
Scalable and Deterministic Timing-Driven Parallel
Placement for FPGAs

by

Chao Chris Wang

BASc in Engineering Science, University of Toronto, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

October 2011

c© Chao Chris Wang, 2011

Abstract

This thesis describes a parallel implementation of the timing-driven VPR 5.0

simulated-annealing placement engine. By partitioning the grid into regions and

allowing distant data to grow stale, it is possible to consider a large number of non-

conflicting moves in parallel and achieve a deterministic result. The full timing-

driven placement algorithm is parallelized, including swap evaluation, bounding-

box calculation and the detailed timing-analysis updates. The partitioned region

approach slightly degrades the placement quality, but this is necessary to expose

greater parallelism. We also suggest a method to recover the lost quality.

In simulated annealing, runtime can be shortened at the expense of quality.

Using this method, the serial placer can achieve a maximum speedup of 100X while

quality metrics degrades as much as 100%. In contrast, the parallel placer can scale

beyond 500X with all quality metrics degrading by less than 30%. Specifically, at

the point where the parallel placer begins to dominate over the serial placer, the

post-routing minimum channel width, wirelength and critical-path delay degrades

13%, 10% and 7% respectively on average compared to VPR’s original algorithm,

while achieving a 140X to 200X speedup 25 threads. Finally, it is shown that

the amount of degradation in the parallel placer is independent of the number of

threads used.

ii

Preface

[1] C. C. Wang and G. G. F. Lemieux, “Scalable and deterministic timing-driven

parallel placement for FPGAs,” in Proceedings of the 19th ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays. ACM, 2011,

pp. 153 - 162.

[2] J. B. Goeders, G. G. F. Lemieux and S. J. E. Wilton, “Deterministic

timing-driven parallel placement by simulated annealing using half-box

window decomposition,” to appear in 2011 International Conference on

ReConFigurable Computing and FPGAs, 2011.

Portions of Chapter 3, 4, and 5 have been published at FPGA 2011 [1]. A version of

Section 6.4 has been submitted for publication. In all cases, the algorithm design,

implementation, experimentation and the analysis of results were solely conducted

by the author, Chris Wang.

The half-box window decomposition scheme (method 2 of Section 3.4.1) and

Equation 3.1 were proposed by Jeffrey Goeders et al. Their publication will appear

at ReConFig 2011 [2].

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . v

List of Figures . vi

Glossary . vii

Acknowledgments . viii

1 Introduction . 1
1.1 Motivation . 1

1.2 Objective & Contribution . 3

1.3 Thesis Organization . 5

2 Background . 6
2.1 FPGA Overview . 6

2.2 FPGA Architecture . 7

2.3 FPGA CAD Tool Flow . 9

2.3.1 Synthesis . 9

2.3.2 Technology Mapping . 10

2.3.3 Clustering . 11

2.3.4 Placement . 12

iv

2.3.5 Routing . 18

2.4 Timing Analysis . 19

2.5 Parallel Placement - Conflicts . 21

2.6 Parallel Programming Background 22

2.6.1 Symmetric Multi-Processing 22

2.6.2 POSIX Threads . 23

2.6.3 Determinism . 23

2.7 Previous Works . 24

3 Algorithm Description . 29
3.1 Algorithm Overview . 29

3.2 Grid Partition . 30

3.3 Parallel Placement Pseudocode 31

3.4 Determinism Enforcement . 33

3.4.1 Swap Regions Restriction 33

3.4.2 Other Determinism Considerations 36

3.5 Parallel Timing Analysis . 37

3.6 Parallel Move Evaluation . 40

3.7 Bounding Box Update . 41

3.8 Summary . 41

4 Parallel Algorithm Tuning . 43
4.1 Swap Region . 43

4.2 Swap To Block Choice Restriction 45

4.3 Sequential versus Random Block Selection 45

4.4 PROB SKIPPED Characterization 47

4.5 Adaptive Annealing Schedule 49

4.5.1 Early Exploration . 50

4.5.2 Cost versus Temperature Evaluation 52

4.6 Parallel Programming Optimizations 58

4.6.1 Parallel Memory Allocation 58

4.6.2 False Sharing . 60

4.6.3 Processor Affinity . 60

v

4.6.4 Custom Polling Barrier Implementation 62

4.7 Closing the Quality Gap . 64

4.7.1 Forced Block Migration 64

4.7.2 Reject Good Moves . 66

4.7.3 Hybrid Parallel & Serial Placement 67

4.8 Summary . 69

5 Experimental Evaluation . 70
5.1 Benchmarking Methodology . 70

5.1.1 Benchmarking Circuits 71

5.1.2 Hardware Environment 71

5.1.3 Experimental Methodology 72

5.2 Quality versus Runtime . 73

5.2.1 Comparison Trends . 73

5.2.2 Comparison with 25 Threads 76

5.3 Scalability . 78

5.3.1 Runtime Scaling . 78

5.3.2 Quality Scaling . 85

5.4 Determinism . 87

5.5 Summary . 88

6 Future Work . 89
6.1 Timing Analysis Speedup . 89

6.2 Runtime Scaling . 90

6.3 Serial Equivalence . 90

6.4 LUT Placement . 91

6.4.1 Experiment Procedure 91

6.4.2 Results/Discussion . 95

6.4.3 Quality versus Runtime 96

6.4.4 Conclusions . 98

7 Conclusions . 99

Bibliography . 101

vi

List of Tables

Table 2.1 Adaptive simulated-annealing schedule 15

Table 2.2 Summary of past parallel placement work 26

Table 4.1 Quality experiments . 50

Table 4.2 New simulated-annealing schedule 57

Table 4.3 Hoard library runtime comparison 59

Table 4.4 Runtime comparison with and without processor affinity 62

Table 5.1 Parallel (25 threads) compared to VPR 77

Table 5.2 Runtime breakdown . 82

Table 5.3 Determinism verification runs 87

vii

List of Figures

Figure 1.1 CPU speed versus FPGA logic capacity 2

Figure 2.1 Island style FPGA, based on [11] 8

Figure 2.2 BLE and cluster, based on [11] 8

Figure 2.3 FPGA CAD tool flow . 10

Figure 2.4 Technology mapping, based on [13] 11

Figure 2.5 Clustering, based on [13] . 11

Figure 2.6 Placement, based on [13] . 13

Figure 2.7 Simulated annealing pseudocode 14

Figure 2.8 Try swap() pseudocode . 14

Figure 2.9 Example bounding-box of a 5 terminal net, based on [20] . . . 18

Figure 2.10 Illustration of a hard and soft conflict 22

Figure 3.1 Equal-sized grid partition . 30

Figure 3.2 Thread-level pseudocode . 32

Figure 3.3 Half-box window decomposition’s swap-from and swap-to re-

gion [2] . 35

Figure 3.4 Sample workload . 39

Figure 4.1 Comparison between the two region decomposition methods . 44

Figure 4.2 Swap to region quality variation 46

Figure 4.3 Sequential versus random block selection comparison 47

Figure 4.4 PROB SKIPPED sweep . 48

Figure 4.5 Quality with varying number of threads for various experiments 51

Figure 4.6 Initial cost versus temperature comparison 53

Figure 4.7 Cost versus temperature comparison with mod 1 & 2 54

viii

Figure 4.8 Cost versus temperature comparison with the new schedule . . 55

Figure 4.9 Quality scaling . 57

Figure 4.10 QoR improvement due to the new schedule 58

Figure 4.11 Macro used to align data to cache lines 60

Figure 4.12 Core affinity source code . 61

Figure 4.13 Sample custom polling barrier tree with 8 nodes 62

Figure 4.14 Custom polling versus Pthreads barrier 64

Figure 4.15 Forced block migration . 65

Figure 4.16 Reject good moves . 67

Figure 4.17 Serial and parallel hybrid placement 68

Figure 5.1 VPR options for minimum channel width 73

Figure 5.2 VPR options for critical-path delay 73

Figure 5.3 Runtime versus quality of PP bounding box and PR wirelength 74

Figure 5.4 Runtime versus quality of PP and PR critical-path delay . . . 75

Figure 5.5 Runtime versus quality of PR minimum routable channel width 76

Figure 5.6 Quality from speeding up VPR and parallel (25 threads) 78

Figure 5.7 Self speedup . 79

Figure 5.8 Speedup of the inner loop 83

Figure 5.9 Probability of a region arriving first and last at a barrier due to

workload imbalance . 84

Figure 5.10 QoR by varying the number of threads 85

Figure 6.1 Conventional CAD tool flow versus experimental flow 92

Figure 6.1 Runtime versus quality comparison for post routing minimum

routable channel width, wirelength and critical-path delay . . 95

ix

Glossary

API Application Programming Interface . 23

ASIC Application Specific Integrated Circuit . 6

BLE Basic Logic Element . 7

CAD Computer-Aided Design . 1

CLB Configurable Logic Block . 3

DAG Directed Acyclic Graph . 10

FPGA Field Programmable Gate Array . 1

HBWD Half-box Window Decomposition . 34

HDL Hardware Description Language . 9

HPWL Half-perimeter Wirelength . 12

IP Intellectual Property . 7

LAB Logic Array Block . 11

LAN Local Area Network . 25

LUT Look-Up Table . 5

MPPA Massively Parallel Processor Array. .27

QOR Quality of Result . 1

SMP Symmetric Multi-Processing . 22

T-VPACK Timing-driven Versatile Packing . 12

VPR Versatile Place and Route . 3

x

Acknowledgments

I would like to thank my supervisor Dr. Guy Lemieux for his encouragement and

support over the past two years. Without his determination and grateful insights,

this thesis would not had been possible.

Thanks to all the members of the SOC lab for the fruitful discussions,

especially to Jeffrey Goeders for his contributions to this work. Special thanks to

Dr. Mark Greenstreet for getting me started with parallel programming as well as

allowing me to perform experiments on his Niagara machine.

Thanks to all of my friends that have entertained me throughout my degree.

Specifically, Ruby for housing my computer while I was away on internship and

Jack (who requested that I should thank him for something) for reading an early

version of this thesis.

To my family and my fiancée Karen, thank you for being by my side and sup-

porting me over the years.

xi

Chapter 1

Introduction

1.1 Motivation

As Field Programmable Gate Array (FPGA) logic capacity steadily increases at

the rate anticipated by Moore’s Law, FPGA Computer-Aided Design (CAD) tools

must synthesize, place and route more logic blocks and more nets every genera-

tion. To make things more interesting, exotic silicon interconnection technologies

are making their debut and this has allowed FPGA logic capacity to achieve even

‘more than Moore’ under special circumstances [3]. While this benefits the logic-

hungry FPGA users, it further complicates the work allocated to FPGA CAD tools.

Keeping runtime and Quality of Result (QOR) constant while the number of objects

continues to grow is a demanding task. This is mostly due to fact that processor

performance improvements have not been tracking FPGA capacity growth since

the mid-2000s as shown in Figure 1.1. Unfortunately, the current market trend

does not suggest processor speeds will increase in the near future either.

To keep runtime in check, the two main companies offering high-capacity

1

2006 2007 2008 2009 2010 2011
Year

0

500

1000

1500

2000

2500

Lo
g
ic

 E
le

m
e
n
ts

 (
T
h
o
u
sa

n
d
s)

0

50

100

150

200

250

R
e
la

ti
v
e
 S

p
e
cI

N
T
 2

0
0

6

FPGA Logic Elements
Relative CPU Speed

Figure 1.1: CPU speed versus FPGA logic capacity

FPGAS, Altera and Xilinx, have been continuously optimizing their tools. While

this has helped, it is unlikely that such algorithm engineering efforts can be sus-

tained at the rate required by several more generations of Moore’s Law. As a result,

continuous technology scaling without comparable scaling of FPGA synthesis run-

time will lead to a runtime crisis. The runtime crisis manifests itself as a reduction

in productivity and an increase in engineering costs.

With the current market trend of increasing the number of CPU cores rather

than faster CPU cores, a promising solution to the runtime crisis is to employ par-

allel CAD algorithms. This would effectively allow the number of working proces-

sor cores and FPGA capacity to both scale at similar rates. Seeing the opportunity,

Altera [4] and Xilinx [5] have both started to implement parallel algorithms that

offer some runtime improvement.

2

1.2 Objective & Contribution

Mapping a larget circuit to an FPGA can take hours or even days. One of the

most time-consuming steps in the FPGA CAD flow is placement. A good quality

placement is essential to the overall quality; it can influence the interconnect delay,

congestion, wirelength and power. Therefore, the parallel algorithms must demon-

strate good scaling results not only in terms of runtime, but also a good QoR is

needed. In addition, a deterministic (reproducible) result is needed to ease the de-

bugging and verification efforts [6] as it is tremendously difficult to identify issues

with an irreproducible result. It is not only useful during algorithm development

where regression tests must compute the same answer, but also during customer

support where error reproducibility becomes important to confirm bugs.

Simulated annealing, the placement engine used in Versatile Place and Route

(VPR) and Altera’s Quartus II tools, is widely regarded as producing very good

QoR and being able to handle complex legalization constraints. A comparison

between a simulated-annealing based algorithm, namely VPR, and a few best-in-

class academic placers based on other techniques was recently presented in [7].

The conclusion was that “simulated annealing based placement would still be in

dominant use for a few more device generations. [7]” In VPR, the number of moves

needed to find an optimized solution grows as O(N4/3), a result adopted from [8],

where N is the number of Configurable Logic Blocks (CLBS) being placed. As

more objects must be placed, the VPR placement algorithm slows down due to

super-linear scaling.

Parallel placement research has been underway for more than two decades. To

the best of our knowledge, all published works with the exception of [6] have tar-

3

geted wirelength only. Furthermore, determinism, an extremely important feature

for bug reproducibility and testing [6], has not been considered except in [6, 9].

Our work addresses both of these issues, and is the first academic parallel placer

that produces a timing-driven and deterministic result with significant speedup.

This thesis presents a deterministic and timing-driven simulated-annealing

placement algorithm. Speedup is achieved by allowing moves and committing to

occur in parallel. The key is to avoid generating moves that have hard conflicts by

greatly restricting the range of motion for CLBs during each move. By using stale

placement information for distant CLBs being moved by other threads, the over-

head of fine-grained synchronization between threads can be avoided. Although

threads lack fine-grained synchronization, they still achieve a deterministic (repro-

ducible) result that depends only upon the number of threads and does not depend

on processors nor race conditions. Although the final result does depend upon the

number of threads, the QoR is relatively consistent as the number of threads varies.

Also, any number of processors can be used to achieve the same result with a fixed

number of threads.

The work in this thesis is based on the open-source VPR 5.0 [10]. With 25-

threads operating in parallel, it achieves a speedup ranging from 140X to 200X

compared to the original single-threaded VPR algorithm with post-placement min-

imum channel width, wirelength and critical-path delay degrading by 13%, 10%,

and 7% on average, respectively.

A paper based on this work has been published at FPGA 2011 [1]. An en-

hancement to the block decomposition scheme, the half-box window decomposi-

tion scheme (method 2 of Section 3.4.1), and converting the number of iterations

per temperature to a commonly known metric (Equation 3.1), both performed by

4

Jeffrey Goeders et al. will be published at ReConFig 2011 [2]. Finally, placement

based on individual Look-Up Tables (LUTS) (Section 6.4) has been submitted for

publication.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 presents background information

on FPGA CAD, parallel programming, parallel placement and previous works.

Chapter 3 describes the basic parallel placement algorithm. Chapter 4 explains

the optimizations chosen and parameter tuning process. Chapter 5 describes the

benchmarks used, hardware environment and experimental methods and results.

Chapter 6 presents future works and conclusions are given in Chapter 7.

5

Chapter 2

Background

This chapter first presents an overview of FPGAs, and then explains one of the

commonly used architectures – the island-style architecture. Second, the FPGA

CAD tool flow is introduced with an emphasis on placement. Finally, previous

placement works are presented and two algorithms which form a basis for the work

in this thesis are presented in detail.

2.1 FPGA Overview

An FPGA is a highly versatile integrated circuit that is capable of implementing

any logical function. It offers a few notable advantages over other technologies,

such as Application Specific Integrated Circuits (ASICS). First, FPGAs allow a

fast time-to-market as the entire chip is pre-fabricated and the only time needed

is to design the logic functions, compile the design using FPGA CAD tools, and

load the resulting configuration bitstream into the device. This is much easier than

custom design of a chip because silicon-related knowledge is not required and CAD

tools are much simpler. Second, it requires a very low non-recurring expense, by

6

avoiding the need for custom masks, which may cost millions of dollars per set.

Third, the re-programmability allows the designer to reconfigure the device in the

event of a design change or an implementation bug. This eliminates the need to

modify masks and re-fabricate the chip which is both time consuming and costly.

2.2 FPGA Architecture

This thesis targets FPGAs with island-style architectures as depicted in Figure 2.1.

It is the most popular choice for FPGA research and commercial vendors alike.

As seen, the chip is surrounded by inputs and outputs which connect to external

signals. Signals travel from the IOs through the routing network and are processed

in CLBs. CLBs may be replaced by heterogeneous blocks, such as configurable

memory or multiplier blocks, or other Intellectual Property (IP) hard blocks. Pro-

cessed signals will either be routed back to the IO as an output or routed to another

destination for further processing.

FPGAs consist of numerous CLBs, also known as clusters, which contain a

pre-configured number of Basic Logic Elements (BLES), N. A typical BLE and a

cluster are shown in Figure 2.2. The BLE on the left side consists of a K-input LUT

with two possible outputs selectable by a multiplexer. The path that passes through

a flip-flop is the clocked output and the direct wire indicates the non-clocked (com-

binational) output path. A LUT is the most basic element of an FPGA; it can be

used to implement any combinational logic function utilizing up to K inputs. The

cluster on the right side contains N BLEs, each with K inputs.

For this thesis, an FPGA architecture based on the following parameters is

used:

• LUT Size (K): 6

7

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

I/O I/O I/O I/O

I/O I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Figure 2.1: Island style FPGA, based on [11]

BLE

K-LUT

Flip-
flop

M
U
X

Cluster/CLB

Local
Interconnect

BLE

BLE

BLE

k

k

k

Figure 2.2: BLE and cluster, based on [11]

• Cluster Size (N): 10

• Inputs per cluster: 35

• Length of wires: 4

• Wire type: Unidirectional

8

• Switch Block Type: Wilton

• C-Block Input Connectivity: 0.15

• C-Block Output Connectivity: 1/N

• Switch type: buffered

• Transistor process technology: 65nm

The architecture files used in this thesis are obtained from the iFAR reposi-

tory [12], which model realistic FPGA architectures. 1

2.3 FPGA CAD Tool Flow

In order to implement logical functions on FPGAs, the circuits must first be de-

scribed using Hardware Description Language (HDL), such as Verilog. The de-

scription is then passed through a series of conversions and finally resulting in

a bitstream which can be used to program the FPGA. The conversion process is

known as the FPGA CAD tool flow and is outlined in Figure 2.3.

The flow is traditionally divided into five distinct stages: synthesis, technology

mapping, clustering, placement and routing. The following sections explain each

of the five stages.

2.3.1 Synthesis

Synthesis is the first step in the CAD tool flow. It converts the circuit described

in HDL into gate-level logic functions and flip-flops. Technology-independent op-

timizations are also performed here, and the output is a netlist of connected cells

representing the input circuit.
1n10k06l04.fc15.area1delay1.cmos65nm.bptm taken from iFAR version 0.3-296.

9

Synthesis

Clustering

Placement

Route

Technology
Mapping

Circuit
Description

Bitstream

Figure 2.3: FPGA CAD tool flow

2.3.2 Technology Mapping

Technology mapping is responsible for translating the entire input circuit obtained

from the synthesis stage output into a netlist consisting of K-input LUTs and

flip-flops. An example of replacing some logic with a 4-input LUT is shown in

Figure 2.4. The input circuit is first converted to an equivalent Directed Acyclic

Graph (DAG), which is then mapped to LUTs with constraints on the maximum

number of inputs (K) and outputs (1). Graphically, this can be seen as finding a

group of nodes that have at most K inputs and one output to form each LUT.

Technology mapping algorithms strive to minimize specific objectives, such

as area, delay, power or any combination thereof. The output is a netlist of pre-

configured LUTs and flip-flops.

10

4 input
LUT

Figure 2.4: Technology mapping, based on [13]

BLE
1

BLE
2

BLE
3

BLE
4

BLE
5

BLE
1

BLE
2

BLE
4

BLE
5

BLE
3

CLB
1

CLB
2

Figure 2.5: Clustering, based on [13]

2.3.3 Clustering

The main goal of clustering is to pack the LUTs and flip-flops created in technology

mapping into clusters, abiding to the constraint that no more than N LUTs or N flip-

flops can be included to form each cluster as shown in Figure 2.5. The other goal of

clustering is to pack LUTs and flip-flops into BLEs. Although structurally similar,

different vendors have adopted their own terminology to describe a cluster. Xilinx

uses the term CLB and Altera uses the term Logic Array Block (LAB) to describe

a cluster. Both terms have identical meaning within the scope of this thesis.

Minimizing delay is one of the many goals a clustering algorithm may choose

11

to optimize. Delay optimization requires the understanding that BLEs contained

within the same cluster communicate through intra-cluster connections, which are

faster than inter-cluster connections, also known as the routing network. A larger N

value allows more BLEs to share intra-cluster connections. However, careful trade-

off analysis must be considered as the intra-cluster connection latency degrades

with increased cluster size. Other goals that clustering algorithms may also target

are area, power, routability, congestion, etc. The clustering algorithm outputs an

optimized network of CLBs, each containing up to N BLEs.

For this thesis, Timing-driven Versatile Packing (T-VPACK) [14] is used to

perform the clustering of circuits.

2.3.4 Placement

The placement step involves assigning each CLB in the circuit to a unique phys-

ical location on the FPGA chip, as shown in Figure 2.6. Typical placement algo-

rithms aim to minimize Half-perimeter Wirelength (HPWL), also known as the

bounding-box cost, and delay. As well, some advanced placers aim at reducing

power, congestion or other criteria, as well combined objectives. Decisions made

by the placer are highly influential to the overall solution quality, since CLBs are

locked in the placed locations after this stage. Hence it is imperative that trade-offs

are carefully evaluated in this stage to ensure high-quality results.

Placement is a NP-complete problem; therefore, heuristic algorithms are used

to ensure solutions can be found within a reasonable amount of time. Tradi-

tional serial placement algorithms can be grouped into four different categories: a)

simulated-annealing, b) partition-based, c) analytical and d) others such as genetic

algorithms. While each category poses different trade-offs, simulated-annealing

12

a b c

d e f g h

i j k

l m n

e

a i c

f l d m k

h g n b

j

Figure 2.6: Placement, based on [13]

stands out as the dominating technique and is widely regarded as producing very

good QoR and being able to handle complex legalization constraints. VPR [15],

being a simulated-annealing based placer, has become the de facto standard for

uniprocessor FPGA placement in academic research. The following section will

describe the serial simulated-annealing algorithm implemented in VPR [15], as it

forms the basis the algorithm being parallelized.

Simulated Annealing

As the name suggests, simulated annealing was created to imitate annealing, a

process commonly used in metallurgy and material science. Annealing is accom-

plished by heating the material to a high temperature then cooling it slowly to

achieve the desired structural properties. Cooling the material rapidly is another

technique used, and this process is known as quenching. This idea has been ap-

plied to various optimization problems in science [16], including FPGA placement

which is implemented in VPR [15]. VPR is an open-source FPGA place and route

tool, and it has became the de facto standard

The pseudocode for VPR’s simulated-annealing is shown in Figure 2.7. The

algorithm begins with a few initialization tasks: generating an initial placement and

13

1: set initial placement()
2: set initial temperature: T
3: set iterations per temperature: inner num
4: set swap range: Rlimit
5: while !exit condition do
6: for n = 1 to inner num ·N4/3 do
7: try swap
8: end for
9: update T

10: update Rlimit
11: update net criticality
12: end while

Figure 2.7: Simulated annealing pseudocode

1: identify swap candidates
2: calculate ∆cost = CostBefore() - CostAfter()
3: if rand(0,1) < e

−∆C
T then

4: AcceptSwap()
5: else
6: RejectSwap()
7: end if

Figure 2.8: Try swap() pseudocode

setting up initial temperature, number of swaps per temperature and determining

the range limit for each swap.

An initial random placement is obtained by randomly placing each cluster at

a different (non-overlapping) location on the grid. Then, N (the total number of

CLBs and I/O pads in a circuit) random swaps are performed, and the standard

deviation of the cost of these N different configurations is computed [15]. The

algorithm sets the initial temperature as 20·(standard deviation), to ensure that the

initial temperature will adjust according to the circuit.

Temperature is used to control the probability that a bad move, a move which

increases the overall cost, will be accepted; a good move, one that improves the

14

Table 2.1: Adaptive simulated-annealing schedule

Phase Fraction of moves accepted (Raccept) α

Randomization 0.96 < Raccept 0.5
Initial Improvement 0.8 < Raccept ≤ 0.96 0.9
Rapid Improvement 0.15 < Raccept ≤ 0.8 0.95
Greedy Optimization Raccept ≤ 0.15 0.8

overall cost, is always accepted regardless of temperature. The number of swaps

per temperature is calculated using Equation 2.1, where inner num is a user-defined

constant and N is the total number of CLBs and I/O pads in a circuit.

inner num ·N4/3 (2.1)

An adaptive annealing schedule is used which updates the temperature at the

end of every swap iteration. The new temperature is computed as Tnew = αTold ,

where α is defined by Table 2.1 [15].

Raccept is the ratio of moves that were accepted during the previous iteration. It

is desirable to keep Raccept around 0.44 for high-quality results [8, 15, 17]. Rlimit ,

a range limiter which constrains the Manhattan distance2 which each pair of swap

candidates are located, was introduced to facilitate the acceptance rate [15, 18, 19].

A small Rlimit value implies that only ‘local swaps’ with its nearby neighbors are

allowed, which tends to result in small placement cost changes. The opposite is true

for large Rlimit values. Rlimit is updated according to Equation 2.2. It is initially set

to the entire grid, and shrinks gradually during the middle stages and becomes 1

during the low-temperature parts of the anneal.

2Manhattan distance is the distance between two swap candidates calculated utilizing only hori-
zontal and vertical paths (not diagonal paths).

15

Rnew
limit = Rprev

limit · (1−0.44+Rprev
accept)

such that: 1≤ Rlimit ≤ grid size
(2.2)

The simulated-annealing engine will terminate when the exit condition is met,

shown by Equation 2.3, where number of nets is the total number of nets in the

input circuit and cost for a timing-driven placement algorithm is a combination

of bounding box (Equation 2.6) and critical-path delay (Equation 2.11). The cost

calculation equation is shown in Equation 2.4, and λ is used to vary proportion of

each of the components.

temperature < 0.005 · cost
number o f nets

(2.3)

cost = λ ·Timing cost +(1−λ) ·Wiring cost (2.4)

The following section explains the swap evaluation method. The core

simulated-annealing engine consists of the try swap function as shown in Fig-

ure 2.8. Prior to entering this function, the algorithm will have already identified

a swap-from candidate, which is a random block anywhere on the grid. The first

task is to identify a swap-to candidate, which is another random block within a

Manhattan distance of Rlimit away from the swap-from candidate. Next, the change

in cost (∆c) will be calculated assuming the swap will take place.

For timing-driven placement algorithms, ∆c is the sum of two components:

wiring cost and timing cost weighted by a variable λ to vary the importance of

16

each component. A λ value of 0 yields a purely bounding box driven placement

algorithm, and a λ value of 1 yields a purely timing-driven placement. This is

shown in Equation 2.5.

∆c = λ · ∆Timing Cost
Previous Timing Cost

+(1−λ) · ∆Wiring Cost
Previous Wiring Cost

(2.5)

The timing cost calculation is described later in Section 2.4, the wiring cost is

calculated with Equation 2.6.

wiring cost =
Nnets

∑
i=1

q(i) · [bbx(i)
Cav,x(i)

+
bby(i)

Cav,y(i)
] (2.6)

Here, Nnets is the total number of nets in the circuit. Variables bbx and bby rep-

resent the horizontal and vertical span of nets connected to net i as illustrated in

Figure 2.9. Cav,x and Cav,y are the average channel capacities (in tracks) in the x

and y direction respectively, over the bounding box of net i. The q(i) factor com-

pensates for the fact that the bounding box wire length model underestimates the

wiring necessary to connect nets with more than three terminals; q is 1 for nets with

3 or fewer terminals, and slowly increases to 2.70 for nets with 50 terminals [15].

If the calculated ∆c is negative, indicating that the move is good, then the swap

will be accepted. Otherwise, a random number will be compared with e
−∆c

T , where

T is the current temperature, to determine whether the swap will be accepted. As

seen, even swaps that result in a worse cost metric could be accepted. This is to

ensure the algorithm will not be trapped at a local minimum solution. The ultimate

goal is to minimize the cost function of the circuit through iterative placement

stages.

17

e

a i c

f l d m k

h g n b

j

bb
y

xbb

Figure 2.9: Example bounding-box of a 5 terminal net, based on [20]

2.3.5 Routing

As routing is the last step in the FPGA CAD tool flow occurring after placement,

it has the most-direct impact on the quality of the final circuit. The purpose of

routing is to find a suitable path for all of the interconnect signals utilizing the pro-

grammable routing switches. Most routers aim to minimize routing area (channel

width), critical-path delay, congestion or any combinations of the aforementioned

goals.

Traditional routing algorithms can be classified into two categories: two-step

routers and single-step routers. A two-step router [21–25] separates the process

into global routing, where signals are assigned pins and channels, and detailed rout-

ing, where signals are further assigned specific wiring tracks within the assigned

channel. Single-step routers [26–29] combine the global and detail routing steps

together. In general, FPGA routers are based on the latter approach to cope with

its routing resource architecture, which is both limited and constrained. Two-step

18

routers are better suited for ASIC designs.

VPR employs a single-step router based on the PathFinder [27] algorithm.

PathFinder’s negotiated congestion algorithm first routes all wires using the short-

est path, despite over-consuming resources. It will then iteratively increase the

cost of the over-subscribed resource and rip-up and re-route the affected wires. In

practice, this will cause some of the signals that do not absolutely need the over-

subscribed resource to route around the congested region to eventually resolve the

over-usage issue. In order for VPR to achieve a timing-driven result, critical-paths

are routed with a higher priority over the other nets, giving it access to all of the

resources. This effectively ensures the critical-paths are delay-optimized.

2.4 Timing Analysis

VPR can operate in two modes: wire-length driven or combined wire-length and

timing-driven placement. It has been demonstrated that an average of 42% im-

provement in post-place-and-route speed can be achieved while sacrificing only

5% wire length by operating in the timing-driven mode [20]. Clearly, timing-driven

placement is highly beneficial for FPGA devices and the following section will give

a brief introduction to the timing-analysis engine used in VPR.

In order to perform timing analysis, the circuit needs to be converted into a

graph. The nodes represent the input and output pins of circuit elements and edges

are used to model the physical connection delays between the nodes. Flip-flops are

removed, with the inputs treated as virtual outputs and their outputs being treated

as virtual inputs. The number of nodes and edges is a constant for a given circuit,

while values on the edges are the only variables which depend on the physical

location of the nodes it is connected to.

19

Timing analysis starts after all blocks have been assigned a location. The edges

are first updated to reflect the actual physical delays between every pair of nodes.

Using these values, a breadth first traversal is then performed originating at all

source nodes. Source nodes are assigned a Tarrival value of 0; the Tarrival value for

the remainder of the nodes is calculated using Equation 2.7:

Tarrival(i) =
MAX

∀ j∈ f anin(i)
{Tarrival(j)+delay(j, i)} (2.7)

Where node i is the node being evaluated and delay(j, i) represents the delay

value of the edge joining node j to node i. The maximum arrival time is called the

delay of the circuit, Dmax [20].

Using this information, the amount of delay that can be added to a path before

it becomes critical, slack, is calculated in two steps. First, Trequired is calculated

starting at all sink nodes, which are assigned a value of Dmax. The Trequired for the

remainder of the nodes is calculated using Equation 2.8:

Trequired(i) =
MIN

∀ j∈ f anout(i)
{Trequired(j)−delay(i, j)} (2.8)

Then the slack of a path driven from i to j is defined by Equation 2.9.

slack(i, j) = Trequired(j)−Tarrival(i)−delay(i, j) (2.9)

Using this information, the criticality is calculated with Equation 2.10 and the

Timing cost of the circuit is calculated with Equation 2.11

Criticality(i, j) = 1− slack(i, j)
Dmax

(2.10)

20

Timing cost = ∑
∀i, j∈circuit

Delay(i, j) ·Criticality(i, j)Criticality Exponent (2.11)

The Criticality Exponent is a constant for a given temperature used to heavily

weigh connections that are on the critical-path of the circuit, while giving less

weight to other paths. It starts off with a constant value of 1 and gradually increases

to 8 as the Rlimit value shrinks.

2.5 Parallel Placement - Conflicts

Two important terms in parallel placement algorithm development are hard con-

flicts and soft conflicts. Although the conflict term is used rather often, hard and

soft conflicts have never been formally defined. In order to prevent confusion, a

definition will be presented here which will be consistent with the usage throughout

this thesis.

A simple circuit with four CLBs, numbered 1 through 4, is shown in Fig-

ure 2.10. The arrows represent nets that connect CLBs, the green and yellow (light)

shades each represent a swap pair that two threads are considering respectively.

A hard conflict arises when the same CLB is considered by more than one

thread concurrently. In the first example, threads A and B both consider block 2

for a move, thereby producing a hard conflict. Hard conflicts are problematic in

multi-threaded programming since it may lead to race conditions if not considered

carefully. In this example, if the order of swaps is not constrained, then the final

outcome would be dependent on the order of the swaps that took place.

A soft conflict arises when different CLBs that are connected by the same net

21

Thrd A

Thr
d

B

1 2

3 4

(a) Hard Conflict

Thrd B

Thrd A

1 2

3 4

(b) Soft Conflict

Figure 2.10: Illustration of a hard and soft conflict

are considered concurrently. In the second example, thread B now considers CLB

3 and 4 to resolve the hard conflict, but a soft conflict remains since blocks 2 and 3

are connected by the same net. The soft conflict arises because each thread makes

cost-based decisions that depend on these shared nets, but the parallel movement

of CLBs attached to these shared nets may invalidate the decision. High-fanout

nets make the probability of a soft conflict to be high, but they are also less likely

to result in a cost change.

2.6 Parallel Programming Background

2.6.1 Symmetric Multi-Processing

A Symmetric Multi-Processing (SMP) architecture system is a multi-processor

machine which utilizes a single shared-memory memory address space amongst

all processing nodes, and all of the processing units are identical. One of the main

advantages of these machines is that all parallel processing units have an identical

view of all memory elements, regardless where the memory is physically located.

With the help of memory consistency protocols, a shared-memory multicore ma-

chine greatly simpliefies the process of parallel programming.

22

2.6.2 POSIX Threads

Pthreads, short for POSIX Threads, is a programming library used to implement

parallel programs on SMP machines. Pthreads is a relatively light-weight library,

as compared to fork() [30], and it can be added to any C based program by simply

linking with the Pthreads library.

The Pthreads Application Programming Interface (API) is used to control the

creation, management and destruction of threads. A thread is defined as an in-

dependent stream of instructions that can be scheduled to run by the operating

system [30]. Pthreads also provides a few general purpose synchronization mech-

anisms, including barriers, locks, condition variables and mutexes, which are used

for inter-processor synchronization tasks. However, they do not solve the typical

parallel programming challenges such as load imbalance, race conditions, inter-

thread communication latencies, etc.

2.6.3 Determinism

Determinism is a property of a program such that, for a given constant set of inputs,

the outcome is identical regardless of the number of time the program is executed.

While this is commonly the case for a single-threaded program, achieving deter-

minism for a multi-threaded program is not straightforward. Various synchroniza-

tion mechanisms must be employed to constrain the order of global write opera-

tions to shared memory, and special care must be taken into consideration when

designing the algorithm in order to achieve this. Such an intricate implementation

must offer significant benefits to offset the difficulties in its creation. Debugging

and reproducibility are the biggest advantages of having a deterministic program,

as it is otherwise very difficult to debug a program in which the execution (thus

23

the location of error) changes every time! Also, the reproducibility property is also

helpful in many settings, such as in customer support setting where the reported

bug needs to be reproduced, or in regression testing where the same answer must

be produced.

Determinism is a subset of serial equivalence, which has an additional con-

straint such that the outcome is independent of the number of threads utilized. A

program that is serially equivalent is deterministic, but not vice-versa. Serial equiv-

alence may be useful under certain conditions, but for the purpose of this thesis,

determinism is sufficient since the number of threads used can simply be treated

as an input for reproducibility purposes. For example, the same 16-thread solution

can be reproduced on a system with 16 processor cores, 8 processor cores, or even

1 processor core.

2.7 Previous Works

Parallel simulated-annealing placement algorithms can be loosely categorized into

two groups: the shared and partitioned region.

• The first group of algorithms allows all processors to work within the same

region (often the entire grid), but restricts swaps that are being evaluated in

parallel, such as being from independent sets [6, 31–33]. Some algorithms

employ a speculative move proposal to further accelerate the algorithm [6],

and a dependency checker, executed serially, is used to ensure that no hard

conflict has occurred and that soft conflicts are resolved with recalculation.

The algorithm as reported in Ludwin’s work [6] achieved a speed up of 2.1x

and 2.4x on four and eight cores, respectively. Further speedup beyond eight

cores does not look promising. The main reason is that the probability of a

24

soft or hard conflict increases with the number of processors, making it more

difficult to find moves that do not conflict.

• The second group of algorithms allocates a specific region to each proces-

sor, with no or minimal overlap, and different methods are employed to allow

blocks to migrate from one region to the other [9, 34]. Sun and Sechen [34]

employed an algorithm based on dynamic region generation by dividing the

chip vertically and horizontally in alternating iterations. It was implemented

on multiple machines connected over a Local Area Network (LAN). Dur-

ing each iteration, each machine receives an independent region to work

on, and is terminated by the first machine that completes a pre-determined

number of moves. In order to minimize communication, all machines only

update changes at the end of each iteration, resulting in move evaluation be-

ing based on the cell locations from the previous iteration. It achieved a

speedup of 5.3x using six machines and yielded comparable results to a se-

rial algorithm. While the dynamic region generation may have helped with

cell movement, it greatly hinders the amount of parallelism the algorithm can

achieve and thereby limits the overall speedup. In addition, this algorithm

and all of the other ones in this group consider bounding-box cost only and

are non-deterministic, making them unsuitable to be implemented in com-

mercial tools.

A list of past parallel placement work is summarized in Table 2.2.

In recent work, Ludwin et al. describe a parallel timing-driven annealing-based

algorithm implemented in Quartus II [6, 39] which evaluates many moves in par-

allel, but serially commits the moves to achieve a serially equivalent placement. A

25

Table 2.2: Summary of past parallel placement work

Reference
(Year)

Algorithm
Category

Hardware
Targeted

Deterministic Timing-
Driven

Result

Casotto
(1987) [18]

2 Sequent Balance
8000

(8-processors)

No No 6.4x on 8 processors

Kravitz
(1987) [31]

1 VAX 11/784
(4-processors)

No No less than 2.3x on 4
processors

Rose
(1988) [35]

1 & 2 6 National Semi.
32016 processors

No No about 4 using 5 pro-
cessors

Banerjee
(1990) [32]

1 Hypercube
multiprocessors

No No about 8 on 16 pro-
cessors

Witte
(1991) [36]

1 Hypercube
multiprocessors

Yes No 3.3x on 16 proces-
sors

Sun
(1994) [34]

2 Networks of
machines

No No 5.3x on 6 machines

Wrighton
(2003) [37]

2 FPGAs No No 500x-2500x over
CPUs

Smecher
(2009) [38]

2 MPPAs No No 1/256 less swaps
needed with 1024
cores

Choong
(2010) [33]

1 GPU No No 10x on NVIVIDA
GTX280

Ludwin
(2008/2011)

[6, 39]

1 Multiprocessors Yes Yes 2.1x and 2.4x on 4
and 8 processors

This work 2 Multiprocessors Yes Yes 161x using 25 pro-
cessors

26

speedup of 2.1x and 2.4x was demonstrated on 4 and 8 processors respectively, and

QoR is equivalent to the serial version. However, this algorithm does not runtime-

scale to a large number of cores because multiple cores increase the probability

of both hard and soft conflicts between moves. A conflict of any type requires a

speculated move to be abandoned, or its cost to be recomputed serially at commit

time.

Work by Wrighton and DeHon [37] presented a distributed annealing algorithm

for a systolic architecture. While the architecture was prototyped on an FPGA, it

was only capable of computing placement for a much smaller array size than the

“host” FPGA. Still, it demonstrated that hardware acceleration could obtain signif-

icant speedups from 500x to 2500x. The algorithm works by restricting the swap

range of each block to its 4 immediate neighbors only. This allowed purely lo-

cal placement decisions to be made between adjacent elements, thus exposing vast

amounts of parallelism. One notable characteristic of this work was the use of stale

(old) placement information when making local decisions – this was done delib-

erately to avoid the overhead of broadcasting updates after every move. Instead,

placement information was updated infrequently using a daisy-chain. Overall, this

approach suffers from 36% quality degradation in the final placed circuit. The QoR

did not depend on information staleness.

More recently, work by Smecher, Wilton and Lemieux [38] demonstrated that

the algorithm used in [37] could be applied to placement of communicating tasks

for a Massively Parallel Processor Array (MPPA). Since MPPAs contain reason-

ably powerful CPUs, they can “self-host” or place themselves. The paper further

shows that expanding the neighbor region to 8 cells (ie., includes diagonals) or 12

cells (within Manhattan distance of 2) improves QoR to within 5% of traditional

27

simulated-annealing while still offering significant speedups. One limitation with

both of the aforementioned works is that only bounding-box cost is considered.

Another limitation is that specialized hardware such as a very large FPGA or an

MPPA is required. In this work, we apply techniques from Wrighton et al. [37] and

Smecher et al. [38] to the full timing-driven placement algorithm from VPR 5.0

using Pthreads, allowing it to run on readily available shared-memory multicore

computers.

28

Chapter 3

Algorithm Description

3.1 Algorithm Overview

The algorithm presented in this thesis is based on partitioned regions, namely the

second group of algorithms described in Section 2.7. The main benefit with this

type of algorithm is its ease of scalability due to the distinct region assigned to

each processor. The key here is to minimize communication between processors,

while maintaining a deterministic result. Achieving good quality is also one of

the challenges since this region partitioning scheme constrains block movement.

Careful tuning is required to achieve the ideal combination between runtime and

quality.

The parallel placement algorithm is implemented directly into VPR 5.0.2 [10],

which itself is based on the original VPR first published in [15], by modifying

the try place() function and sub-functions. Data structures in the software have

been mostly left unmodified, except where needed to create private per-thread data

and parallelize the timing update. To alleviate the demand on communication cost

29

Figure 3.1: Equal-sized grid partition

and to create a deterministic program, local copies of global variables are created

to keep track of block location, timing cost and bounding-box cost data. These

data are updated frequently enough that they do not risk becoming too stale. For

example, prior to evaluating each sub-region, all threads retrieve the latest data

from each other.

3.2 Grid Partition

The entire grid is first partitioned into approximately equal-sized private regions

and assigned to a unique thread. An example is shown in Figure 3.1 with regions

1 through 9. The increased capacity (number of cells) in IOs around the periphery

of the chip is often balanced by the sparse IO cell occupancy. Therefore, it can be

estimated that each block, whether CLB or IO, contains approximately the same

amount of work.

30

When the total number of rows/columns in the grid cannot be distributed

evenly, the interior regions rows/columns will receive the extra rows/columns first.

The reason for this allocation scheme is due to the increased capacity in the IOs as

previously mentioned; allocating these extra cells to the peripheral rows/columns

could potentially worsen what may already be a somewhat imbalanced distribution.

The number of columns and rows does not need to be same, i.e., each region

can be rectangular, thereby allowing a more diverse number of processors to be

employed.

The algorithm then subdivides each private region into four (2× 2) approx-

imately equal sub-regions. Each sub-region then is extended by two rows and

two columns in each direction along its boundaries, which are helpful in allowing

blocks to migrate between sub-regions to enhance the overall placement quality.

This combined region (sub-region extended to include the four extra rows/columns)

is called the extended sub-region.

To summarize, Figure 3.1 shows 9 private regions, numbered 1 through 9 and

4 sub-regions for each private region, lettered A through D. The zoomed figure at

the bottom shows the extended sub-region for sub-region 5A.

3.3 Parallel Placement Pseudocode

In this algorithm, each thread will iterate sequentially through all CLB loca-

tions in its private region and consider the block at each position for a swap or

skipped over entirely. However, PROB SKIPPED is used to randomly determine

whether the selected block will be considered for a swap. We experimentally de-

termined a good value to be 10% (Section 4.4), implying there is a 90% probability

31

1: while !exit condition do
2: for iteration = 1 to region place count do
3: timing update parallel()
4: barrier()
5: for n = 1 to num o f subregion do
6: global to local data update()
7: for each block position in subregion do
8: if rand[0,100)≥ PROB SKIPPED then
9: try swap()

10: end if
11: end for
12: local to global data update()
13: barrier()
14: end for
15: bounding box update parallel()
16: barrier()
17: end for
18: update anneal schedule()
19: barrier()
20: end while

Figure 3.2: Thread-level pseudocode

that each block is considered for a swap. Hence roughly 90% of the blocks will be

considered each iteration.

The parameter region place count is used to control the quality versus runtime

in a way similar to inner num in VPR. In the psuedocode described, the algorithm

makes a constant number of iterations through the grid at each temperature. The

constant is region place count. According to the original VPR equation, the num-

ber of swaps is equal to inner num ·N4/3, where inner num is the VPR control

parameter for adjusting quality versus runtime. To scale this value as the circuit

size changes at the same rate as VPR, Equation 3.1 is used to convert between

inner num and region place count:

32

region place count =
1

PROB SKIPPED
·N

1
3 · inner num (3.1)

The initial term, 1
PROB SKIPPED , is used to account for the blocks that won’t be

moved. The size of the circuit N only needs to be raised to the 1
3 power since each

inner loop iterates through the entire grid which is already N1.

Additionally, barriers are needed to enforce synchronization between the

threads. Barriers help ensure deterministic behaviour; very little data structure

locking is necessary, and of the locks we used, none of them lead to race condi-

tions or non-deterministic behavior.

3.4 Determinism Enforcement

Determinism is achieved partly by ensuring all active swap regions being evaluated

concurrently do not overlap with each other, thereby avoiding hard conflicts. In

another words, no block can be considered by more than one thread at any instance.

It is also achieved through several other considerations. Both of these issues are

discussed below.

3.4.1 Swap Regions Restriction

The following section explains two ways of restricting the swap from and swap to

region to achieve determinism. Only the descriptions are presented here, the QoR

comparison between the two is shown in Section 4.1.

Method 1 The first method restricts the swap from region to each sub-region, and

the swap to region to the extended sub-region.

This method starts with every thread placing sub-region A (refer to Fig-

33

ure 3.1). A barrier is used to ensure no thread can proceed to the next

sub-region B before every thread finishes with sub-region A. Each thread

will start at the top-left corner of each sub-region and work its way down to

the bottom-right corner of its sub-region and consider each block (the swap-

from block) for a swap. The swap to candidate is randomly selected from

the swap to region. After region A completes, all threads will move onto

sub-region B, then C, then D, and the process repeats. As all extended sub-

regions with the same letter do not overlap, race conditions cannot occur,

and thus determinism is established.

Method 2 The second method, suggested by Goeders et al. [2], is named the Half-

box Window Decomposition (HBWD) method. It considers a slightly dif-

ferent swap-from and swap-to region.

The swap-from and swap-to region considered by HBWD is depicted in Fig-

ure 3.3. The goal here is to increase block migration, to improve quality,

and to decrease the number of barriers to improve runtime. In this method,

the swap-from region spans two of the original sub-regions used in method

1. The swap-to region is simply the swap-from region plus half of one of its

neighbor’s private regions.

Using the labeling system in Figure 3.1, let’s go through the regions con-

sidered by thread 5 (in the middle). This method starts with the swap from

region set to the combination of 5A & 5B, and the swap to region consisting

of 2C, 2D, 5A & 5B. Similarly to the Method 1, this thread would start at

the top-left corner of 5A and work its way down to the bottom-right corner

of 5B. After finishing with the swap from region, the thread will wait in the

34

Figure 3.3: Half-box window decomposition’s swap-from and swap-to re-
gion [2]

barrier until all threads have finished their respective region. Then, it will

move onto the next iteration with the swap from region being 5B & 5D and

the swap to region being 5B, 5D, 6A & 6C. The region restriction will repeat

according to Figure 3.3.

Regardless of which method is chosen, data update is only performed after

each barrier. This means that during the period prior to reaching the barrier, each

thread only updates placement data for blocks residing within its swap to region

in its own private data. This implies that placement data about all other threads

will grow stale until the next barrier. In another words, from the perspective of

each thread, all blocks outside of its swap to region will not move until a data

update is performed. At the end of each region placement, all threads broadcast

their placement updates, giving a single consistent view of all placements across

all threads. Using this synchronization as a new starting point, all threads proceed

to the next sub-region and so on. This allows each thread to work in its private

region independently and to make movement decisions deterministically without

costly fine-grain synchronization. However, during placement, decisions may be

made based upon stale data. The effect of stale data is shown in Section 5.3.2.

35

3.4.2 Other Determinism Considerations

Calculations of timing, delay, and bounding-box costs are parallelized by dividing

the netlist across multiple threads. Each thread returns a partial result which needs

a final summation. These functions use floating-point values, which are not nec-

essarily associative and can produce different results due to round-off if the order

of addition changes. Therefore, in order to achieve a deterministic result, the order

for the final addition must be enforced. This can be achieved by allocating an array

with one entry for each thread. A master thread will then perform the summation

in sequential order only after all worker threads have completed their partial sum,

producing a deterministic sum. Since the work division scheme (more details in

Section 3.5) depends only on the connectivity of the nets, which is constant for a

given circuit, the worker threads will always be allocated a deterministic amount

of work — this ensures partial results will also be the same. Thus, cost results are

all deterministic.

Finally, to keep the program deterministic, each thread tracks its own random

number state. Thus, random numbers generated in one thread do not disturb the

sequence of those made by other threads.

While Ludwin [6] emphasizes serial equivalence for easier regression testing

and customer support, we believe that an algorithm that is deterministic is suffi-

cient. For our program, the algorithm is deterministic because T threads, where T

is fixed, can be run on any number of processors (even more or less than T) and

produce the same result.

36

3.5 Parallel Timing Analysis

Periodically, after a significant number of moves, the old timing analysis data be-

comes stale and must be regenerated. Hence, every 5 temperature iterations, the

parallel placer perform a timing analysis to identify new critical paths. This is

a time-consuming task that quickly becomes a bottleneck, so careful considera-

tion must be taken to ensure that it is not invoked too frequently. Furthermore,

parallelizing the existing algorithm is not straight forward. The function tim-

ing update parallel() on line 3 of the pseudocode in Figure 3.2 indicates when

this task is invoked.

This function first calculates the edge delay for each connection in the circuit

based on the current placement, and uses this to compute the slack values. The

slack values are then used to calculate the criticality values, which are used in

the calculation of timing cost and delay as described in Section 2.4. Barriers are

used to enforce data dependencies between the aforementioned functions, as well

as further enforce precedence in the calculations.

The parallelization of edge delay, timing and delay cost calculation is straight

forward. As these functions loop through all the nets in the circuit, we could simply

allocate an equal number of nets to each thread. Each thread stores its partial result

in a pre-allocated location in an array, which is later summed by the master thread

as described in Section 3.4. The summation of values is not parallelized, as it is

a short operation which involves various data transfers; however, serialization is

needed here to help achieve determinism.

The parallel slack and criticality computation requires more synchronization

because it traverses the tree to perform breath-first modifications twice, once in

37

each direction. As there are no data dependencies within each horizontal level,

work can only be distributed safely across all threads on a per-level basis.

A slight data structure change was made to assist with parallelizing the tree

traversal process used in timing analysis as described in Section 2.4. In the origi-

nal VPR code, only children of each node are stored, which is adequate for the cal-

culation of Trequired , since each node only traverses through its fanouts. However,

the calculation of Tarrival for each node requires the traversal through its fanins. In

order to avoid saving the parents of each node and thereby minimizing the memory

impact, VPR’s implementation traverses the child nodes at each level and calcu-

lates the Tarrival of each child by propagating forward the Tarrival of the parent plus

the edge delay. If the child node already has a Tarrival value from a different par-

ent, the larger value is stored. While this implementation works fine for a single-

threaded program, as the child node can only be updated by one thread, this does

not scale well to a multi-threaded implementation. Imagine the case where mul-

tiple parents are updating the Tarrival of their commonly shared child: this creates

a potential race condition that may lead to non-deterministic results. One possible

solution is to use a synchronization mechanism such as locks to ensure that a child

node will only be updated by one parent at a time. However, this is inefficient

since nodes with multiple fanins are ubiquitous in a given circuit. Another solution

is to add a pointer from each child to its parents, so that it can traverse through its

own fanins to determine Tarrival . Hence, all parents of the child are considered in

a sequential order by the same thread. This is parallelizable and ensures there are

no data dependencies between nodes at the same level. It also load balances a bit

better, since fan-ins are more balanced/limited than fan-outs. Therefore, the latter

solution is implemented.

38

1: for inet = 1 to num nets do
2: ...
3: for ipin = 1 to net[inet].num sinks do
4: ...
5: end for
6: end for

Figure 3.4: Sample workload

In many cases, the amount of work depends on an attribute of the inner loop,

which is not directly visible to the outer loop as shown in Figure 3.4. For example,

loading the net delay matrix requires looping through all sinks of each net. Simply

distributing an equal number of nets does not yield a good load balance, as some

nets have only 1 sink, whereas some others may contain hundreds or even thou-

sands of sinks. A dynamic workload distribution system is employed where each

thread keeps track of the amount of work (ie, the number of sinks visited in this

case) that is done, and returns that value when it has finished. The workload of two

neighboring partitions is then compared, and the boundary is shifted to even out

the workload. If the next region traverses through more sinks, then Equation 3.2 is

used, otherwise, Equation 3.3 is used to calculate the number of nets shifted.

∆nets =
sinksnext − sinksthis

sinksthis
∗ netsnext

4
(3.2)

∆nets =
sinksthis− sinksnext

sinksnext
∗ netsthis

4
(3.3)

The first multiplicand indicates the relative percentage difference in workload

between the two neighbors to control the number of nets being reallocated. The

second multiplicand limits the number of nets that can be moved between regions to

39

25% of the entire region. This was added to compensate for the over-shifting which

occurs often when the receiving region has much fewer sinks than the sending

region.

The initial partition is simply an even distribution of nets; however, it will be

dynamically rebalanced out as more calls to the function are done. During the

first few runs of the workload distribution system, larger boundary movement is

observed. However, as distribution begins to even out, the marginal improvement

from each iteration gradually declines. Thus, only a limited number of dynamic

distribution iterations will take place. Furthermore, the sequence of workload re-

balancing is entirely deterministic and does not depend on timing or race condi-

tions, only on the sink and net counts.

3.6 Parallel Move Evaluation

Each parallel worker thread must consider moves or swaps within its region (one

sub-region at a time). The try swap() function is executed by each thread with their

respective local data or unchanged global data. Therefore, inter-thread interference

is not possible in this function call. For each block that is considered, a randomly

selected neighbor from the legal swap-to region is considered for a swap. In the

case where the randomly selected spot is invalid, (eg, swap a CLB with an I/O pad)

another neighbor is selected. This swap will be assessed based on the difference

in timing cost and bounding-box cost, and evaluated using identical functions as

implemented in VPR to mimic the simulated-annealing process.

40

3.7 Bounding Box Update

In the serial VPR program, bounding-box update is done incrementally as part of

the swap cost evaluation function. However, in the parallel program, each thread

calculates its incremental bounding-box cost based on stale data which contains im-

precise data about the blocks that are not located within its private region. There-

fore, a fresh bounding-box calculation using non-stale data is needed at the end

of every iteration to ensure correctness and determinism. This is done at line 15

in Figure 3.2). This is extra work that the serial VPR program does not need to

execute. The bounding-box calculation is parallelized using the same dynamic dis-

tribution scheme described in Section 3.5, and the final result calculation employs

the method described in Section 3.4 to ensure determinism.

3.8 Summary

The parallel algorithm is based on the simulated-annealing algorithm in VPR with

the following modifications:

• Dividing the entire grid into approximately equal sized private regions and

assigning each region to a thread.

• Two different region decomposition methods to restrict the blocks being con-

sidered for swaps, thereby avoiding hard conflicts and enforcing determin-

ism.

• Avoiding fine-grain synchronization by assessing moves using locally stored

data, which may become stale but will periodically be refreshed.

• Parallelized timing analysis by storing the parents of each node to ensure

41

better load balance and determinism.

• Adding bounding-box update at the end of every temperature range to ensure

correctness and determinism.

42

Chapter 4

Parallel Algorithm Tuning

This chapter describes the tuning process for the various implementation choices

and parameters needed to obtain the best QoR and best runtime.

Except where noted, data presented in this chapter are post-placement geomet-

ric means of all 7 circuits normalized against values obtained from default VPR

5.0.2 settings. Only post-placement metrics are used in this chapter since they can

be generated quickly and correlate fairly well with post-routing metrics (as shown

in Section 5.2).

4.1 Swap Region

In Section 3.4.1, two different swap region methods are shown. The resulting QoR

curve using 25 threads is evaluated here and presented in Figure 4.1. The HBWD

method achieves better performance in both the bounding box and critical-path

delay QoR curves. Therefore, it is employed for this thesis.

One reason the HBWD method achieves a better QoR is due to the amount of

work accomplished between barriers. After four barrier executions in the HBWD

43

1 10 100 1000
Runtime [s]

1

1.1

1.2

1.3

Q
u
a
lit

y
 [

n
o
rm

a
liz

e
d

]

Parallel Placer with Method 1
Parallel Placer with Method 2

(a) Bounding box quality

1 10 100 1000
Runtime [s]

1

1.1

1.2

1.3

Q
u
a
lit

y
 [

n
o
rm

a
liz

e
d

]

Parallel Placer with Method 1
Parallel Placer with Method 2

(b) Critical path delay quality

Figure 4.1: Comparison between the two region decomposition methods

method, each of the sub-regions will have been considered twice. In comparison,

the first method will consider each sub-region only once. The number of times both

method enters the barrier is the same, thus the HBWD method effectively reduces

the number of times the program enters a barrier by half.

The HBWD method also utilizes the grid better than the first method. In the

first method, the active region, the region where blocks are being moved, at any

given moment is the extended sub-region, which is approximately 25% of the entire

grid. In the HBWD method, the active region spans the entire grid (100%). This

44

approach maximizes the size of the active region by fully utilizing the entire grid

and eliminating blocks that would otherwise be idle. Another inherited benefit of

the larger active region is that due to the larger swap-to region, blocks are able to

swap with candidates located farther away, enhancing block migration.

4.2 Swap To Block Choice Restriction

An algorithm was created by allowing each swap-from candidate to swap with

any block residing within the swap-to region boundary. However, as shown in

Figure 4.2(a) for 1, 4, and 25 threads, the quality varied wildly as the number of

threads varied.

Adding a limit to the distance where swap-to blocks can be chosen from seems

to alleviate the issue. Through experimentation, limiting all blocks to swap with

candidate within a Manhattan distance of 10 produces the best QoR. This is effec-

tively capping the Rlimit value of 10 at the start of the program. The result is shown

in Figure 4.2(b), and it is clear that the quality variation has improved dramatically

compared to without the swap candidate constraint.

4.3 Sequential versus Random Block Selection

Unlike VPR, this algorithm sequentially iterates through each block position in

the grid. To reach this conclusion, an experiment was designed with a controlled

number of swaps per temperature range for both the sequential and random block

selection schemes using both 1 thread and 25 threads. This experiment also in-

corporates the swap to block choice restriction (Section 4.2) and PROB SKIPPED

value of 10 (Section 4.4). The result is shown in Figure 4.3.

It can be seen that the quality of bounding box is clearly better in the case of

45

0 2 4 6 8 10 12 14 16 18 20
inner_num

1.00

1.20

1.40

1.60

1.80

2.00

B
o
u
n
d

in
g
 B

ox
 [

n
o
rm

a
liz

e
d
]

1 thread
4 threads
25 threads

(a) with no restriction swap-to candidate selection

0 2 4 6 8 10 12 14 16 18 20
inner_num

1.00

1.20

1.40

1.60

1.80

2.00

B
o
u
n
d
in

g
 B

ox
 [

n
o
rm

a
liz

e
d
]

1 thread
4 threads
25 threads

(b) with swap-to candidate limited to blocks within 10
Manhattan distance away from the swap-from candidate

Figure 4.2: Swap to region quality variation

sequential block selection, for both 1 and 25 threads. In the critical-path delay

graph, the quality is somewhat indistinguishable between the two block selection

methods. Therefore, the sequential block selection scheme is used throughout this

thesis as it performed no worse than the alternative method.

46

0 2 4 6 8 10 12 14 16 18 20
inner_num

1

1.1

1.2

1.3

B
o
u
n
d

in
g

 B
ox

 [
n
o
rm

a
liz

e
d

] Random 25 threads
Random 1 thread
Sequential 25 threads
Sequential 1 thread

(a) Bounding Box quality comparison

0 2 4 6 8 10 12 14 16 18 20
inner_num

1

1.1

1.2

1.3

C
ri

ti
ca

l
Pa

th
 D

e
la

y
 [

n
o
rm

a
liz

e
d

]

Random 25 threads
Random 1 thread
Sequential 25 threads
Sequential 1 thread

(b) Critical Path Delay quality comparison

Figure 4.3: Sequential versus random block selection comparison

4.4 PROB SKIPPED Characterization

The PROB SKIPPED value adds an extra degree of freedom to tweak the program

for quality and runtime trade-offs. It controls the inner most loop of the algorithm

which makes it a standalone parameter that can be varied with only minimal dis-

turbance to the rest of the parameters. It dictates the probability each block will

not be considered for a swap when iterating through the swap from region. A

value of 100 is equivalent to not making any swaps, resulting in the initial place-

ment. Figure 4.4 shows the QoR trade-off obtained by sweeping PROB SKIPPED

47

0 10 20 30 40 50 60 70 80 90 100

PROB_SKIPPED

40

60

80

100

120

R
u
n
ti

m
e
 [

s
]

1

1.2

1.4

1.6

1.8

2

Q
u
a
li
ty

 [
n
o
rm

a
li
z
e
d
]

Bounding Box
Critical Delay Path
Runtime

Figure 4.4: PROB SKIPPED sweep

from 0 to 100 with 4 threads and an inner num value of 4.6. The experiment

uses the swap to block restriction (Section 4.2) and the sequential block selec-

tion scheme (Section 4.3). The leftmost point (greatest runtime) is obtained with

PROB SKIPPED of 0, since every block is considered. As PROB SKIPPED in-

creases, fewer blocks are considered, resulting in shortened runtime and reduced

quality.

The purpose of this experiment is to determine whether it is possible to

avoid considering every block and still maintain a good result. It can be seen

from Figure 4.4 that the quality of both metrics degrades rather slowly for small

PROB SKIPPED values. Therefore, a value of 10 is selected as it gives the best

trade-offs — an approximately 14% runtime reduction for only approximately 1%

quality loss.

48

4.5 Adaptive Annealing Schedule

This section describes the experiments conducted in an attempt to minimize the

quality difference between varying number of threads. With the initial algorithm,

the bounding-box quality mildly degrades by approximately 3% when scaling from

1 to 64 threads. While noise is may be one of the contributing factors, we believe

improvements can be made here.

In able to better understand the potential causes that could result in different

quality when a different number of threads are used, we first identify properties

that change as the number of threads scales.

As the number of threads increases, the first property that changes is the size

of the private regions. As the grid is constant in size, each thread ends up with a

smaller proportion allocated for its private region. This in turn affects the average

swap distance since blocks may only swap with other candidates within its private

region boundary. Limited swap distance may potentially hinder block migration,

which could potentially be the cause of the quality decay seen here.

The second property that changes with the number of threads is the amount of

stale data, which has an effect on the swap decisions being made. Qualitatively

examining this issue, the amount of stale data observed by each thread can be com-

puted as 1− 1/n, where n is the number of threads being used. Thus, the largest

stale data increase is from 1 thread (0%) to 4 threads (75%). However, as will be

shown, the quality between 1 and 4 threads is relatively constant. Further scaling

beyond 4 threads does not change the percentage of grid that is stale as dramati-

cally. Also, the degree of staleness shrinks as the number of threads increase, since

a block is restricted to move a distance no larger than the size of the swap-to region,

49

Table 4.1: Quality experiments

Experiment Swap from Swap to region place count PROB SKIPPED
1 same as swap to same divide by 2 same
2 same as swap to same same from 10 to 55
3 same as swap to same multiply by 8 divide by 8

which is shrinking. Thus, we believe that stale data is not a primary contributing

factor to the quality decay seen here.

4.5.1 Early Exploration

In this section, three experiments are conducted to investigate the effect of thread

count on the quality. The parameter settings for each experiment are shown in

Table 4.1. In all experiments, the premise behind using a larger swap from re-

gion is to maximize the swap distance by setting the swap boundaries to the ac-

tive region boundary. This change effectively doubles the number of blocks being

considered at each inner loop. Thus, to keep the number of swaps constant, the

region place count and PROB SKIPPED values are adjusted accordingly in the

first two experiments.

The third experiment is proposed with the intuition that in order to assist with

block migration, more iterations are needed compared to the number of swaps per

iteration. Each iteration, blocks can only move randomly within the constrained

private region and cannot move beyond the boundary. Thus, we conduct an exper-

iment using a large number of iterations to see if quality will improve, and hence

whether the intuition is correct.

Results based on 7 circuits, normalized against VPR using inner num value

of 1, are shown in Figure 4.5. A constant inner num value of 1.3 is used for the

parallel placer. While experiments 1 and 2 show no improvement over the old

50

10 20 30 40 50 60

Number of threads

1

1.05

1.1

1.15

1.2

B
o
u
n
d
in

g
 B

o
x
 [

n
o
rm

a
li
ze

d
]

Baseline
Experiment 1
Experiment 2
Experiment 3

Figure 4.5: Quality with varying number of threads for various experiments

algorithm, experiment 3 seems to show improvements.

The first two experiments resulted in quality degradation at 1 thread. However,

it is not clear if there is a subtle mechanism that could cause this or if it is simply

noise. With more threads, these two experiments show similar results as the base-

line algorithm. Although the second experiment may seem like it produces better

quality at 49 and 64 threads, the result at 25 threads suggest this is simply noise.

The third experiment is convincingly better than the baseline algorithm. It is

consistently about 1-2% better throughout the entire range of threads being used.

While this experiment results in longer runtime since data broadcast and timing

analysis are performed more frequently (between each iteration), it provides an

important insight: it is not the number of swaps within the iteration that impacts

quality, it is the number of iterations considered at each temperature that matters.

That is, there must be ample ability for blocks to migrate across region boundaries.

51

While none of the methods presented in this section are implemented in the

final algorithm, the insights gained are important.

In summary, the first two experiments show that increasing the swap from re-

gion makes no significant effect to the overall quality. However, increasing the

region place count results in a consistently better result. The important take away

points from these experiments are 1) having a large number of swaps within a

constrained region does not appreciably improve quality since blocks are simply

moving randomly within the region; 2) increasing (or decreasing) the size of the

swap from region has little influence on quality; and 3) block migration between

regions is important, thus increasing the number of iterations is an effective way to

improve quality.

4.5.2 Cost versus Temperature Evaluation

With increasing the number of iterations in mind, an experiment was conducted to

better align the QoR characteristics of the parallel placer with VPR. Specifically,

the cost versus temperature curve for the stdev000 circuit using 4 threads was com-

pared to the original VPR, both using an inner num value of 1, to see if anything

can potentially be modified. Both VPR and the parallel placer use the VPR cooling

schedule as shown in Table 2.1. Figure 4.6 shows the cost versus temperature curve

for VPR and the parallel placer. It can be seen that the two curves do not overlap

each other well. This suggests the VPR’s annealing schedule may not necessarily

be the most suitable choice for the parallel placer.

52

Randomization

Initial
Improvement

Rapid
Improvement

Greedy
Optimization

Figure 4.6: Initial cost versus temperature comparison

Modification 1

The first noticeable difference is that the transition from the randomization stage,

where the cost remains very high, to the initial improvement stage occurs at a lower

temperature in the parallel placer. The alpha value is 0.5 and 0.9 in the randomiza-

tion and initial improvement stages, respectively. A smaller α value leads to faster

temperature drop. Entering the initial improvement stage a single iteration later

means valuable annealing steps needed for ‘hill-climbing’ are skipped. Therefore,

to better align the parallel placer with VPR, mod 1 is introduced: the randomization

stage is limited to portions where the success rate is greater than 0.98 (versus 0.96

for VPR). The resulting curve from mod 1 is shown in Figure 4.7; the resulting

curve is a bit closer to the curve generated from VPR.

53

1E−051E−04

Temperature [log]

0

5000

10000

15000

20000

25000

30000

35000

V
P
R

 C
o
st

VPR
Parallel Placer with VPR schedule
Parallel Placer with mod 1
Parallel Placer with mod 1 and 2

Figure 4.7: Cost versus temperature comparison with mod 1 & 2

Modification 2

The second noticeable difference is that during the rapid improvement phase,

where the data points form a near-vertical line, the parallel placer has much fewer

datapoints than VPR. This suggests that not enough time is spent during the cool-

ing process, which may result in the final placement being trapped at local minima.

This is a serious issue for the parallel placer since block movement is already con-

strained to the swap region boundaries; a quenching-like annealing schedule would

54

1E−071E−061E−051E−041E−031E−021E−01

Temperature [log]

0

5000

10000

15000

20000

25000

30000

35000

V
PR

 C
os

t

VPR
Parallel Placer with VPR schedule
Parallel Placer with new schedule

Figure 4.8: Cost versus temperature comparison with the new schedule

further inhibit block migration.

To mitigate this issue, finer annealing steps (a larger α value) are taken to

ensure more iterations are considered at each temperature step. Modification mod

2 includes a) adjusting the transition to the rapid improvement stage when the

success rate falls below 0.94 (versus 0.80 for VPR) and b) increasing α to 0.99

(versus 0.95 for VPR) during the rapid improvement phase. These two changes

become the ‘Fine Rapid Improvement’ phase in Table 4.2. The resulting curve is

shown in Figure 4.7 with square markers. It can be seen that it is much closer to

the original VPR curve with these changes. It also converges to a higher quality

result than before these changes, but it is still not as good as VPR.

55

Modification 3

The final modification further targets the transition stage between randomization

and the rapid improvement as there is still an apparent gap between the parallel

placer and VPR. The α value is further increased from 0.99 to 0.995 to alleviate

this issue. In addition, the slow annealing schedule (where α ≥ 0.99) is limited

to the phase when Rlimit spans the entire grid. Once Rlimit begins to shrink, the

original α value used in VPR is restored. This is done because the swap region

sizes between the parallel algorithm and VPR begins to converge at similar rates

as Rlimit shrinks. In another words, as Rlimit becomes the limiting factor for the

swap region size, there is no longer a difference in the swap distances between the

parallel placer and VPR. Hence, as the swaps considered in both programs are now

similar, it is logical to restore the α value in VPR. These two changes become the

‘Fine Initial Improvement’ and ‘Fine Rapid Improvement’ phases in Table 4.2.

The entire new simulated-annealing schedule is shown in Table 4.2. For com-

parison, VPR’s original schedule is also shown in this table.

The resulting cost versus temperature curve for the parallel placer using the

improved annealing schedule is shown in Figure 4.8. The new parallel anneal-

ing schedule tracks VPR’s curve much better, and achieves a better QoR than the

original schedule.

Quality Scaling Comparison with Improved Schedule

With the improved simulated-annealing schedule, the quality versus number of

threads curve compared to VPR is shown in Figure 4.9. In comparison to Fig-

ure 4.5, the upward quality degradation trend is no longer present, and quality

variation due to varying the number of threads has been minimized.

56

Table 4.2: New simulated-annealing schedule

Phase New schedule VPR schedule
Raccept Rlimit α Raccept Rlimit α

Randomization > 0.98 – 0.5 > 0.96 – 0.5
Initial Improvement > 0.94 – 0.9 > 0.80 – 0.9

Fine Initial Improvement > 0.83 – 0.995 —
Fine Rapid Improvement > 0.15 == entire grid 0.99 —

Rapid Improvement > 0.15 or > 1 0.95 > 0.15 or > 1 0.95
Greedy Optimization otherwise 0.8 otherwise 0.8

10 20 30 40 50 60
Number of threads

1

1.05

1.1

1.15

1.2

Q
u
a
li
ty

 [
n
o
rm

a
li
ze

d
]

Bounding box quality with improved schedule
Critical path delay quality with improved schedule

Figure 4.9: Quality scaling

QoR Curve

The QoR curve with the new simulated-annealing schedule for 25 threads is shown

in Figure 4.10. Although the finer annealing steps result in more swaps taken and

thus longer runtime for a given inner num value, the overall QoR curve turns out

to be better. This suggests that the improvement in quality outweighs the extra

runtime, thereby shifting the QoR curve below the original one.

In summary, we did not explicitly increase the number of iterations at each tem-

57

1 10 100 1000
Runtime [s]

1

1.1

1.2

1.3

1.4

B
o
u
n
d
in

g
 B

o
x
 Q

u
a
li
ty

 [
n
o
rm

a
li
z
e
d

] Parallel Placer with VPR scheduler
Parallel Placer with improved schedule

Figure 4.10: QoR improvement due to the new schedule

perature stage. Instead, we achieved a similar effect by slowing down the anneal

process, which effectively increases the number of temperature stages, and hence

the number of iterations. As a result, the new annealing schedule makes two im-

provements: a) eliminates the upward trend in quality degradation as more threads

are used and b) improves the QoR curve.

4.6 Parallel Programming Optimizations

4.6.1 Parallel Memory Allocation

This work makes use of the Hoard memory allocator [40], which is a fast, scalable

and memory-efficient memory allocator. This memory allocator addresses three

main issues:

• Contention due to multi-threaded programs sharing the same heap. This is

especially a problem when allocate functions are executed simultaneously by

multiple threads. A conventional memory allocator would simply serialize

58

Table 4.3: Hoard library runtime comparison

Circuit Without Hoard[s] With Hoard[s] Runtime Reduction
stdev000 51.89 37.23 28%
stdev002 51.94 38.55 26%
stdev004 51.59 36.12 30%
stdev006 50.23 36.12 28%
stdev008 44.68 32.38 28%
stdev010 56.48 39.81 30%
stdev012 61.08 44.81 27%

average: 28%

these allocate functions.

• False sharing due to multiple threads sharing the same cache line to store its

distinct variable. Frequent writes by other threads cause unnecessary inval-

idate requests from the CPU, requiring the data to be re-read from memory,

which dramatically slows down memory accesses.

• Fragmentation due to inefficient utilization of freed memory. This is not a

major issue for this work since memory de-allocation does not occur until

the conclusion of the program. This would more beneficial for a program

that contains significant dynamic memory re-allocation.

An experiment was conducted to experimentally determine the effectiveness

of Hoard on the parallel placement program. Identical source code was compiled

twice, once linking the Hoard library and once without the library. The average

runtime for all 7 circuits is computed in Table 4.3. Hoard improves runtime by

28% on average.

59

1 struct al igned mutex{
pthread mutex t mutex ;

3 } a t t r i b u t e ((a l igned (64)) ;

Figure 4.11: Macro used to align data to cache lines

4.6.2 False Sharing

In addition to using Hoard to alleviate false sharing effects, many of the memory

arrays and matrices are created with cache line size taken into consideration. Com-

piler macros ensure data structures are aligned to the cache line sizes of 64 bytes

for the machines used in this work. This manual optimization is likely not needed

in the presence of Hoard, however, it is left in the code in the event that the code is

ported to a platform where Hoard is not available. A sample macro used is shown

in Figure 4.11.

4.6.3 Processor Affinity

In a multi-threaded program, the operating system scheduler has the responsibility

to assign processor(s) to execute each thread. On a SMP machine where all proces-

sors are identical, a thread could potentially be assigned to any of the processors by

default. Processor affinity is an additional constraint which restricts the processors

a given thread can be scheduled on.

For the parallel program described in this thesis, the ideal platform should have

at least an equal number of processors as the number of threads. Therefore, each

thread should be assigned uniquely to a processor without any time-sharing. This

has a few benefits:

Processor Caching: the main issue with threads hopping from one physical pro-

cessor to another is the contents of each processor’s cache. Consider the

60

1 c o r e a f f i n i t y = pow(2 , input−>i d) ;
p t h r e a d s e t a f f i n i t y n p (p t h r e a d s e l f () , sizeof (c o r e a f f i n i t y) , & c o r e a f f i n i t y)

Figure 4.12: Core affinity source code

example when a thread moves from being executed on processor A to pro-

cessor B. Processor A’s cache is warm, meaning it is full of useful memory

contents. However, as caches do not move with the thread, the cache con-

tent is not transferred to Processor B when the thread moves. As a result,

the thread will experience numerous cold (aka compulsory) cache misses as

it begins to execute on processor B. To eliminate this unnecessary flushing

of cache contents, it’s best to lock threads to processors, so the cache stays

warm at all times. Table 4.4 shows the runtime for a 25-threaded program

run 10 times with and without processor affinity. It can be seen that program

runtime reduces by approximately three quarters of a second when processor

affinity is turned on, which contributes to about 2% in runtime savings.

Predictable Runtime: without setting processor affinity, the program runtime

varies from run to run. From Table 4.4, it can be seen that the standard de-

viation is significantly lowered from 0.69s to 0.28s having processor affinity

turned on.

The code shown in Figure 4.12 indicates how processor affinity is assigned,

each thread numbered 0 through n−1 is matched on a one-to-one basis to a distinct

processor 0 through n−1.

61

Table 4.4: Runtime comparison with and without processor affinity

Circuit Runtime without affinity[s] Runtime with affinity[s]
avg. max min std dev. avg. max min std dev.

stdev000 38.26 37.12 40.35 0.93 37.12 36.82 37.53 0.26
stdev002 39.38 38.54 41.22 0.77 38.81 38.24 39.53 0.39
stdev004 37.24 36.65 38.00 0.36 36.67 36.20 37.01 0.25
stdev006 36.93 35.95 39.72 1.03 36.11 35.50 36.50 0.35
stdev008 33.45 32.70 34.15 0.51 32.76 32.52 33.20 0.19
stdev010 40.39 39.63 41.00 0.42 39.88 39.51 40.22 0.22
stdev012 46.00 44.88 49.49 1.31 45.11 44.57 45.68 0.32
average 38.65 0.69 37.90 0.28

Node 0

Node 1

Node 2

Node 4 Node 5

Node 3

Node 6 Node 7

Figure 4.13: Sample custom polling barrier tree with 8 nodes

4.6.4 Custom Polling Barrier Implementation

While barriers in the Pthreads library are functionally correct, they are too slow.

The POSIX barriers suspend and resume the thread as it arrives at the barrier,

which introduces process scheduling overheads. The overhead is not justifiable

for the purpose of this parallel program since most threads have approximately

equal amount work and hence similar execution time. Instead, a custom tree-based

polling barrier is implemented using shared global memory based on [41]. Fig-

ure 4.13 shows a sample barrier for an 8-thread program.

Nodes are numbered from left to right and top to bottom. For a given program

with n threads, there’ll be a total of n nodes in the barrier tree. The barrier tree

62

almost forms a binary tree, with the exception of node 0 and 1. This is done to make

it mathematically simple to calculate the children of each node without needing a

function to convert node id from thread id; the children of each node are simply

node · 2 and node · 2+ 1. As each thread arrives at the barrier, it’ll first poll until

all of its children have arrived, if it has any, before writing to a shared memory to

signal its arrival to its parent. Then it’ll wait for the release signal from its parent

to exit out of the barrier. This is very efficient since only two memory transfers

are needed for each node, one for arrival and one for release, for an entire barrier

cycle, with the assumption that there is no false sharing amongst different nodes.

This custom barrier performed much better than the POSIX barriers. Figure 4.14

shows the average runtime comparison over the seven circuits running with 4 to

25 threads. It can be seen while runtime is about the same for four threads, the

difference grows dramatically as 25 threads are used. With 25 threads, the runtime

obtained using Pthreads barrier more than doubles the runtime with the custom

polling barrier. The custom barrier provides better runtime and scales better.

In the event that the number of threads are less than the number of partitions,

where the processors need to be time-shared, the native Pthreads barrier imple-

mentation outperforms the custom barrier. The reason is that in the custom barrier,

each thread is constantly doing work, including the time that it is stalled waiting at

a barrier. This makes it difficult for other threads to get work done, since spinning

threads do not yield to threads that need to perform real work. In this case, the

Pthreads barriers should be used instead.

63

0 5 10 15 20 25 30

Number of threads

0

20

40

60

80

100

120

140
G

e
o
m

e
tr

ic
 A

v
e
ra

g
e
 R

u
n
ti

m
e
 [

s]

Pthread barrier
Custom polling barrier

Figure 4.14: Custom polling versus Pthreads barrier

4.7 Closing the Quality Gap

This section describes experiments conducted in an attempt to minimize the qual-

ity difference between VPR and the parallel placer. The goal here is to investigate

whether it is possible to achieve the same quality obtained by VPR using the par-

allel algorithm. All datapoints obtained in this section are with an inner num value

of 10 to obtain the asymptotic quality.

While none of the techniques here are used in the final parallel placement al-

gorithm, it is documented here for the interest of the readers.

4.7.1 Forced Block Migration

To encourage blocks to migrate outside of the swap from region, this experiment

sometimes constrains the swap-to position to be selected outside of the swap-from

region (refer to Figure 3.3). This experiment is designed with the intuition that the

64

0 20 40 60 80 100
Probability that a swap is not forced to the swap_to region

1

1.02

1.04

1.06

1.08

1.1
Q

u
a
lit

y
 [

n
o
rm

a
liz

e
d
 t

o
 V

P
R

]

Bounding Box
Critical Path Delay

Figure 4.15: Forced block migration

block migration issue could be caused by a) choosing swap neighbors too close and

b) being selected again due to the sequential block selection scheme. Thus, artifi-

cially forcing the block to move outside of the swap from region may encourage

block migration.

Results are shown in Figure 4.15. We sweep the probability a given block

is forced to be outside the swap from region. A value of 0 implies all swap-to

candidates are outside the swap from region and a value of 100 means no swap

is being constrained, thus being equivalent to the original algorithm. In summary,

forced block migration does not seem to have an influence on the QoR.

65

4.7.2 Reject Good Moves

In this experiment, we intentionally reject good moves that decrease the overall

cost metric. The idea behind this experiment is that we suspect insufficient ‘hill-

climbing’ is done, thus the result is being trapped in local minima. Since it does not

make sense to do this across all temperature ranges, as it would take an extremely

long time to converge. We set the move rejection rate equal to the acceptance rate

(Raccept), so it would scale down as annealing progresses. We also restrict this

experiment to the period where the Raccept is between 0.98 and 0.50, so it does not

interfere with the decisions during the low temperature range. With this rejection

rate, the PROB SKIPPED value is varied from 10 to 90 to evaluate its effect on

QoR.

This also leads to a significant runtime increase since good swaps must be

abandoned and another swap must be re-proposed and the cost metrics need re-

calculated. To make things worse, if the recalculated move is good, there’s the

same probability that it will be rejected as well! Nevertheless, the goal here is to

see if rejecting good moves has any effect on quality.

The results are shown in Figure 4.16. The horizontal axis indicates the value of

PROB SKIPPED: a high value indicates large number of blocks had been skipped

and a value of 10 is equivalent to the original algorithm where only the rejection

rate changes at the high temperature. As seen, the QoR seems to degrade slightly

as PROB SKIPPED is increased. This makes sense since fewer blocks are con-

sidered for swaps. In summary, the result does not suggest that QoR is influenced

by the percentage of good moves that are accepted at the high temperature phase

regardless of what the PROB SKIPPED value is.

66

0 20 40 60 80 100
PROB_SKIPPED

1

1.02

1.04

1.06

1.08

1.1
Q

u
a
lit

y
 [

n
o
rm

a
liz

e
d
]

Bounding Box
Critical Path Delay

Figure 4.16: Reject good moves

4.7.3 Hybrid Parallel & Serial Placement

We investigate the effect of alternating between a serial and parallel version VPR

placement. It is known that the serial placer yields superior quality than the parallel

placer, and it is believed that the non-restricted swap region which allows freedom

for distant block migrations is likely the cause of this. The idea behind this experi-

ment is to see whether it is possible to combine the serial and parallel placer, thus

allowing unconstrained swaps take place during every temperature range when the

serial placer is executing. This is achieved by appending a serial VPR annealing

step at the end of every temperature stage.

We start by allowing only 1 swap per temperature during the serial phase stage

and incrementally increasing it, as shown in Figure 4.17.

67

0 10000 20000 30000 40000 50000 60000
Number of Serial Swaps at Each Temperature

1

1.02

1.04

1.06

1.08

1.1
Q

u
a
li
ty

 [
n
o
rm

a
li
ze

d
]

Bounding Box
Critical Path Delay

Figure 4.17: Serial and parallel hybrid placement

An issue here is that the unconstrained and constrained swaps may not actually

work well with each other. For example, if one block makes a distant move during

the serial phase, it could take the rest of the blocks which connect to it quite some

time to move close to it during the constrained parallel swap phases. This apparent

‘block-chasing’ may lead to some quality degradation.

In summary, this hybrid placement scheme did not have an influence on the

QoR. Even when the total number of serial swaps exceeded the conventional VPR,

the hybrid placer was unable to achieve the QoR of the conventional VPR.

68

4.8 Summary

This section summarizes the algorithmic parameters and methods tuned to produce

the final parallel placement algorithm with the best QoR.

• Utilizing the HBWD method for region decomposition to achieve determin-

ism and good quality.

• Limiting the range of swaps to all blocks to a Manhattan distance of 10, or

the swap region boundaries, whichever is smaller.

• Sequentially iterating through the grid instead of randomly selecting blocks

to be swapped.

• To improve runtime for negligible quality loss, the algorithm only selects

90% of the blocks to swap.

• The new simulated-annealing schedule makes finer steps to better align cost

versus temperature between the parallel placer and VPR.

69

Chapter 5

Experimental Evaluation

In this section, the benchmarking methodology is presented. Then the quality and

runtime between the parallel placement algorithm and VPR is compared. Also

presented is the self-speedup of the parallel algorithm versus a single-thread im-

plementation of the same parallel algorithm and discussion regarding its runtime

scaling limitations. Then, it is shown that the quality of placed circuits is preserved

as the number of threads scales.

All quality values are geometric means of values which are normalized against

VPR 5.0.2 run with default parameters. For example, a value of 1.06 implies 6%

quality degradation while 0.97 corresponds to a 3% quality improvement.

5.1 Benchmarking Methodology

This section describes the circuits used for benchmarking and the experimental

process.

70

5.1.1 Benchmarking Circuits

The traditional Toronto20 MCNC benchmark circuits are too small to use for par-

allel placement experiments. Furthermore, large FPGA circuits are rare. There-

fore, the benchmarks provided with the Un/DoPack flow which are fully described

in [42] are used here. These large synthetic circuits are built using the GNL tool

in hierarchical mode, using 20 subcircuits which are each based on the Toronto20

MCNC circuits. For each of 7 synthetic circuits generated, the overall average Rent

exponent is 0.62, but the Rent exponent in the inner subcircuits is varied to pro-

duce a standard deviation in Rent values from 0.00 to 0.12 in 0.02 increments. As

a result, the synthetic circuit with the smallest standard deviation is easiest to route

and has the most uniform packing of interconnect wires, while the largest standard

deviation is hardest to route due to hotspots which need a much wider channel to

route. Using GNL in this way is a bit better than simply stitching the 20 MCNC

circuits at the I/O pins; the latter approach is more likely to have large independent

subcircuits which are more amenable to parallel placement. The circuits are clus-

tered using T-VPack 5.0.2 with 6-input lookup tables, a cluster size of 10 or 4, and

a maximum of 35 or 15 inputs per cluster.

5.1.2 Hardware Environment

We evaluate the performance of our program using a Dell R815 machine. It con-

tains 4 sockets, each with an 8-core AMD Opteron 6128 processor, to support a

total of 32 processors, running at 2.0 GHz. The system has 32GB of memory and

the operating system is Ubuntu Server 10.10. All timing measurements are for

placement-related operations; both parallel and serial placer timing measurements

are performed on this machine. The machine is load free with the exception of the

71

OS running in the background.

5.1.3 Experimental Methodology

The parallel placement work is compared against VPR running with the flag ‘-

place only’. There is a ‘-fast’ flag in VPR that is faster (9.7x) than the default

and achieves only 2.4% loss in bounding-box metric and 1.2% loss in critical-

path delay metric on average for post-placement results and 2% and 0% for post-

routing results using the benchmark circuits. The quality values in this Chapter are

compared against default VPR and not VPR ‘-fast’.

The runtimes reported in this chapter include placement time only, which is

primarily the pseudocode shown in Section 3.3. Time excluded from measured

time, including netlist loading and pre-computation of delay tables used for cost

calculations, is identical between serial VPR and our parallel placer, and is not

part of the runtime measurement. The excluded portions can be runtime-optimized

and/or parallelized quite easily.

We ran all of the circuits through the parallel placer first and obtained a qual-

ity/runtime trade-off curve by varying the inner num values and the number of

threads. Then each placed circuit is fed into the VPR router to obtain a minimum

channel width with the flags shown in Figure 5.1. Then, 20% extra channels are

added to the previously obtained minimum channel width to result in a low-stress

routing solution which determines the critical-path delay of the circuit using the

flags shown in Figure 5.2. This method is used for all circuits regardless of whether

it is placed with the parallel or the original VPR algorithm.

72

-max route iterations 100 -pres fac mult 1.3

Figure 5.1: VPR options for minimum channel width

-route chan width (min chan width ·1.2) -max router iterations 300 -pres fac mult 1.1

Figure 5.2: VPR options for critical-path delay

5.2 Quality versus Runtime

In the following section, the post-placement (PP) and post-routing (PR) metrics are

shown. Post-routing results are ultimately the figures used to evaluate the result,

however, as they are time-consuming to generate, much of the earlier algorithm

exploration has been done using only post-placement metrics. It can be seen that

the two curves track each other quite well, with PP bounding box correlating with

PR wirelength and critical-path delays correlating with each other. Thus the early

algorithm explorations done in Chapter 4 using PP metrics are valid.

Figures 5.3, 5.4, and 5.5 show the quality versus runtime comparison for our

parallel program and VPR. The runtime is plotted on the x-axis in a log scale

and the normalized quality result is shown on the y-axis. The datapoints for VPR

are obtained by starting with default VPR (slowest runtime, quality = 1.0). We

then improve VPR runtime, first by adding ‘-fast’ flag, then by further decreasing

inner num to values less than 1.

5.2.1 Comparison Trends

Figure 5.3 shows the runtime versus quality comparison for PP bounding box and

PR wirelength metric. The dark blue line is VPR’s runtime curve, and the rest

of the curves are generated using the parallel algorithm with a varied number of

threads.

73

1 10 100 1000 10000
Runtime [s]

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

B
o
u
n
d
in

g
 B

ox

[n

o
rm

a
liz

e
d
] VPR

1 thread
4 threads
9 threads
16 threads
25 threads
30 threads

(a) Bounding Box PP

1 10 100 1000 10000
Runtime [s]

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

W
ir

e
le

n
g
th

 [
n
o
rm

a
liz

e
d
]

VPR
1 thread
4 threads
9 threads
16 threads
25 threads
30 threads

(b) Wirelength PR

Figure 5.3: Runtime versus quality of PP bounding box and PR wirelength

It can be seen that the single-threaded version of the parallel algorithm per-

forms worse than VPR, since it is always above and to the right of the VPR curve.

This is mainly due to the associated overheads needed to make the algorithm par-

allelizable. As more threads are used, the runtime of the parallel placer decreases

while the quality stays constant. This is seen by the horizontal left shift of the

74

1 10 100 1000 10000
Runtime [s]

0.9

0.95

1

1.05

1.1

1.15

1.2

C
ri

ti
ca

l
Pa

th
 D

e
la

y

[n

o
rm

a
liz

e
d
]

VPR
1 thread
4 threads
9 threads
16 threads
25 threads
30 threads

(a) Critical Path Delay PP

1 10 100 1000 10000
Runtime [s]

0.9

0.95

1

1.05

1.1

1.15

1.2

C
ri

ti
ca

l
Pa

th
 D

e
la

y
 [

n
o
rm

a
liz

e
d

] VPR
1 thread
4 threads
9 threads
16 threads
25 threads
30 threads

(b) Critical Path Delay PR

Figure 5.4: Runtime versus quality of PP and PR critical-path delay

curve. With just four threads, the parallel placer is able to outperform the serial

VPR in the short runtime (< 100s) region, but it includes mild quality degradation

(about 20%).

Figure 5.4 shows the runtime versus quality comparison for the critical-path

delay metric. While the magnitude of the critical-path delay degradation is smaller

compared to the PR wirelength graph shown previously, the same trend is seen: the

75

1 10 100 1000 10000
Runtime [s]

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

M
in

.
C

h
a
n
n
e
l
W

id
th

 [
n
o
rm

a
liz

e
d

]

VPR
1 thread
4 threads
9 threads
16 threads
25 threads
30 threads

Figure 5.5: Runtime versus quality of PR minimum routable channel width

quality obtained by VPR degrades sharply at approximately 100s; in contrast, the

parallel placer is still able to sustain a good QoR as runtime shrinks, outperforming

VPR. A similar trend is seen with the minimum routable channel width curve as

well, shown in Figure 5.5.

It can also be noted that although the QoR for the parallel program converges

to an asymptotic bound as runtime increases, it is unable to match the quality of

VPR. The PR-QoR gap of the best parallel placer quality compared to VPR is

approximately 7.6%, 4.6%, 1.6% for minimum routable channel width, wirelength

and critical-path delay respectively. We look into a different way of performing

FPGA placement in Section 6.1, and show a promising technique that may be used

to recover some of this quality loss.

5.2.2 Comparison with 25 Threads

To compare VPR and the parallel algorithm at a single data point, we need a strat-

egy for selecting a point of comparison. Moving right-to-left along the quality/run-

time curves, we selected the first point where our parallel version with 25 threads

76

Table 5.1: Parallel (25 threads) compared to VPR

LUTs # CLBs min. chan wirelength crit. delay speedup
width

stdev000 40013 5036 1.12 1.10 1.14 150
stdev002 40013 5051 1.14 1.09 1.13 153
stdev004 40013 5037 1.13 1.17 1.06 201
stdev006 40013 5023 1.13 1.09 1.02 168
stdev008 40013 5041 1.14 1.11 1.03 167
stdev010 40013 5043 1.15 1.09 1.09 151
stdev012 40013 5060 1.13 1.07 1.04 141

25 threads Geo. Mean 1.13 1.10 1.07 161
VPR-superfast Geo. Mean 1.96 2.09 1.12 105

outperforms VPR in all of the PP and PR quality metrics; this occurs around 30

seconds. We describe this point along the VPR curve as ‘-superfast’, obtained by

setting the inner num to 0.015625. In comparison, at this point our parallel version

with 25 threads uses an inner num value of 0.25 with runtime of approximately 20

seconds.

At this selected point in the runtime/quality space, the parallel placer beats

VPR ‘-superfast’ in both runtime and quality metrics. Table 5.1 shows the actual

quality and speedups obtained for each benchmark, as well as the geometric mean.

In comparison, VPR ‘-superfast’ is slightly outmatched in critical-path delay (1.12

vs. 1.07), but already vastly outmatched in minimum routable channel width (1.96

vs. 1.13), wirelength (2.09 vs. 1.10) and speedup (105x vs. 161x) by the parallel

version.

A more general quality versus speedup trade-off comparison is plotted in Fig-

ure 5.6. It can be seen that VPR’s speedup plateaus at approximately 100X with

quality degrading more than 100% in wirelength and minimum routable channel

width. In contrast, our parallel algorithm can run as fast as 6s on average while only

sacrificing less than 30% on all PR quality metrics against VPR. This is equivalent

77

1 10 100 1000
Speedup over VPR

1

1.2

1.4

1.6

1.8

2
Q

u
a
lit

y
 [

n
o
rm

a
liz

e
d
]

VPR - Min. Channel Width
VPR - Wirelength
VPR - Critical Path Delay
Parallel - Min. Channel Width
Parallel - Wirelength
Parallel - Critical Path Delay

Figure 5.6: Quality from speeding up VPR and parallel (25 threads)

to a speedup of 500X.

5.3 Scalability

5.3.1 Runtime Scaling

Figure 5.7 shows the self-speedup obtained using up to 30 threads relative to the

single-threaded version of the parallel algorithm with inner num value of 1. The

program scales well up to 25 threads, beyond which the speedup begins to plateau.

We attribute the scalable nature of our algorithm to the highly parallelizable

inner loop. The inner loop, which iterates through the CLBs within each thread’s

private region, operates independently from all other threads with minimal inter-

processor interference (eg, false sharing) and little inter-thread communication

(broadcast updates at each barrier). This enables good scaling for a well load-

78

0 5 10 15 20 25 30 35
Number of Threads

0

5

10

15

20

25

30

35
S
p
e
e
d
u
p

0%

20%

40%

60%

80%

100%

A
v
e
ra

g
e
 e

ffi
c
ie

n
c
y
 [

%
]

Ideal (Linear) Speedup
Self Speedup
Parallellization Efficiency

Figure 5.7: Self speedup

balanced workload distribution, since all threads will progress at similar rates and

they’ll all arrive at the barrier at approximately the same time. The other parts of

our algorithm include the parallelized timing and bounding box updates which

require more barriers to enforce precedence. Finally, the total amount of data

copied between global and local data updates is constant regardless of the num-

ber of threads, but this part may become a bottleneck due to memory contention.

Also shown in Figure 5.7 is the per-processor parallelization efficiency ob-

tained by dividing the speedup versus the number of threads used. It can be seen

that as more processors are used, the efficiency drops off. The efficiency is about

42% when 30 threads are used. While it is difficult to achieve 100% efficiency for

79

our program due to the inevitable serial portions of the code, we breakdown the

runtime of an individual run in the next subsection to identify factors that lead to

this inefficiency.

Runtime Breakdown

Table 5.2 shows the runtime breakdown using the stdev000 circuit with inner num

= 1. The initialization column includes memory allocation and data initialization

for the parallel algorithm. The inner loop column measures time spent identifying

swap candidates and the associated cost calculations needed for the swap evalua-

tion. Incremental bounding-box calculation time is included in the inner loop as

well. However, a separate bounding-box calculation must be done for the parallel

program to ensure correctness, and is displayed in the bounding box update column

(details in Section 3.7). The global to local data copy is time spent making local

copies of global data structures, such as the timing information, needed for swap

evaluation. The data broadcast column on the other hand measures the time spent

updating the global data with local copies of data at the end of each sub-region

evaluation (Line 6 and 12 in Section 3.2). Finally, the barrier column shows the

average time each thread spent idling at the barrier. This quantifies load imbalance

in our approach. The time is measured on a per-thread basis, and a geometric mean

is taken from all threads to obtain the value as shown in the table.

As seen in the self-speedup curves in Figure 5.7, the program scales quite well

up to 25 threads. However, efficiency drops when scaling beyond that point. Next,

we investigate a few factors that may contribute to this performance limitation.

First, to paraphrase Amdahl’s law, the speedup is limited by the non-scalable

portions of the program. The only item on the list that grows in runtime is the

80

global to local data copy. It grew from about 3s to about 11s from 1 to 30 threads,

increasing to 11% of the overall runtime. In addition, the barrier runtime is rela-

tively constant from 1 to 30 threads, but progressively becoming a bigger propor-

tion of the runtime. Furthermore, timing update has limited scalability due to the

strong data dependencies discussed in Section 3.5. Although its runtime has been

steadily decreasing up to 16 threads, its share of the total runtime increased by 12%

from 1 thread to 25 threads. This suggests that the speedup obtained from timing

analysis is less than the overall speedup, becoming a bottleneck.

Second, let’s analyze the most parallelizable portion of the code — the inner

loop. As the number of threads increase, the size of each private region decreases,

leading to less parallel work assigned to each processor. Figure 5.8 shows the

speedup curve for the inner loop only. It can be seen that this portion of the code

scales extremely well, with nearly 100% processor efficiency up to 9 threads! At

25 threads, a speedup of 21 is achieved, which is equivalent to 83% processor

efficiency. Workload imbalance is likely a contributing factor to the non-linear

scaling of the program, and is investigated below.

We measure the amount workload imbalance by recording the frequency that

each thread (a) arrives first at the barrier, meaning it takes the shortest time to

complete its assigned work, and (b) arrives last at the barrier, meaning it is slowest

to complete its assigned work. We ran the 25-threaded version three times using

the stdev000 circuit and the geometric mean result is shown in Figure 5.9. It can be

seen that certain threads, such as thread 3, arrive first almost 20% of the time. The

program could be more efficient if more work had been assigned to it. One possible

cause for this imbalance is the private region assigned to this particular thread is

very lightly populated, hence the amount of work is dramatically less than other

81

Table 5.2: Runtime breakdown

initialization timing bounding global to inner loop data barrier total self
thread update box update local data copy broadcast (line 6) speedup

[s] % [s] % [s] % [s] % [s] % [s] % [s] % [s]
VPR - - 26.7 1 - - - - 2832 98 - - - - 2884 -

VPR-fast - - 17.5 6 - - - - 283 93 - - - - 303 -
1 0.05 0 268.8 25 22.3 2 3.1 0 787 73 1.84 0 0.0 0 1083 1.0
4 0.04 0 83.1 28 7.1 2 2.9 1 195 65 0.87 0 17.2 6 298 3.6
9 0.03 0 40.2 26 3.6 2 3.9 3 89 59 0.47 0 18.7 12 152 7.1

16 0.03 0 33.3 30 2.6 2 6.7 6 56 51 0.33 0 14.7 13 110 9.9
25 0.06 0 35.0 37 2.5 3 9.1 10 38 39 0.25 0 17.2 18 96 11.3
30 0.06 0 35.2 37 2.7 3 10.8 11 34 36 0.22 0 18.4 20 94 11.5

82

0 5 10 15 20 25 30 35
Number of Threads

0

5

10

15

20

25

30

35
S

p
e
e
d

u
p

0%

20%

40%

60%

80%

100%

A
v
e
ra

g
e
 e

ffi
ci

e
n
cy

 [
%

]

Ideal (Linear) Speedup
Self Speedup
Parallellization Efficiency

Figure 5.8: Speedup of the inner loop

threads. Another possibility is that the connectivity of the CLBs residing in this

region is less than the others. Better load-balance schemes are an interesting topic

that can be investigated in the future to further improve the scalability of the parallel

placer.

It should be noted that time spent idle at the barrier could potentially be utilized

to perform more iterations at each temperature, until all threads arrive at the barrier.

This may improve quality without affecting runtime by allowing more opportuni-

ties for block migration. However, such an algorithm would be non-deterministic

since it depends upon runtime data race conditions.

In summary, the inner loop scales quite well, even with up to 30 threads. How-

83

0 5 10 15 20 25
Thread ID

0%

5%

10%

15%

20%

Fr
e
q

u
e
n
cy

 o
f

A
rr

iv
a
l
[%

]

First to Arrive
Last to Arrive

Figure 5.9: Probability of a region arriving first and last at a barrier due to
workload imbalance

ever, since it no longer dominates the runtime, achieving more speedup becomes

difficult as the hard-to-parallelize workload begins to dominate. We have shown

that the inner loop of our parallel placer scales well up to 9 threads and achieves a

per processor efficiency of 78% at 30 threads. Overall, however, the entire parallel

placer achieves a per processor efficiency of 42%.

Our algorithm is scalable since the most time-consuming components scales

rather well. While the runtime for data copying operations does increase with

threads, different data-structures could perhaps alleviate this bottleneck and

achieve even better scalability.

84

10 20 30 40 50 60
Number of Threads

1

1.05

1.1

1.15

1.2

1.25

1.3
Q

u
a
lit

y
 [

n
o
rm

a
liz

e
d
]

Min. Channel Width
Wirelength
Critical-Path Delay

Figure 5.10: QoR by varying the number of threads

5.3.2 Quality Scaling

It is important to note that all of the benchmark circuits used here are the same

size (roughly 40,000 luts). We anticipate that larger circuits will be scalable to an

even larger number of threads as the amount of work done in the inner loop will

increase.

Figure 5.10 shows the quality compared to VPR using up to 64 threads for the

parallel algorithm with an inner num value of 1. We can see the result is relatively

constant all the way from 1 to 64 threads, showing that the QoR is unaffected by

increasing the number of threads.

Another interpretation of these flat curves is that it is unaffected by (the amount

of) stale data. Most importantly, the single-threaded version contains no stale data

at all, yet it does not perform significantly better than the 64-threaded version

which does contain stale data. As the number of threads increases, each thread

85

uses more stale data (since the region owned by a thread, which is perfect and not

stale, shrinks in size). However, by the same logic, the use of more threads will

also refresh the stale data more frequently, and limit the movement distance, which

limits the magnitude of the stale data error.

One explanation for the good behaviour with stale data is due to the restricted

local swap region size. Since a CLB is unlikely to move a great distance in just one

iteration, its previous location (the location assumed by all other threads) becomes

a rather good estimate for its new location. Even assuming a bad move has been

made, due to the limited range of movements the amount of degradation to the

placement is limited as well.

In addition, the way we divide work into regions also contributes to QoR and

mitigates the impact of staleness. In particular, the limited range of movement

within a swap-region keeps changes small relative to the length of long nets, thus

mitigating the magnitude of the stale data error. Very small nets, on the other hand,

have highest sensitivity, but they often fall entirely within the current swap-region

and thus are not subject to staleness. This means that very short nets, where stale

data has a large impact on cost, likely does not have stale data. Also, long-length

nets will have their CLBs moved only a short distance. One limitation with our

region division involves medium length nets which extend just beyond the swap-

region boundaries; they may be involved in simultaneous swaps in multiple regions

in opposite directions. There is currently no method to alleviate this, however, as

the results suggest, this is not a dominating issue.

86

Table 5.3: Determinism verification runs

Circuit # of threads # of runs
stdev002 1 1000
stdev004 4 1000
stdev006 9 1000
stdev008 16 1005
stdev010 25 1000
stdev010 32 11524

Total number of runs 16529

5.4 Determinism

To help verify determinism, the parallel placer was run multiple times to ensure the

same answer is generated each time. Due to time constraints, only one arbitrary

circuit was selected for a specific thread configuration for testing. To facilitate

this comparison, a CRC value is computed based on the placement output file; it

encodes the placement location of all CLBs and, IOs. After each run, the bounding-

box cost, the critical-path delay and the CRC value are compared to determine

whether the result is identical. Table 5.3 shows the circuit used, the number of

threads employed, and the number of verification runs completed. It can be seen

that none of the runs produced a different result.

We also performed a small number of runs using an UltraSPARC T2 (Niagara

2) machine from Sun Microsystems, which support up to 64 threads, and Intel

boxes with quad-core Nehalem processors, which support up to 8 threads with

hyper-threading technology. The results obtained using the Sun and Intel box are

identical to the results obtained using the AMD box.

87

5.5 Summary

In this section, we have shown that the QoR curve obtained from the parallel placer

is superior to VPR in the fast runtime region. The maximum speedup obtainable

with VPR plateaus at around 100x with quality degrading by as much as 100%. In

contrast, our parallel placer can obtain speedups up to 500x with all quality metrics

degrading less than 30%.

It is shown that the algorithm is both runtime and quality scalable. The al-

gorithm exhibits good speedup up to 25 threads, with an approximate processor

efficiency of 42%. With more optimizations and a machine with more processors,

it would appear that the algorithm could scale beyond 30 threads. Then, it is shown

that the quality is scalable, where all three PR quality metrics obtained are inde-

pendent of the number of threads used from 1 to 64 threads.

The main limitation with the algorithm is that even with an extremely long

runtime, it is still unable to achieve quality that is equivalent to VPR.

88

Chapter 6

Future Work

In this chapter, a few notable ideas for future work are presented.

6.1 Timing Analysis Speedup

The algorithm presented in this thesis simply parallelized the timing analysis al-

gorithm originally developed for VPR. The main goal here was to preserve the

decisions made in the original sequential algorithm to reduce the variation from

the original algorithm. A natural extension is to investigate parallel-oriented tim-

ing analysis algorithms which load-balances a bit better, and scales regardless of

circuit size. Incremental timing analysis update presented, in [43], may be helpful

as well. Timing analysis as shown in Table 5.2 takes up 25 % of runtime, even

at one thread. Compared to VPR, which allocates less than 6% of its runtime to

timing update, this suggests that timing analysis in the parallel placer is invoked

too frequently. Characterization to determine the optimal update frequency and

perhaps an adaptive frequency which depends on the current temperature or target

runtime can be designed.

89

6.2 Runtime Scaling

Our algorithm was shown to scale up to 25 threads, but further scaling requires

careful study to alleviate the bottlenecks. New data structures to reduce the global

to local data copying time and perhaps more efficient barrier designs could be part

of the future work. A dynamic region allocation scheme where the net connectivity

is considered in addition to number of CLBs may be useful to alleviate load imbal-

ance. The PROB SKIPPED characterization experiment described in Section 4.3

could be modified to identify the optimal PROB SKIPPED value given a constant

number of swaps; this can be achieved by adjusting both PROB SKIPPED and

inner num simultaneously.

6.3 Serial Equivalence

Although not demonstrated in this thesis, it is possible to achieve serial equivalence

with a moderate amount of code changes. Depending on the implementation, this

may also have an effect on performance as well.

One way to establish a serial-equivalent algorithm is described as follows.

Given a sufficiently large circuit, partition the grid for a large number of threads

n, where n is at least equal to the number of threads in the largest multi-threaded

machine used to run this code. Then, assign multiple partitions to each thread until

all partitions are exhausted. Threads with multiple partitions constantly switch be-

tween partitions assigned to it while updating its memory contents as needed. This

may also help alleviate load imbalance, as threads can trade partitions dynamically.

90

6.4 LUT Placement

While it is difficult for the parallel placer to match the quality of the serial placer,

even with adding a substantial number of swaps, we take a slightly different ap-

proach here to see whether the quality can be recovered in another way.

The advantage of the parallel placer is its massive speedup and the potential

for even more parallelism as newer hardware becomes available. With so much

computational power, perhaps it’s time to revisit the overall CAD tool flow to seek

other potential improvements.

A conventional placer takes clustered circuits as its input and attempts to assign

a unique location to each cluster. While the clustering of circuits dramatically

decreases the amount of computation for the placer, it inhibits LUT movements

between different clusters. In another words, the quality of placement is limited

due to clustering since LUTs are locked into clusters already.

With the computational power enabled by the parallel placer, perhaps it is now

possible to place LUTs directly within a reasonable runtime. This would avoid

clustering of circuits and possibly achieve a superior quality compared to VPR. An

experiment is conducted here to determine whether this idea is feasible.

6.4.1 Experiment Procedure

We devised an experiment to evaluate the potential quality gain from placing indi-

vidual LUTs directly. Figure 6.1 shows the conventional flow on the left and the

experimental flow on the right.

In the conventional FPGA CAD tool flow, the given circuit is packed into clus-

ters containing up to 9 LUTs each. (The actual cluster size does not matter, as long

as it is consistent between the tools being compared.) The clustered circuit is then

91

(a) Conventional
Flow

(b) Experimental
Flow

Figure 6.1: Conventional CAD tool flow versus experimental flow

placed and routed with VPR to obtain post-routing metrics.

In the proposed experimental flow, the placer is free to move individual BLEs.

The netlist is first clustered into individual CLBs using a cluster size of N=1. This

step is utilizes existing FPGA CAD tools without making extensive code modifica-

tions. The circuit is then placed using the parallel placer. The output is a placement

file is based on cluster size of 1, or equivalently with 1 BLE placed uniquely into

each grid location. Based on this placement file, location-based clustering is ac-

complished after placement by clustering every 3×3 square (9 blocks) into a single

CLB, achieving the equivalent cluster size of 9 as the conventional flow. Then, this

circuit is routed using VPR to obtain post-routing metrics.

92

The legalization step in the experimental flow, as indicated by the asterisk (*), is

not yet completed. One way to do it, as shown, is to clean up the solution afterwards

by making small local swaps to correct the number of inputs per CLB and I/O block

locations so they satisfy the clustered FPGA architecture. A better approach would

be to rewrite VPR so that it can move individual BLEs while retaining the concept

of a larger CLB, and enforce legalization during move evaluation. However, before

making such extensive changes to the code, we wanted to run this easier experiment

to verify whether it is a worthwhile path to investigate.

Since our legalization step is unfinished, we instead chose to modify the con-

ventional clustering parameters in order to establish a fair comparison. Hence, we

did not place a limit on the number of inputs per cluster during T-VPack in the

conventional flow, since the number of inputs is not constrained in the experimen-

tal flow either.1 In addition, one of the circuits (stdev002) had an overflow of 4

I/Os at two different I/O locations for the experimental flow. We got around this

by simply increasing the number of I/O blocks in the architecture file. It does give

a slight advantage to this particular circuit, however, we believe that a few pins on

one circuit are unlikely to have a significant impact on the overall quality.

The parallel placer is run with 30 threads to perform all of the parallel place-

ment experiments. T-VPack [14] is used to perform all of the clustering operations.

We route the placed circuits using VPR with flags shown in Figure 5.1 to ob-

tain the minimum routable channel width. The wirelength at this channel width

is recorded along with the wirelength metric. We then relax the channel width by

20% and obtain the critical-path delay metric shown in Figure 5.2.

1We actually ran T-VPack in two modes, one with limited cluster inputs, and another with unlim-
ited cluster inputs. We did not find an appreciable difference in trends.

93

0 100 200 300 400
Runtime [s]

0.8

1

1.2

1.4

1.6

1.8

2
Q

u
a
lit

y
 [

n
o
rm

a
liz

e
d

]

Conventional: TVPack + VPR
TVPack + Parallel Placer
Experimental: Parallel LUT Placement

(a) Wirelength

0 100 200 300 400
Runtime [s]

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q
u
a
lit

y
 [

n
o
rm

a
liz

e
d

]

Conventional: TVPack + VPR
TVPack + Parallel Placer
Experimental: Parallel LUT Placement

(b) Minimum channel width

94

0 100 200 300 400
Runtime [s]

1

1.05

1.1

1.15

1.2

1.25

1.3
Q

u
a
lit

y
 [

n
o
rm

a
liz

e
d

]

Conventional: TVPack + VPR
TVPack + Parallel Placer
Experimental: Parallel LUT Placement

(c) Critical path delay

Figure 6.1: Runtime versus quality comparison for post routing minimum
routable channel width, wirelength and critical-path delay

6.4.2 Results/Discussion

In this section, we compare the quality and runtime of the various approaches de-

scribed above.

All values are normalized against circuits packed with T-VPack (cluster size of

9 with an unlimited CLB inputs) and placed using VPR with the default inner num

of 10. Then the same method as previously explained is used to obtain wirelength

and critical-path delay metrics. Finally, we compute the geometric mean across the

7 circuits to obtain 1 datapoint for each inner num value.

The measured runtime in our results includes only the time spent performing

placement operations. This does not include initialization time such as netlist load-

95

ing. All unmeasured time are identical between the serial and the parallel placer.

6.4.3 Quality versus Runtime

We compare the final post-routing metrics amongst all approaches in Figure 6.1.

We ran all circuits and obtained the quality/runtime curve by iteratively de-

creasing the inner num value of VPR and the parallel placer. The right-most dat-

apoint (at roughly 300s) is obtained using an inner num value of 1, also known as

VPR ‘-fast’, and the left-most datapoint is generated using an inner num value of

0.0625 for all curves shown.

Conventional versus Experimental Analysis

The experimental flow greatly outperforms the conventional flow in wirelength

and minimum channel width metrics. However, the conventional flow is slightly

better in critical-path delay. For wirelength, the experimental flow is better in the

majority of the cases, decreasing the wirelength by as much as 28% at the right-

most datapoint. The minimum channel width trend is similar to wirelength, with

the experimental flow achieving up to 21% improvement. For critical-path delay,

the quality of the experimental flow gradually approaches the conventional flow,

but is still degraded by about 1.8% at the right-most datapoint.

One interesting observation is that the trend suggests that the parallel LUT

placement requires longer runtime to achieve a better result. This does makes

sense since LUT placement is a much more complex problem than the clustered

placement. With shorter runtime, insufficient ‘hill-climbing’ is done, resulting in

the rather quick quality degradation for the parallel placer. This could also be a po-

tential algorithm-related property, since the partitioning method used in the parallel

96

placer may inhibit block migration, which may make it more vulnerable during the

short runtime region. Nevertheless, this is the first time a parallel placer has out-

performed the conventional state-of-art serial placer in absolute quality. With more

tuning and care, we expect the parallel placement curve can shift towards the left

side, or obtain better quality in the fast runtime region, with the serial placer staying

constant.

Conventional with Parallel Placer

We also show the runtime/quality curve for the parallel placer put through the con-

ventional flow, placing the benchmark circuits clustered with T-VPack and a cluster

size of 9. (i.e., replacing the serial VPR placer in the conventional flow with the

parallel placer).

The parallel placer has runtime advantages over the serial placer, as shown in

Figure 6.1. However, the trend does not suggest that the quality obtained this way

will be superior than using the conventional serial placer. Also, it does not seem

promising that the critical-path delay quality will ever become equal.

In contrast, the curve obtained with the experimental flow exceeds the quality

by a large margin in wirelength and asymptotically becomes close in critical-path

delay. Although the LUT placement runtime is longer, since the LUT placement

problem is more complex than placing clusters, it is believed that future advance-

ments in parallel algorithm research could help to alleviate this. With the trend

towards increasing parallelism, we believe placers should consider moving indi-

vidual LUTs rather than clusters to the recover the valuable quality lost due to

clustering. To address quality at the fast runtime region, a hybrid approach where

clustering is used to produce an initial solution, or where the placer alternates be-

97

tween moving entire CLBs and moving individual LUTs, might be necessary.

6.4.4 Conclusions

This work conducted an experiment comparing the quality between a conventional

CLB-based placer and a parallel LUT-based placer. It has shown that up to 28%

in wirelength and 21% in minimum channel width improvement is achievable by

placing individual LUTs without the need for clustering before placement. Critical-

path delay is worse, but shows promise if enough runtime is given. Utilizing the

computational power of multi-core machines available today in combination with

a parallel placer, the LUT placement was able to achieve a shorter runtime, with

a better quality of result, than the conventional placement based on clustering.

While clustering may still be useful for certain purposes, such as obtaining an ini-

tial placement, we encourage future parallel placement research to consider placing

individual LUTs directly to recover valuable quality lost due to the clustering al-

gorithm.

One of the key limitations of our work is that we were unable to restrict the

number of inputs per CLB during parallel placement. For a fair comparison, we

gave the clustering tool the same freedom of using as many inputs as needed. This

should be addressed in future work and evaluated for its effects on the quality of

result.

98

Chapter 7

Conclusions

This thesis presents a parallel placement algorithm that is both deterministic and

timing-driven. Although the original serial version of VPR’s simulated-annealing

placement engine can be accelerated by performing fewer moves per temperature,

the quality of result degrades severely past 100X speedup. In contrast, at the point

where the parallel algorithm presented in this thesis beats serial VPR in quality, we

achieved a speedup ranging between 140X to 200X using 25 threads, with post-

routing minimum channel width, wirelength and critical-path delay degraded by

13% , 10% and 7% respectively on average. While VPR cannot accelerate much

beyond 100X, our parallel algorithm scales beyond 500X with all quality metrics

degraded by less than 30%. However, given a sufficiently long runtime, the parallel

placer cannot beat serial VPR in quality: it is 7.6%, 4.6%, and 1.6% worse than

VPR on post-routing minimum channel width, wirelength and critical-path delay,

respectively.

The algorithm is both quality and runtime scalable. Varying the number of

threads and using stale data does not have an effect on the quality of result. This

99

is encouraging as it shows the algorithm can potentially scale to even more threads

on longer circuits without any further loss of quality. With the fixed size of the

Un/DoPack circuits, results do not improve beyond 25 threads. The limitations

appear to be load balancing and timing updates. Global to local data copying is

another bottleneck and we believe new data structure could potentially alleviate

the runtime lost here.

We also conducted an experiment to investigate whether it is worthwhile to

perform parallel placement based on individual LUTs. It was shown that quality

improvements of up to 28% can be achieved over VPR with less runtime. This

would be especially useful for individuals that cannot tolerate any quality loss but

still demands speed up. We believe that this is a promising approach for future

the parallel placer research in order to achieve superior quality than the serial VPR

placer.

100

Bibliography

[1] C. C. Wang and G. G. F. Lemieux, “Scalable and deterministic timing-driven
parallel placement for FPGAs,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. ACM,
2011, pp. 153–162.

[2] J. B. Goeders, G. G. F. Lemieux, and S. J. Wilton, “Deterministic
timing-driven parallel placement by simulated annealing using half-box
window decomposition,” in to appear in ReConFig, 2011.

[3] Xilinx Inc., “Stacked silicon interconnect technology,”
http://www.xilinx.com/technology/roadmap/ssi-technology.htm, 2011.

[4] Altera Corporation, “Quartus II 10.0 Handbook,”
http://www.altera.com/literature/hb/qts/qts qii51008.pdf, 2010.

[5] M. Santarini, “Xilinx Tailors Four Tool Flows to Customer Design
Disciplines in ISE Design Suite 11.1,”
http://www.xilinx.com/support/documentation/ white papers/wp307.pdf,
2009.

[6] A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic parallel
placement for FPGAs on commodity hardware,” in Proceedings of the 16th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
2008, pp. 14–23.

[7] H. Bian, A. C. Ling, A. Choong, and J. Zhu, “Towards scalable placement
for FPGAs,” in Proceedings of the 18th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2010, pp. 147–156.

[8] W. Swartz and C. Sechen, “New algorithms for the placement and routing of
macro cells,” in International Conference on Computer-Aided Design, Nov.
1990, pp. 336 –339.

101

[9] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “Parallel algorithms
for FPGA placement,” in Proceedings of the 10th Great Lakes Symposium
on VLSI, 2000, pp. 86–94.

[10] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and J. Rose,
“VPR 5.0: FPGA CAD and architecture exploration tools with single-driver
routing, heterogeneity and process scaling,” in Proceedings of the 17th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
2009, pp. 133–142.

[11] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[12] I. Kuon and J. Rose, “Area and delay trade-offs in the circuit and architecture
design of FPGAs,” in Proceedings of the 16th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2008, pp. 149–158.

[13] J. Lamoureux, “On the interaction between power-aware CAD algorithms
for FPGAs,” Master’s thesis, University of British Columbia, Vancouver,
Canada, 2003.

[14] A. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks and
timing-driven packing to improve FPGAs speed and density,” in
Proceedings of the 7th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 1999, pp. 37–46.

[15] V. Betz and J. Rose, “VPR: a new packing, placement and routing tool for
FPGA research,” in IEEE International Conference on Field Programmable
Logic and Applications, 1997, pp. 213–222.

[16] S. Kirkpatrick, C. Gelatt, and M. Vecchi, in Science, vol. 220, no. 4598, May
1983, pp. 671 – 680.

[17] J. Lam and J. Delosme, “Performance of a new annealing schedule,” in
Design Automation Conference, 1988, pp. 306 –311.

[18] A. Casotto, F. Romeo, and A. Sangiovanni-Vincentelli, “A parallel simulated
annealing algorithm for the placement of macro-cells,” in IEEE Transaction
on CAD of Integrated Circuits and Systems, September 1987, vol. 6, no. 5,
pp. 838 – 847.

[19] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement and
routing package,” in IEEE Journal of Solid State Circuits, April 1985, vol.
20, no. 2, pp. 510 – 522.

102

[20] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FPGAs,”
in Proceedings of the 8th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 2000, pp. 203–213.

[21] J. S. Rose, “Parallel global routing for standard cells,” in IEEE Transactions
on Computer Aided Design, 1990, pp. 1085–1095.

[22] Y. Chang, S. Thankur, K. Zhu, and D. Wong, “A new global routing
algorithm for FPGAs,” in IEEE Transactions on Computer Aided Design,
1994, pp. 356–361.

[23] S. Brown, J. Rose, and Z. Vranesic, “A detailed router for FPGAs,” in IEEE
Transactions on Computer Aided Design, 1992, pp. 620–628.

[24] G. Lemieux and S. Brown, “A detailed router for allocating wire segments in
FPGAs,” in ACM Physical Design Workshop, 1993, pp. 215–226.

[25] G. Lemieux, S. Brown, and Z. Vranesic, “On two-step routing for FPGAs,”
in ACM Symposium on Physical Design, 1997, pp. 60–66.

[26] M. Placzewski, “Plane parallel A* maze router and its application to
FPGAs,” in ACM Design Automation Conference, 1990, pp. 691–697.

[27] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proceedings of the 3rd
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
1995, pp. 111–117.

[28] Y.-L. Wu and M. Marek-Sadowska, “An efficient router for 2-d FPGAs,” in
European Design Automation Conference, 1994, pp. 412–416.

[29] Y.-S. Lee and A. Wu, “A performance and routability driven router for
FPGAs,” in ACM Design Automation Conference, 1995, pp. 557–561.

[30] B. Barney, “POSIX thread programming,”
https://computing.llnl.gov/tutorials/pthreads/, 2011.

[31] S. Kravitz and R. Rutenbar, “Placement by simulated annealing on a
multiprocessor,” IEEE Transactions on Computer-Aided Design, vol. 6,
no. 4, pp. 534 – 549, Jul. 1987.

[32] P. Banerjee, M. H. Jones, and J. S. Sargent, “Parallel simulated annealing
algorithms for cell placement on hypercube multiprocessors,” IEEE
Transactions Parallel Distributed Systems, vol. 1, no. 1, pp. 91–106, 1990.

103

[33] A. Choong, R. Beidas, and J. Zhu, “Parallelizing simulated annealing-based
placement using GPGPU,” in IEEE International Conference on Field
Programmable Logic and Applications, Aug. 2010, pp. 31–34.

[34] W.-J. Sun and C. Sechen, “A loosely coupled parallel algorithm for standard
cell placement,” in International Conference on Computer-Aided Design,
1994, pp. 137–144.

[35] J. Rose, W. Martin Snelgrove, and Z. Vranesic, “Parallel standard cell
placement algorithms with quality equivalent to simulated annealing,” in
IEEE Transactions on Computer-Aided Design, vol. 7, no. 3, March 1988.

[36] E. Witte, R. Chamberlain, and M. Franklin, “Parallel simulated annealing
using speculative computation,” in IEEE Transactions on Parallel and
distributed systems, vol. 2, no. 4, October 1991.

[37] M. G. Wrighton and A. M. DeHon, “Hardware-assisted simulated annealing
with application for fast FPGA placement,” in Proceedings of the 11th
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
2003, pp. 33–42.

[38] G. Smecher, S. Wilton, and G. Lemieux, “Self-hosted placement for
massively parallel processor arrays,” in Field-Programmable Technology,
Dec. 2009, pp. 159 –166.

[39] A. Ludwin and V. Betz, “Efficient and deterministic parallel placement for
FPGAs,” in ACM Transactions on Design Automation of Electronic Systems,
vol. 16, no. 3, June 2011.

[40] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson, “Hoard: A
scalable memory allocator for multithreaded applications,” in The Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[41] M. L. Scott and J. M. Mellor-Crummey, “Fast, contention-free combining
tree barriers for shared-memory multiprocessors,” in International Journal
of Parallel Programming, 1994, 22(4), pp. 449–481.

[42] M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: re-clustering of large
system-on-chip designs with interconnect variation for low-cost FPGAs,” in
International Conference on Computer-Aided Design, Nov. 2006, pp. 680
–687.

104

[43] K. Eguro and S. Hauck, “Enhancing timing-driven FPGA placement for
pipelined netlists,” in Design Automation Conference, 2008, pp. 34–37.

105

