.

Figure 5.5: Critical-Path Delay Results

The overall results show a noticeable improvement over T-VPack. The smaller circuits, bigkey

and dsip, have minimal improvements as each has such a short minimum depth, providing little

room for improvement. The circuit diffeq is the only MCNC benchmark whereT-VPack performs

better than Orchestrator. This may be attributed to T-VPack’s ability to cluster this circuit in a depth-

optimal manner. Further exploration of the depth/timing correlation is investigatedin Chapter 6.

70

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

5.3.2 Orchestrator with Area Restrictions

When area restrictions are imposed on the circuit, the Orchestrator tool may increase the critical-

path delay to meet the area restriction. To avoid this as much as possible, the Additional Duplicate

Reduction Technique described in Section 4.6 can be employed to reduce duplication prior to in-

stantiating the Orchestrator tool. To determine the best initial clustering solution for different area

restrictions, a series of tests were performed. The results shown in Figure 5.6 represent final timing

results produced by the Orchestrator tool. The initial clustering solutions explored were:

• LLT clustering

• single-pass NDR clustering (no duplication limiting)

• NDR clustering with a duplication limit of: 5%, 10%, 20%, 30%, 50%, and 70%

Figure 5.6: Duplication Limiting Test Results

From these results, the settings for Microcluster Formation were chosen for various grid size

setting to reduce delay. These settings, shown in Table 5.1, are used.

Table 5.2 shows timing results, normalized to T-VPack, for the Orchestrator tool under various

area restrictions.Min refers to the minimum grid size required as determined using T-VPack. The

71

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Orchestrator Grid Setting Initial Clustering Settings
Unlimited Single Pass
Min +3 50% duplication limit
Min +2 20% duplication limit
Min +1 Single Pass
Minimum 5% duplication limit

Table 5.1: Duplication Limiting Final Settings

results are for the standard architecture, as described in Section 2.1, withlow-stress routing, where

the channel width is set to 30% more than the minimum required. Results are presented in ascending

order of T-VPack critical-path delay.

The results presented in Table 5.2 show how area allowance is directly related to performance.

Even with a grid increase of 1 unit, a performance improvement over T-VPack is possible. With the

exception of a few circuits, minimum grid size results are on par with T-VPack.

5.3.3 Timing vs. Area Performance

The main goal of the Orchestrator tool is to improve timing performance within the area restrictions

imposed. To show how effectively Orchestrator accomplishes this, Figure5.7 plots the geometric

mean critical-path delay (squares) and CLB usage (triangles). Clusteringsolutions include the single

pass NDR algorithm described in Section 4.5.1 with placement by VPR, the Orchestrator tool with

various area restrictions, and T-VPack/VPR. It should be noted that for two circuits (ex1010 and

frisc), the minimum grid size was not met.

The results show that Orchestrator provides a significant improvement over using just single-

pass NDR from Chapter 4. Orchestrator achieves a 9% delay improvementwhile reducing the CLB

usage by 56%. When area restrictions are imposed, the Orchestrator toolprovides a continuous

trade-off between area and performance improvement.

72

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Unlimited Min +3 Min +2 Min +1 Minimum TVPack
dsip 0.95 0.94 1.06 1.01 1.04 5.57 ns

bigkey 0.95 0.95 0.95 0.97 1.03 5.60 ns
des 0.94 0.93 0.91 1.04 1.02 9.83 ns

misex3 0.91 0.97 0.97 0.98 1.03 10.46 ns
seq 0.89 0.87 0.87 0.96 0.95 10.79 ns

apex4 0.89 0.96 1.00 0.95 0.98 11.11 ns
alu4 0.92 0.97 0.97 0.93 0.97 11.44 ns
ex5p 0.89 0.91 0.96 1.04 1.00 11.58 ns

s38584.1 0.92 0.97 0.97 1.00 1.10 12.61 ns
apex2 0.93 0.91 0.96 0.95 0.99 12.77 ns
diffeq 1.02 1.06 1.05 1.02 1.18 13.04 ns
tseng 0.89 0.93 0.93 0.87 1.00 14.14 ns
spla 0.93 1.13 1.01 0.97 1.00 14.51 ns

s38417 0.83 0.82 0.82 0.92 0.99 16.22 ns
ex1010 0.86 0.99 0.87 0.88 1.12a 16.30 ns
elliptic 0.88 0.87 0.87 0.95 1.32 18.04 ns

pdc 0.73 0.79 0.78 0.82 0.91 18.93 ns
s298 0.94 0.88 0.84 0.94 1.06 22.44 ns
clma 0.94 1.03 1.06 1.07 1.37 22.78 ns
frisc 0.92 0.92 0.92 0.99 1.10b 24.22 ns

Mean: 0.91 0.94 0.94 0.96 1.05 14.12 ns

a - ex1010, used 499 CLBs, missing the target of 484 by 15 CLBs
b - frisc, used 369 CLBs, missing the target of 361 by 8 CLBs

Table 5.2: Orchestrator Results for Various Area Restrictions, Normalizedto T-VPack

5.4 Orchestrator Summary

The Orchestrator tool has been show to be effective at consolidating microclusters and reducing

the critical-path delay of the intermediate solution. With no area restrictions and afixed channel

width, the Orchestrator solution has an 11% average delay improvement over T-VPack (9% when

a fixed channel width is replaced with +30% minimum channel width). Using different techniques

to remove duplicates and reduce CLB usage, the Orchestrator tool can meet most area restrictions

while still providing competitive performance compared to a greedy approach.

73

Chapter 5. Phase 2: Microcluster Compaction with Orchestrator

Figure 5.7: Orchestrator Area vs. Timing Performance

74

Chapter 6

Final Results

This chapter examines the performance of the Orchestrator tool in a numberof relevant areas, in-

clude: Timing Performance, Circuit Depth, Routing Resource Usage, Area Usage and Runtime Per-

formance. Comparisons are provided against a number of available greedy algorithms: T-VPack,

T-RPack and iRAC, and other clustering/placement tools when applicable.

Unless otherwise noted, the final results use the standard architecture described in Section 2.1,

with a fixed channel width of 100. To reduce noise in results, T-VPack and Orchestrator (no area

restriction) results are average values across 5 independent runs.

For full VPR placement and routing, the following options are used:

−inner num 20 −maxrouter iterations 300 − pres f ac mult 1.1

All tests were run on an Intel Xeon 2.66GHz CPU with 2 Gb of RAM, running Linux kernel 2.6.18-

8.1.15.el5. All source code was compiled using g++ 4.1.1-52 with -O2 optimization, except for the

Microcluster Formation Phase code which was compiled using gcc 3.4.6-4 using -O2 optimization.

6.1 Timing Performance

As improving timing performance is the main goal of this research, an effort ismade to compare

the results to as many other tools as possible.

Table 6.1 presents final timing results for different clustering algorithms using the standard

architecture with a fixed channel width of 100. T-RPack was obtained from the author of [7] and the

iRAC tool was reproduced for [61]. Circuits are in ascending order ofT-VPack critical-path delay.

75

Chapter 6. Final Results

T-VPack T-RPack iRAC Orchestrator
dsip 5.58 5.60 5.77 5.19

bigkey 5.69 5.58 5.54 5.23
des 9.93 10.77 10.50 8.98

misex3 10.53 10.06 10.42 9.26
seq 10.77 10.58 11.27 9.41

apex4 10.92 10.94 10.85 9.66
alu4 11.02 11.28 11.49 10.27
ex5p 11.44 11.49 12.52 9.97

s38584.1 12.60 11.95 13.35 11.67
apex2 12.70 12.69 13.24 11.51
diffeq 13.00 14.98 17.61 13.45
tseng 14.08 14.79 15.80 12.65
spla 14.28 14.23 14.54 12.56

ex1010 16.06 15.58 17.16 14.08
pdc 16.25 16.42 16.41 13.71

s38417 16.32 14.96 15.71 13.00
elliptic 18.10 16.85 23.68 15.62

s298 21.38 20.58 21.39 18.31
clma 22.76 22.07 23.10 20.80
frisc 24.14 24.22 26.06 22.24

Geomean: 12.99 12.94 13.76 11.62
vs T-Vpack: 1.00 1.00 1.06 0.89

Table 6.1: Timing Results for Different Clustering Algorithms

The results of Table 6.1 show an 11% timing improvement over T-VPack and T-RPack, and a

19% delay improvement over iRAC. As is shown in subsequent sections, thisis at the expense of

area, and in the case of iRAC, minimum channel width.

In an effort to identify and quantify the sources of this performance improvement, the clustering

solution produced by Orchestrator was placed and routed by VPR. A fullplacement by VPR was

performed using the final netlist produced by Orchestrator. The resultwas a 3% degradation in tim-

ing performance and a 9% improvement in minimum channel width. This indicates that node dupli-

cation and depth-optimality are the main source of timing improvement, but the placement routine

outperforms the T-VPlace simulated annealer to contribute an additional 3% timingimprovement.

Also presented in the Previous Work section is the SPCD algorithm [9], whichstates a 18% de-

76

Chapter 6. Final Results

lay improvement compared to T-VPack. Although not explicitly stated, the presumed architecture

in that paper usesk = 4-input LUTs,N = 4 LUTs/CLB and wire segments of length 1. When the

Orchestrator tool is run with a similar architecture, under low-stress routing, a 15% delay improve-

ment is achieved over T-VPack. However, one final difference is thatSPCD uses 0.35µmtechnology

delays and Orchestrator uses 0.18µmdelays.

A number of techniques native to the SPCD algorithm could be modified to improve timing

in Orchestrator results. The most prominent of these techniques is the BLE level moves during

simulated annealing. During refinement anneals, or as a post-placement adjustment, the SPCD-

modified simulated annealer could be used to adjust clustering and placement. As Orchestrator does

not have the same ability to modify the clustering solution, noticeable performance improvements

may be possible.

The DPack [17] algorithm uses ak = 4, N = 4 andI = 18 architecture with single length wires.

Under similar conditions, the Orchestrator achieves a 15% performance improvement over T-VPack,

versus an 8% improvement cited by DPack.

The work by Schabas et al. [53] obtains slightly better timing results than Orchestrator by

performing logic duplication after placement. With a 20% area increase, Schabas’ new placement

algorithm achieves a 14.1% delay improvement. Orchestrator achieves an 11% delay improvement

with a 44% increase in area. The work by Schabas et al. may have an advantage over Orchestrator

because their architecture uses 50% pass transistors and 50% buffered switches, whereas the archi-

tecture in this thesis uses fully buffered switches. Performing logic duplication on circuits with pass

transistors can reduce the delay through a pass transistor by reducing fanout. A pass transistor with

a smaller fanout will have a decreased output capacitance, and therefore have a smaller delay.

The post-placement logic duplication of [53] could also be used after the Orchestrator flow to

increase timing performance. The most affective way to utilize the technique proposed by Schabas

et al. would be to:

• Remove superfluous duplication after the Orchestrator tool has finished,as described in Sec-

77

Chapter 6. Final Results

tion 5.2.6.

• Use the Schabas et al. technique to create duplication in vacant logic elementsto reduce

delay.

This process would not increase the critical-path delay of the circuit, and according to [53], could

provide a maximum of critical-path delay improvement 7.7%.

6.2 Depth

In the Microcluster Formation phase, node duplication was used to obtain a depth-optimal clus-

tering. It was proposed that a depth-optimal initial clustering solution resulted in better timing

performance in the final solution. This section examines the Orchestrator tool’s ability to maintain a

depth advantage over T-VPack and establishes the relationship between depth and final critical-path

delay.

Figure 6.1: Depth Improvement vs. Timing Improvement

78

Chapter 6. Final Results

Actual Critical Path Depth
File TVPack Orchestrator ∆ Depth Timing Improvement
alu4 5 5 0 6.8%

apex2 6 5 1 9.4%
apex4 6 4 2 11.5%

bigkey 3 2 1 8.0%
clma 10 6 4 8.6%

des 7 4 3 9.5%
diffeq 5 5 0 -3.5%

dsip 3 2 1 7.0%
elliptic 8 4 4 13.7%
ex1010 7 5 2 12.3%

ex5p 7 3 4 12.8%
frisc 16 7 9 7.9%

misex3 5 4 1 12.0%
pdc 9 5 4 15.6%

s298 14 7 7 14.4%
s38417 8 4 4 20.3%

s38584.1 9 4 5 7.4%
seq 6 4 2 12.7%

spla 7 5 2 12.1%
tseng 8 4 4 10.1%

Table 6.2: Depth - Timing Improvement Comparison

Figure 6.1 presents a scatter plot of depth improvement versus timing improvement for Orches-

trator, relative to T-VPack/VPR. The plot shows a modest (R2 = 0.3) positive correlation between

depth and timing improvement. Also, it is interesting to note that circuits alu4 and diffeq have equal

depth in T-VPack and Orchestrator, and Orchestrator achieves little or notiming improvement.

These results show that depth improvement has a direct influence on critical-path delay.

6.3 Routing Resource Usage

This section examines the performance of Orchestrator in terms of routing resource usage. Mini-

mum channel width is used as the primary metric to assess how effectively each tool utilizes the

routing architecture. Table 6.3 presents the minimum channel width for the 20 largest MCNC cir-

79

Chapter 6. Final Results

T-VPack T-RPack iRAC Orchestrator
alu4 33.5 32 31 32.6

apex2 46.3 46 41 41.2
apex4 47.5 46 43 36.8

bigkey 41.5 36 37 32.6
clma 61.8 59 47 70.8

des 40.8 39 39 42.4
diffeq 29.5 30 21 28.4

dsip 36.3 36 35 31.2
elliptic 49.5 44 36 42.2
ex1010 53.5 52 45 78.2

ex5p 48.5 49 42 43.8
frisc 52.0 52 44 59.2

misex3 42.3 41 37 36.2
pdc 65.5 63 60 60.6

s298 26.5 26 25 26.2
s38417 40.5 36 29 59.4

s38584.1 43.5 38 34 48.2
seq 45.5 42 38 41.6

spla 53.0 54 49 51.2
tseng 36.3 26 20 26.2

Geomean: 43.6 41.1 36.4 42.3
vs T-Vpack: 1.00 0.94 0.83 0.97

Table 6.3: Minimum Channel Width Comparison

cuits for three greedy approaches and for Orchestrator with no area restrictions.

As expected, T-RPack and iRAC consistently outperform T-VPack in termsof minimum channel

width. Orchestrator shows a general improvement compared to T-VPack,but individual results are

mixed. A maximum channel width decrease of 18% is achieved on tseng, while amaximum increase

of 46% is suffered on ex1010. No specific relationship can be established between the minimum

channel width required by Orchestrator and a greedy approach. Thisvalue is highly influence by

the amount of duplication in the circuit, It should generally be assumed that Orchestrator requires a

greater channel width than T-VPack.

As mentioned in Section 6.1, a complete VPR placement was performed on the clustering so-

lution produced by Orchestrator. The result was a 9% decrease in the average minimum channel

80

Chapter 6. Final Results

T-VPack T-RPack iRAC Orchestrator
tseng 107 105 105 142.6
ex5p 109 110 110 204.6

apex4 132 130 131 246.4
dsip 137 137 137 226

misex3 142 142 141 193
diffeq 151 150 150 181.2

alu4 153 154 153 184.2
des 160 160 160 225.2

bigkey 171 171 171 228.6
seq 176 177 176 247.6

apex2 190 190 191 277
s298 194 194 194 264.4
frisc 356 357 359 500.2

elliptic 363 361 363 470.4
spla 374 373 372 551.8
pdc 463 462 461 718.8

ex1010 480 477 472 868.2
s38417 642 641 641 812.2

s38584.1 645 645 645 772.8
clma 842 841 841 1272.8

Geomean: 241.6 241.2 241.1 346.8
vs T-Vpack: 1.00 1.00 1.00 1.44

Table 6.4: CLB Usage Comparison

width, and a decrease from 46% to 35% in the worst case minimum channel width penalty. These

results indicate that while the Orchestrator placement routine is effective atreducing delay, it is

inferior to T-VPlace in terms of channel width.

6.4 Area Usage

The most direct measurement of area usage is the number of CLBs required. Table 6.4 shows the

CLB usage for T-VPack, T-RPack, iRAC and Orchestrator (with no area restrictions). The three

greedy approaches have similar CLB counts, with Orchestrator requiringand average increase of

44%.

This CLB increase represents the area increase required to achieve the11% critical-path delay

81

Chapter 6. Final Results

T-VPack T-RPack iRAC Orchestrator
Geomean: 5.69E+06 5.46E+06 5.08E+06 7.82E+06

vs T-Vpack: 1.00 0.96 0.89 1.38

Table 6.5: Total Area Comparison [min. sized transistors]

improvement cited in Section 6.1. This area penalty can be reduced by imposingan area restriction

on the circuit and suffering a decrease in timing performance, as described in Section 5.3.2.

A more comprehensive analysis of area usage is presented in Table 6.5, where area is the total

routing and logic area, calculated in total equivalent minimum sized transistors. Logic usage was

calculated by Transcount [5] and routing usage was provided by the VPR router.

The results of Table 6.5 reinforce the result that Orchestrator requiresapproximately 40% more

area to achieve the 11% delay improvement cited earlier.

6.5 Runtime Performance

The timing improvements over a greedy approach are had at the expense ofarea and runtime. This

section aims to quantify the runtime penalty when using the combined clustering andplacement

algorithm instead of T-VPack. As the majority of runtime for the T-VPack flow isspent in the

placement stage, it can be presumed that iRAC and T-RPack have similar runtimes as T-VPack.

All runtime results represent the time required for clustering, placement anda binary-search

routing. Routing is included because routing runtime may vary for T-VPack and Orchestrator clus-

tering solutions because of different grid sizes and routing resource usage. Therefore, to provide a

thorough evaluation of runtime, the effect on routing runtime should be included.

To demonstrate the potential for runtime improvement to the Orchestrator tool, a modified ver-

sion of the tool is created with more emphasis on runtime performance. The following changes have

been made to the Orchestrator program described in Chapter 5:

1. The minimum number of iterations since the last compaction/anneal is reducedfrom 25 to

10.

82

Chapter 6. Final Results

2. The margin variable is decremented bywire Tdel/1 after each iteration instead of

wire Tdel/4.

3. If no progress (reduction in cluster count, timing improvement) is made for 10 iterations, the

Reorganize stage is terminated.

4. The following refinement anneal parameters are adjusted:

• The temperature adjustment factor is changed from 0.8 to 0.7.

• The number of moves per temperature is reduced by a factor of 2/3.

The results for the Orchestrator Fast achieve a 10% critical-path delay improvement over T-VPack

instead of an 11% improvement with the standard Orchestrator algorithm. All other metrics for

Orchestrator Fast are within 2% of the original Orchestrator results.

The results presented in Table 6.6 show that the Orchestrator tool is significantly slower than T-

VPack, but runtimes are still feasible for large circuits. The results also demonstrated that significant

runtime improvements can be made with little code modification and only a small performance

degradation.

83

Chapter 6. Final Results

File T-VPack Orchestrator Orchestrator Fast
alu4 1 4 4

apex2 3 14 7
apex4 1 13 4

bigkey 1 5 3
clma 33 783 256

des 1 6 4
diffeq 1 5 3

dsip 1 3 3
elliptic 7 32 19
ex1010 9 656 106

ex5p 1 5 4
frisc 7 87 36

misex3 1 4 2
pdc 20 106 35

s298 2 14 6
s38417 5 270 72

s38584.1 7 48 29
seq 2 6 05

spla 8 49 23
tseng 1 2 1

Arithmetic Mean 5 102 28

Table 6.6: Run Time Results [min]

84

Chapter 7

Conclusion, Contributions and Future

Work

7.1 Conclusions

This thesis presents a novel approach to the FPGA Clustering and Placement problem. Through

the use of node duplication, depth-optimal clustering and a combined clustering and placement

approach, an 11% performance improvement has been demonstrated over T-VPack. This timing

improvement is obtained at the expense of area, runtime, and in some cases,routing resource usage.

It has also been shown that the proposed algorithm can gradually reduce area usage at the expense

of timing performance to fit the area restrictions imposed by the user.

In Phase 1: Microcluster Formation, microclusters are created in a depth-optimal manner by the

LLT algorithm. It was shown in Section 6.2 that a depth advantage in the initial clustering stage

results in a critical-path delay advantage in the final routed solution. The results show that a depth

advantage is instrumental in Orchestrator achieving a performance increase over a greedy approach

such as T-VPack.

To create a depth-optimal clustering solution, the LLT algorithm requires significant amounts

of node duplication. As can be seen in Figure 5.6, this excessive duplication limits the ability

of Phase 2: Microcluster Compaction to reduce the critical-path delay. To reduce the amount of

duplication to an acceptable level, the NDR algorithm is presented, which trades off slack on non-

critical paths for a reduction in duplication. When no area restrictions are imposed, a solution with

85

Chapter 7. Conclusion, Contributions and Future Work

reduced duplication and optimal depth results in the best post-routing timing performance. When

area restrictions are imposed, it was shown that sacrificing depth in a controlled manner to reduce

duplication ultimately resulted in better performance by reducing the performance penalty incurred

in Phase 2.

In Phase 2: Microcluster Compaction, the Orchestrator algorithm is described, which iteratively

reorganizes and consolidates microclusters. Provided sufficient nodeduplication exists and some

depth advantage is present in the intermediate solution, the Orchestrator algorithm can produce

better timing performance than a greedy approach. Compared to T-VPack,the Orchestrator tool

produces an 11% critical-path delay improvement with a 44% increase in CLBs.

Finally, a modification to the Orchestrator tool was presented where the solution was forced to

conform to certain area limit. Through this, it was shown that more area allowed a greater amount of

duplication in the final solution, which translated into a lower critical path. The proposed algorithm

demonstrated the ability to outperform T-VPack in terms of timing with as little as a singleunit grid

size increase over T-VPack.

7.2 Contributions

Listed below are a number of contributions that have come out of this research.

Orchestrator Framework

The Orchestrator tool is an independent program written in object-oriented C++. The framework

has the ability to model the circuit with logic, clustering and placement information simultaneously;

contrary to the T-VPack/VPR framework, where T-VPack records logicand clustering information,

and VPR is concerned with placement. The Orchestrator framework also has the ability to track

timing properties of the circuit directly to the block level. While not as accurate as VPR, the timing

model is more accessible because of a simplified interface. Other algorithms have also been inte-

grated into Orchestrator, such as the VPR simulated annealer, Dave Leong’s incremental placer and

86

Chapter 7. Conclusion, Contributions and Future Work

the Lawler Levitt Turner algorithm.

As the program is written in object-oriented C++, it has a number of advantages over the VPR

environment, written in C: intuitive hierarchical structure, simple manipulation ofthe circuit through

class function calls and low coupling which allows altering a specific area of the program. These

properties have already prompted other students to use the Orchestrator framework to do further

research.

Combined Clustering and Placement Approach

In Phase 2: Microcluster Compaction, one of the major advantages over FPGA CAD flows that

separate the clustering and placement steps is the availability of placement andtiming information.

By understanding how a change to the clustering solution will affect placement, delay, and area, the

Orchestrator tool can make more informed decisions. Though combining clustering and placement

does increase the overall runtime of the CAD flow, the approach presented here, whereby micro-

clusters are formed first, provides a reasonable trade-off between runtime and clustering flexibility.

Node Duplicate Reduction Strategy

The NDR algorithm presented in Section 4.5.1 provides a proficient means ofreducing node dupli-

cation while maintaining a predetermined depth. In other research on label and cluster techniques

([32], [51], [63]), duplicate reduction is treated as an afterthought. The NDR algorithm should be

applicable to other label and cluster algorithms based on the LLT algorithm. With minor modifica-

tions, the NDR algorithm should also be applicable to algorithms which use the general delay model

[45].

Orchestrator Algorithm

The Orchestrator algorithm described in Chapter 5 presents a novel approach to the clustering and

placement problem. Of particular innovation is the manner in which microclustersare moved. To

87

Chapter 7. Conclusion, Contributions and Future Work

the best knowledge of the author, such a technique that uses placement and timing information to

incrementally move clusters to improve timing has not been used in FPGA research.

7.3 Future Work

The combined clustering and placement algorithm presents a new approachto the clustering and

placement steps of the FPGA CAD flow. A number of improvements for future work are described

below.

7.3.1 Microcluster Formation Phase

The Microcluster Formation Phase may be improved to produce a better clustering solution for the

Orchestrator tool through the following techniques.

• A number of algorithms ([51], [16], [13]) have improved on the LLT algorithm by using the

general delay model presented in [45]. In this work, Lawler’s originalalgorithm was chosen

as the base of the initial clustering algorithm as it was conducive to the Node Duplicate

Reduction technique described in Section 4.5. Additional performance improvements may be

gained by transitioning the Microcluster Formation Phase to a general delay model, but at the

cost of significant modification to the NDR algorithm.

• Figure 4.5 demonstrates the significant effect node duplication has on the final performance

of a circuit. While a great deal of attention has been paid to node duplication,no ubiquitous

formula has been devised to specify the most advantageous level of duplication for any given

circuit. If such a formula could be determined, it would allow the algorithm to better leverage

node duplication to improve performance.

88

Chapter 7. Conclusion, Contributions and Future Work

7.3.2 Orchestrator

The Orchestrator algorithm presents a novel approach to FPGA clustering and placement. The

algorithm was written from scratch, with the exception of the Compaction routine[37]. The program

therefore introduces a great many avenues of exploration, as opposed to an established algorithm

such as VPR which has been thoroughly explored over the past decade. A selection of possible

areas for future research are presented below.

• In general, microclusters formed during the Initial Clustering Phase persist throughout the

Orchestrator algorithm. While this simplifies the Orchestrator tool and reducescomputational

complexity, it limits the ability of Orchestrator to alter the clustering solution. A more robust

solution would be to allow the Orchestrator to reorganize the grouping of blocks for a specific

location as required. This technique could be beneficial by:

1. placing blocks connected by a critical connection in the same microcluster and forcing

the connection to remain intracluster

2. breaking microclusters with low cohesion, allowing greater freedom of movement and

reducing fragmentation

3. consolidating related microclusters, which ultimately will reduce runtime

While this technique holds promise, it will require a considerable amount of effort to deter-

mine the best method to reorganize microclusters.

• Retiming [34] refers to adjusting the location of flip-flops to improve critical-pathdelay. A

great deal of research ([58], [50], [14]) has been done on the performance gains possible

through FPGA retiming. Retiming during the clustering stage will result in a possible depth

reduction and retiming during placement will results in a possible critical-path delay reduc-

tion. Considering how the Orchestrator tool uses a depth advantage to produce a timing

performance gain over greedy approaches, retiming could result in substantial performance

gains.

89

Chapter 7. Conclusion, Contributions and Future Work

• Logic duplication is an integral part of this research and an effort has been made to utilize it to

its full potential. When duplication reduction is performed in the Orchestrator tool, the algo-

rithm removes duplication provided it does not adversely affect performance for the current

clustering and placement solution. Unfortunately, the possibility exists that subsequent clus-

tering and placement solutions may benefit from removed duplicates. One solution, employed

by other clustering tools ([53], [9]), allows duplication during or after placement. This might

be implemented by adding a duplicate insertion step after each iteration of the Orchestrator

tool. The inserted duplicates would still be subject to removal, so any duplicates that are not

actually needed would be reduced.

90

Bibliography

[1] Elias Ahmed and Jonathan Rose. The effect of LUT and cluster size on deep-submicron

FPGA performance and density. InFPGA ’00: Proceedings of the 2000 ACM/SIGDA eighth

international symposium on field programmable gate arrays, pages 3–12, New York, NY,

USA, 2000. ACM Press.

[2] Michael J. Alexander, James P. Cohoon, Joseph L. Ganley, and Gabriel Robins. Performance-

oriented placement and routing for field-programmable gate arrays. InEURO-DAC ’95/EURO-

VHDL ’95: Proceedings of the conference on European design automation, pages 80–85, Los

Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[3] Giancarlo Beraudo and John Lillis. Timing optimization of FPGA placements bylogic repli-

cation. InProceedings of the 40rd Design Automation Conference, pages 196–201, 2003.

[4] V. Betz and J. Rose. Cluster-based logic blocks for FPGAs: area-efficiency vs. input sharing

and size. InCustom Integrated Circuits Conference, 1997., Proceedings of the IEEE1997,

pages 551–554, 5-8 May 1997.

[5] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors.Architecture and CAD for

Deep-Submicron FPGAs. Kluwer Academic Publishers, Norwell, MA, USA, 1999.

[6] Elaheh Bozorgzadeh, Seda Ogrenci Memik, Xiaojian Yang, and MajidSarrafzadeh.

Routability-driven packing: Metrics and algorithms for cluster-based FPGAs. Journal of Cir-

cuits, Systems, and Computers, 13(1):77–100, 2004.

91

Bibliography

[7] Elaheh Bozorgzadeh, Seda Ogrenci-Memik, and Majid Sarrafzadeh. Rpack: routability-driven

packing for cluster-based FPGAs. InASP-DAC ’01: Proceedings of the 2001 conference on

Asia South Pacific design automation, pages 629–634, New York, NY, USA, 2001. ACM

Press.

[8] Stephen Dean Brown, Jonathan Rose, and Zvonko G. Vranesic. Adetailed router for

field-programmable gate arrays.IEEE Trans. on CAD of Integrated Circuits and Systems,

11(5):620–628, 1992.

[9] Gang Chen and Jason Cong. Simultaneous placement with clustering andduplication. ACM

Trans. Design Autom. Electr. Syst., 11(3):740–772, 2006.

[10] Kuang-Chien Chen, Jason Cong, Yuzheng Ding, Andrew B. Kahng, and Peter Trajmar. Dag-

map: Graph-based FPGA technology mapping for delay optimization.IEEE Design & Test of

Computers, 9(3):7–20, 1992.

[11] Jason Cong and Yuzheng Ding. An optimal technology mapping algorithm for delay opti-

mization in lookup-table based FPGA designs. InICCAD, pages 48–53, 1992.

[12] Jason Cong and Yuzheng Ding. On area/depth trade-off in LUT-based FPGA technology map-

ping. In DAC ’93: Proceedings of the 30th international conference on Design automation,

pages 213–218, New York, NY, USA, 1993. ACM Press.

[13] Jason Cong and Michail Romesis. Performance-driven multi-level clustering with application

to hierarchical FPGA mapping. InProceedings of the 38th Design Automation Conference,

pages 389–394, 2001.

[14] Jason Cong and Chang Wu. FPGA synthesis with retiming and pipelining for clock period

minimization of sequential circuits. InDAC ’97: Proceedings of the 34th annual conference

on Design automation, pages 644–649, New York, NY, USA, 1997. ACM.

[15] Altera Corporation. Stratix iii device handbook.

92

Bibliography

[16] Mehrdad Eslami Dehkordi and Stephen Dean Brown. The effectof cluster packing and node

duplication control in delay driven clustering. InProceedings of the 2002 IEEE International

Conference on Field-Programmable Technology, pages 227–233. IEEE, 2002.

[17] Kristofer Vorwerk Doris Chen and Andrew Kennings. Improving timing-driven FPGA packing

with physical information. InField Programmable Logic and Application, pages 117–123,

2007.

[18] Hans Eisenmann and Frank M. Johannes. Generic global placement and floorplanning. In

DAC ’98: Proceedings of the 35th annual conference on Design automation, pages 269–274,

New York, NY, USA, 1998. ACM Press.

[19] W.C. Elmore. The transient analysis of damped linear networks with particular regard to

wideband amplifiers.Journal of Applied Physics, 19(1):55–63, 1948.

[20] Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic. Chortle-crf: Fast technology

mapping for lookup table-based FPGAs. InDAC, pages 227–233, 1991.

[21] Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic. Technology mapping on lookup

table-based FPGAs for performance. InICCAD, pages 568–571, 1991.

[22] Daniel Gomez-Prado and Maciej Ciesielski.A Tutorial on FPGA Routing. Department of

Electrical and Computer Engineering, University of Massachusetts, Amherst.

[23] Brent Goplen and Sachin Sapatnekar. Efficient thermal placementof standard cells in 3d

ics using a force directed approach. InICCAD ’03: Proceedings of the 2003 IEEE/ACM

international conference on Computer-aided design, page 86, Washington, DC, USA, 2003.

IEEE Computer Society.

[24] Xilinx Inc. Virtex-5 user guide.

93

Bibliography

[25] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,

Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[26] Kevin Karplus. Xmap: A technology mapper for table-lookup field-programmable gate arrays.

In DAC, pages 240–243, 1991.

[27] S. Kirkpatrick, Gelatt Cd, and Vecchi Mp. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[28] Ian Kuon and Jonathan Rose. Measuring the gap between FPGAs and asics. InProceedings of

the ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays, pages

21–30, 2006.

[29] Jimmy Lam and Jean-Marc Delosme. Performance of a new annealing schedule. InDAC,

pages 306–311, 1988.

[30] Julien Lamoureux. On the interaction between power-aware computer-aided design algorithms

for field-programmable gate arrays. Master’s thesis, University of British Columbia, Vancou-

ver, BC, 2003.

[31] Mark LaPedus. Mask prices flatten but tool costs soar.EE Times, March 2006.

[32] E.L. Lawler, K.N. Levitt, and J. Turner. Module clustering to minimize delay in digital net-

works. IEEE Trans. Computers, pages 47–57, 1969.

[33] C.Y. Lee. An algorithm for path connections and its applications.IRE Transactions on Elec-

tronic Computers, 10:346–365, 1961.

[34] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry. Algorithmica,

6(1):5–35, 1991.

[35] Guy G. Lemieux and Stephen Dean Brown. A detailed router for allocating wire segments in

FPGAs. InACM/SIGDA Physical Design Workshop, pages 215–226, 1993.

94

Bibliography

[36] Guy G. Lemieux, Stephen Dean Brown, and Daniel Vranesic. On two-step routing for FPGAs.

In ISPD, pages 60–66, 1997.

[37] David Leong. Incremental placement for field-programmable gate arrays. Master’s thesis,

University of British Columbia, Vancouver, BC, November 2006.

[38] Hao Li, Wai-Kei Mak, and Srinivas Katkoori. Force-directed performance-driven placement

algorithm for FPGAs. In2004 IEEE Computer Society Annual Symposium on VLSI (ISVLSI

2004), Emerging Trends in VLSI Systems Design, pages 193–198, 2004.

[39] Joey Y. Lin, Deming Chen, and Jason Cong. Optimal simultaneous mapping and clustering for

FPGA delay optimization. InProceedings of the 43rd Design Automation Conference, pages

472–477, 2006.

[40] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven placement for FPGAs.

In FPGA, pages 203–213, 2000.

[41] Alexander (Sandy) Marquardt, Vaughn Betz, and Jonathan Rose. Using cluster-based logic

blocks and timing-driven packing to improve FPGA speed and density. InFPGA ’99: Pro-

ceedings of the 1999 ACM/SIGDA seventh international symposium on Fieldprogrammable

gate arrays, pages 37–46, New York, NY, USA, 1999. ACM Press.

[42] Larry McMurchie and Carl Ebeling. Pathfinder: a negotiation-based performance-driven

router for FPGAs. InFPGA ’95: Proceedings of the 1995 ACM third international symposium

on Field-programmable gate arrays, pages 111–117, New York, NY, USA, 1995. ACM Press.

[43] Fan Mo, Abdallah Tabbara, and Robert K. Brayton. A force-directed macro-cell placer. In

ICCAD ’00: Proceedings of the 2000 IEEE/ACM international conference on Computer-aided

design, pages 177–181, Piscataway, NJ, USA, 2000. IEEE Press.

[44] Chandra Mulpuri and Scott Hauck. Runtime and quality tradeoffs in FPGA placement and

routing. InFPGA, pages 29–36, 2001.

95

Bibliography

[45] Rajeev Murgai, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. On clustering for

minimum delay/area. InICCAD, pages 6–9, 1991.

[46] Rajeev Murgai, Yoshihito Nishizaki, Narendra V. Shenoy, RobertK. Brayton, and Alberto L.

Sangiovanni-Vincentelli. Logic synthesis for programmable gate arrays. In DAC, pages 620–

625, 1990.

[47] Rajeev Murgai, Narendra V. Shenoy, Robert K. Brayton, and Alberto L. Sangiovanni-

Vincentelli. Performance directed synthesis for table look up programmable gate arrays. In

ICCAD, pages 572–575, 1991.

[48] Ravi Nair. A simple yet effective technique for global wiring.IEEE Trans. on CAD of Inte-

grated Circuits and Systems, 6(2):165–172, 1987.

[49] Jr Neil R. Quinn and Melvin A. Breuer. A forced directed componentplacement procedure for

printed circuit boards.IEEE Trans. on CAD of Integrated Circuits and Systems, 26(6):377–

388, 1979.

[50] Peichen Pan and C. L. Liu. Optimal clock period FPGA technology mapping for sequential

circuits. ACM Trans. Des. Autom. Electron. Syst., 3(3):437–462, 1998.

[51] Rajmohan Rajaraman and D. F. Wong. Optimal clustering for delay minimization. In DAC

’93: Proceedings of the 30th international conference on Design automation, pages 309–314,

New York, NY, USA, 1993. ACM Press.

[52] Prashant Sawkar and Donald E. Thomas. Area and delay mapping for table-look-up based

field programmable gate arrays. InDAC, pages 368–373, 1992.

[53] Karl Schabas and Stephen D. Brown. Using logic duplication to improveperformance in FP-

GAs. InFPGA ’03: Proceedings of the 2003 ACM/SIGDA eleventh international symposium

on Field programmable gate arrays, pages 136–142, New York, NY, USA, 2003. ACM Press.

96

Bibliography

[54] Carl Sechen and Alberto Sangiovanni-Vincentelli. Timberwolf3.2: a new standard cell place-

ment and global routing package. InDAC ’86: Proceedings of the 23rd ACM/IEEE conference

on Design automation, pages 432–439, Piscataway, NJ, USA, 1986. IEEE Press.

[55] Ellen Sentovich, Kanwar Jit Singh, Cho W. Moon, Hamid Savoj, Robert K. Brayton, and

Alberto L. Sangiovanni-Vincentelli. Sequential circuit design using synthesis and optimiza-

tion. In ICCD ’92: Proceedings of the 1991 IEEE International Conference onComputer

Design on VLSI in Computer & Processors, pages 328–333, Washington, DC, USA, 1992.

IEEE Computer Society.

[56] Khushro Shahookar and Pinaki Mazumder. Vlsi cell placement techniques. ACM Comput.

Surv., 23(2):143–220, 1991.

[57] Amit Singh and Malgorzata Marek-Sadowska. Efficient circuit clustering for area and power

reduction in FPGAs. InFPGA ’02: Proceedings of the 2002 ACM/SIGDA tenth international

symposium on Field-programmable gate arrays, pages 59–66, New York, NY, USA, 2002.

ACM Press.

[58] Deshanand P. Singh and Stephen Dean Brown. Integrated retiming and placement for field

programmable gate arrays. InFPGA, pages 67–76, 2002.

[59] William Swartz and Carl Sechen. New algorithms for the placement and routing of macro

cells. InICCAD, pages 336–339, 1990.

[60] Cliff C. N. Sze, Ting-Chi Wang, and Li-C. Wang. Multilevel circuit clustering for delay

minimization. IEEE Trans. on CAD of Integrated Circuits and Systems, 23(7):1073–1085,

2004.

[61] Marvin Tom. Channel width reduction techniques for system-on-chipcircuits in field-

programmable gate arrays. Master’s thesis, University of British Columbia,Vancouver, BC,

March 2006.

97

Bibliography

[62] K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of astable force-directed

placer. In ICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference on

Computer-aided design, pages 573–580, Washington, DC, USA, 2004. IEEE Computer So-

ciety.

[63] Hannah Honghua Yang and Martin D. F. Wong. Circuit clustering for delay minimization

under area and pin constraints.IEEE Trans. on CAD of Integrated Circuits and Systems,

16(9):976–986, 1997.

98

Appendix A

Microcluster Statistics

This appendix provides statistics on the microclusters produced by the Microcluster Formation

Phase with a single pass of the NDR algorithm. The statistics are presented to give the reader a

concise idea of what is produced in the Microcluster Formation Phase.

In later stages of the algorithm, microclusters are moved and consolidated, butalways such that

no location contains more thanN blocks. Therefore, smaller microclusters have greater mobility. It

is not necessarily advantageous to have all microclusters contain few blocks, but at least some por-

tion should to allow the placement and clustering solution to evolve. Figure A.1 shows a histogram

of blocks per cluster averaged across the 20 largest MCNC benchmarks. Figure A.1 shows that in

general, most microclusters are less than half utilized. The average block usage per microcluster is

4.08.

Figure A.1: Average Blocks Per Microcluster

99

Appendix A. Microcluster Statistics

It should be noted that characterizing blocks per microcluster is difficult because it is highly

dependent on the nature of the circuit. Figure A.2 shows the distribution of microcluster sizes by

file. While no discernible pattern can be formed, the graph does show that most circuits have a good

distribution of large and small microclusters.

Figure A.2: Microcluster Size by Circuit

100

Appendix B

Margin Interval Test

When moving pads and microclusters, themarginvariable controls how quickly the timing restric-

tions are relaxed. As the relocation routine is the most computationally intensiveportion of the

Orchestrator tool, themarginvariable has a large influence on the run-time of the program.

Figure B.1 presents the performance and run-time results for a number of different margin inter-

vals. Margin intervals range fromwire Tdel∗8 towire Tdel/10. All performance results (shown as

squares) are geometric means across the 20 largest MCNC benchmarks;all run-time results (shown

as triangles) are arithmetic means across the 20 largest MCNC benchmarks.

Figure B.1: Margin Interval Test Results

101

Appendix B. Margin Interval Test

Performance results show a tendency to level off for intervals≤ wire Tdel. wire Tdel/4 is

chosen as the final margin interval as it provides slightly better overall results thanwire Tdel and

still has a reasonable worst-case run-time (clma = 15h44m).wire Tdel/8 was also considered, but

it has a substantially higher worst-case run-time (clma = 32h23m) and after a second independent

run, the timing advantage compared towire Tdel/4 in Figure B.1 proved to by anomalous.

102

