

CHANNEL WIDTH REDUCTION TECHNIQUES
FOR SYSTEM-ON-CHIP CIRCUITS

IN FIELD-PROGRAMMABLE GATE ARRAYS

by

MARVIN TOM

B.A.Sc., Simon Fraser University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

April 2006

© Marvin Tom, 2006

 ii

ABSTRACT

Users of field-programmable gate arrays (FPGAs) typically measure the size of

a FPGA by its logic capacity. If a design fits within the logic capacity limits of an

FPGA, it is generally assumed that it must also be routable. To ensure this high

routability, FPGA vendors typically over-design the routing network. Despite this

over-design, there may still be circuits that remain un-routable in a given FPGA

family. This thesis presents two new computer-aided design (CAD) tools, DHPack and

Un/DoPack, that are able to route these un-routable circuits by trading off logic

utilization for interconnect. DHPack uses the natural design hierarchy of the circuit to

identify high congestion regions. For a set of benchmark circuits used in this thesis,

DHPack is able to reduce channel width by 13% with a small area increase of 3%.

DHPack can continue to decrease channel width by 29% with a larger area increase of

146%. Un/DoPack improves on DHPack by targeting hard channel width constraints

without having to rely on the design hierarchy of the circuit to perform congestion

estimation. For a set of benchmark circuits presented in this thesis, Un/DoPack can

reduce channel width by 38% with an 18% penalty in critical path delay and 64%

increase in area. The primary application of these tools is to make previously un-

routable circuits routable by using an FPGA with more logic.

 iii

TABLE OF CONTENTS

Abstract... ii

Table of Contents .. iii

List of Tables .. vii

List of Figures.. viii

Glossary ...x

Acknowledgements .. xii

1 Introduction..1

1.1 Motivation and Objectives ...2

1.2 Contributions..4

1.3 Thesis Organization ...5

2 Background ..6

2.1 FPGA Architecture ..6

2.2 FPGA CAD Flow...10

2.2.1 Synthesis..11

2.2.2 Technology Mapping ..11

2.2.3 Clustering..13

2.2.4 Placement..15

 iv

2.2.5 Routing..16

2.3 Previous Methods to Reduce Channel Width ..18

3 Methods to Reduce Minimum Routable Channel Width20

3.1 Input-Limits vs. BLE-Limits ...20

4 Benchmark Circuits...23

4.1 Meta Benchmark Circuits ..24

4.2 Stdev Benchmark Circuits ...26

5 Channel Width Reduction Using Design Hierarchy Packing: DHPack30

5.1 DHPack - Depopulation Strategy...31

5.1.1 Steps 1,2: Channel Width Profiling and BLE-Limits....................33

5.1.2 Steps 3,4: Cluster IP blocks and Stitch Circuit.............................35

5.2 Experimental Results ...36

5.3 Experimental Conclusions ...43

5.4 Technique Limitations and Future Work ...44

5.4.1 I/O Padframe Congestion ...44

5.4.2 IP Block Granularity Too Coarse...45

5.4.3 Hard Channel Width Constraints ...45

5.4.4 Congestion Profile Run Time Long...45

 v

6 Channel Width Reduction Using Automated Congestion Identification:
Un/DoPack...47

6.1 Un/DoPack - Depopulation Strategy..48

6.1.1 Step 1: Traditional SIS/VPR Flow ..49

6.1.2 Step 2: UnPack - Congestion Calculator......................................49

6.1.3 Step 3: DoPack - Incremental Re-Cluster52

6.1.4 Step 4: Placement and Routing...53

6.2 Experimental Results ...54

6.2.1 Stdev Benchmark Circuit Results..55

6.2.2 Comparison of Un/DoPack and DHPack66

6.3 Experimental Conclusions ...68

6.4 Technique Limitations and Future Work ...69

6.4.1 Fast Placement Improvements..69

6.4.2 Benchmark Interconnect Variation Verification...........................71

7 Conclusion and Future Work...72

7.1 Future Work ...74

7.1.1 DHPack Future Work ...74

7.1.2 Un/DoPack Future Work ..75

7.1.3 System Level Interconnect Prediction...76

 vi

7.1.4 Improved FPGA Modeling..77

8 References...79

Appendix A – Stdev Benchmark Circuit Parameters ...84

Appendix B – DHPack Simulation Results...85

Appendix C – Un/DoPack Simulation Results ...89

 vii

LIST OF TABLES

Table 1-1: Features and Costs of Two FPGA Families (from [2], [3], [19])..................2

Table 2-1: Altera Cyclone Size Options (from [2]) ..8

Table 5-1: Maximal BLE-Limit Sizes from T-VPack ..34

Table 5-2: Maximal BLE-Limit Sizes from iRAC ...35

Table 5-3: Reductions in Channel Width for DHPack ...41

Table 6-1: Maximum % Change in Channel Width, Critical Path and Area................56

Table 6-2: Results for PlaceScratch, -fast and Fine Grained ..63

Table 7-1: Summary of Channel Width Decreases for DHPack73

Table 7-2: Summary of Channel Width Decreases for Un/DoPack73

 viii

LIST OF FIGURES

Figure 1-1: Channel Width / CLB Count Tradeoff...3

Figure 2-1: BLE and CLB..7

Figure 2-2: Mesh Based FPGA Architecture..8

Figure 2-3: FPGA CAD Flow...10

Figure 2-4: Directed Acyclic Graph Representation of a Circuit (from [29])11

Figure 2-5: Example of Technology Mapping (from [29]) ..12

Figure 2-6: Example of Clustering (from [29]) ..13

Figure 2-7: Example of Placement (from [29]) ..15

Figure 3-1: Input- and BLE-Limits during Clustering for Circuit clma21

Figure 4-1: Rent Linear Interpolation for GNL Benchmark Circuits28

Figure 5-1: Pseudo-code for DHPack Flow..32

Figure 5-2: Channel Width Profile of IP Blocks clma/tseng ..33

Figure 5-3: DHPack CLB Count and BLE Utilization ...36

Figure 5-4: VPR Placement of Non-Uniform Clique with T-VPack............................37

Figure 5-5: DHPack MRCW and Average Channel Width..39

 ix

Figure 5-6: DHPack Routed Area Factor..40

Figure 5-7: DHPack Critical-Path Delay ..42

Figure 6-1: Un/DoPack CAD Flow ..48

Figure 6-2: Congestion Map Before and After Un/DoPack ...51

Figure 6-3: Normalized Area vs. % Max Channel Width Constraint...........................57

Figure 6-4: Normalized Area vs. Absolute Channel Width Constraint59

Figure 6-5: MRCW vs. Stdev Circuit ...60

Figure 6-6: Critical Path Delay vs. Channel Width Constraint61

Figure 6-7: Run Times vs. Channel Width Constraint ...62

Figure 6-8: MRCW for DHPack vs. Un/DoPack..66

Figure 6-9: Comparison of Area between DHPack and Un/DoPack............................67

Figure 7-1: FPGA Architecture with Macro Blocks...77

 x

GLOSSARY

Application Specific
Integrated Circuit (ASIC):

An integrated circuit intended for a specific use rather
than general-purpose use. Once manufactured, the
logical function of an ASIC cannot be changed

Basic Logic Element (BLE): Logic element in an FPGA composed of a K-input

LUT and flip-flop.

Computer Aided Design
(CAD) Tools:

Software automation tools to aid in the design of
electrical systems.

Configurable Logic Block
(CLB):

Logic element in an FPGA composed of ‘N’ BLEs.

CLB Depopulation: The process of inserting empty BLEs into a circuit

mapped to a FPGA to reduce the MRCW.

Design Hierarchy Pack
(DHPack):

An FPGA channel width reduction tool which relies on
the design hierarchy of the circuit to identify
congestion regions.

Field Programmable Gate
Array (FPGA):

An integrated circuit that can be programmed, erased
and re-programmed again to implement digital logic
functions.

Generate Netlist (GNL): A synthetic benchmark generator [51].

Interconnect Resource
Aware Clustering (iRAC):

The state of the art FPGA clustering algorithm for
channel width reduction [46].

Intellectual Property Blocks
(IP Blocks):

A reusable unit of logic, cells or layout of an integrated
circuit. SoC designs are created by merging IP blocks
that have been pre-designed and pre-tested.

Look Up Table (LUT): An FPGA element capable of implementing any logical

function of its inputs.

 xi

Meta Benchmark Circuits: A synthetic benchmark circuit suite created by stitching
together the 20 largest MCNC benchmark circuits.

Microelectronics
Corporation of North
Carolina (MCNC) Circuits:

A standard set of benchmark circuits used in the FPGA
academic community [36].

Minimum Routable Channel
Width (MRCW):

The minimum channel width an FPGA must have to
route a given circuit.

Non-Recurring Engineering
Fees (NRE):

The one time costs of product development. This often
includes mask costs and costs of CAD tools in
integrated circuit design.

SIS: A logic synthesis package developed at the University

of California at Berkeley which allows interactive
optimization of sequential digital circuits.

System-on-Chip (SoC): A design philosophy which integrates all the

components of an electronic system into a single
integrated circuit. A SoC design philosophy makes the
design of complex systems simpler by merging
together pre-existing and pre-tested circuit designs.

Stdev Benchmark Circuits: A synthetic benchmark suite created by cloning the

Meta benchmarks. Each circuit in this suite represents a
circuit with a varying amount of interconnect variation.

T-VPack: The most commonly used academic FPGA clustering

algorithm.

Un/DoPack: An FPGA channel width reduction tool that can target

hard channel width constraints.

Versatile Place and Route
(VPR):

The most commonly used academic FPGA place and
route tool.

 xii

ACKNOWLEDGEMENTS

I would like to thank my academic advisor, Dr. Guy Lemieux for his technical

advice throughout my Master’s degree. I have learned a great deal about academia and

the research world from Guy and I am grateful for his guidance and support.

I would also like to thank the members of the UBC System-on-Chip research

group for making my stay an enjoyable one. In particular, I’d like to thank Edmund

Lee, Anthony Yu, Victor Aken’Ova, Martin Ma, James Wu, Amit Kedia, Scott Chin

and Nathalie Chan for the good times in the lab.

I am grateful for the use of WestGrid1 computing resources. The types of

experiments that I have performed in this thesis would not have been possible without

Westgrid.

Finally, I would like to thank my family for all the encouragement and support

over the past few years.

1 Westgrid is funded in part by the Canada Foundation for Innovation, Alberta Innovation and

Science, BC Advanced Education, and the participating research institutions. WestGrid equipment is

provided by IBM, Hewlett Packard and SGI.

 1

Chapter 1

1 INTRODUCTION

A field- programmable gate array (FPGA) is capable of implementing a large

variety of digital logic applications. Typically, FPGAs can be programmed, erased and

re-programmed again multiple times. An alternative to FPGAs are application specific

integrated circuits (ASICs) which are designed to perform one specific function.

ASICs provide much higher speed, density and power characteristics than FPGAs but

require very large up-front costs and cannot be changed after the manufacturing

process. FPGAs are generally slower, larger and consume more power than their ASIC

counterparts, but offer faster time-to-market and are programmable in the field after

the manufacturing process. Many digital logic applications would benefit from the

high performance characteristics of an ASIC, but these applications don’t have the

manufacturing volume needed to justify the $10+ million in computer-aided design

(CAD) tools, design and verification costs, and non-recurring engineering (NRE) fees.

Because FPGAs are not subject to most of these up-front costs, they are very attractive

to low-to-medium density logic and low-to-medium volume designs.

As FPGAs increase in capacity and capability, it has become common to offer

separate low-cost and resource-rich families. For a similar number of logic elements,

also known as configurable logic blocks (CLBs), the low-cost families often have less

 2

embedded memory, embedded multipliers, and routing tracks. This is demonstrated by

Table 1-1, where the low-cost Altera Cyclone family offers significant savings.

Unfortunately, some designs may fit within the Cyclone logic and memory capacity

limits but not within the routing capacity limits. This can be solved by switching to the

resource-rich family (e.g. Altera Stratix) at ~4x the cost. Instead, it is preferable to

stay in the low-cost family and use the same or next-larger device (at ~2x cost). To do

this, the FPGA computer-aided design (CAD) tools must meet the device routing

capacity by targeting a hard channel width constraint. Since interconnect use of a

design varies spatially with placement, this can be done by spreading out regions of

peak demand to use fewer routing tracks but more CLBs.

Altera Device Logic Elements Memory Mult. Routing Cost
Cyclone 1C12 12,060 239,616 0 80 $56
Stratix 1S10 10,570 920,448 48 232 $190
Cyclone 1C20 20,060 294,448 0 80 $100
Stratix 1S20 18,460 1,669,249 80 232 $350

Table 1-1: Features and Costs of Two FPGA Families (from [2], [3], [19])

1.1 Motivation and Objectives

The minimum routable channel width (MRCW) of a circuit is

defined as the smallest possible channel width a FPGA device must have in order to

route that circuit. This thesis presents an algorithmic way of reducing the minimum

routable channel width (MRCW) of a logic design by inserting whitespace in the form

of empty look-up tables (LUTs) into congested areas. Whitespace is inserted by

identifying a congested region of CLBs, unpacking the CLBs into its constituent basic

 3

logic elements (BLEs), and then re-packing these BLEs into more CLBs so they are

“less full” than before. This process of inserting whitespace into each CLB is called

depopulating.

Note that it is possible to reduce the MRCW of a circuit through clustering.

Traditional clustering algorithms, such as T-VPack [6], fully pack the clusters to

minimize the total number of CLBs needed. However, DeHon [17] and Tessier [48]

have shown that the channel width needs of a circuit can be decreased by packing

fewer BLEs into each CLB. The resulting “under-utilization” of CLBs is known as

depopulation.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450 500 550 600 650

M
in

im
um

 R
ou

ta
bl

e
C

ha
nn

el
 W

id
th

CLB Count

alu4

tseng
misex3diffeq
s298

ex5p
s38417apex2

seq
bigkey

dsip

s38584des
elliptic

elliptic

apex4

apex4

spla

spla

pdc

pdc

ex1010

ex1010

frisc

frisc

clma

FPGA 1 FPGA 2

NC=16
NC=6

Figure 1-1: Channel Width / CLB Count Tradeoff

To see how depopulation works, consider the two large dashed boxes in Figure

1-1 representing the logic and routing capacities of two FPGA devices. These FPGAs

contain 16 BLEs per CLB and 60 wiring tracks per routing channel. The MRCW of 20

MCNC benchmark circuits [36] after clustering (T-VPack [6]) and routing (VPR [6])

 4

are shown. Notice that circuits with similar CLB counts can require vastly different

channel widths (varying from 25 to 65). Similar results for industrial benchmarks are

shown in [34].

In Figure 1-1, FPGA 1 contains 300 CLBs and can implement all circuits

inside its box. In comparison, FPGA 2 has 600 CLBs and the same channel-width

constraint of 60 because it is based on the same layout tile. Even though it is larger,

FPGA 2 is incapable of realizing any circuits that require a channel width greater than

60, e.g. apex4 or elliptic. After depopulation (limiting to 6 BLEs per CLB), apex4's

MRCW shrinks from 62 to 41 tracks. Although the CLB count increases, it still fits

into FPGA 1. More importantly, apex4 now has a viable, routed solution. Similarly,

some circuits like elliptic can be made to fit FPGA 2.

The problem with depopulation is that it quickly leads to an inflated CLB

count. In the example, circuits pdc and clma are too large for FPGA 2. They must be

depopulated less to meet the CLB constraint as well. What is needed is a way to

depopulate only the routing-congested regions of a circuit so CLB count is inflated as

little as possible. Such an approach is important for fitting large System-on-Chip

designs onto modern FPGAs.

1.2 Contributions

This thesis presents two FPGA CAD tools that can depopulate an FPGA

design to target channel width constraints. The first tool, DHPack, relies on the design

hierarchy of the design to detect areas of congestion. Results of this work have been

 5

published at the Design Automation Conference (DAC 2005) [49]. The second tool,

Un/DoPack, is an iterative tool designed to target hard channel width constraints. A

paper based on this work has been submitted to DAC 2006 [50]. The primary

application of these tools is to reduce the channel width requirements of a circuit so

that it can be mapped to a channel-width constrained FPGA. Rather than depopulate

the entire circuit, which would inflate area rather quickly, the tools depopulate smaller

regions (possibly entire IP blocks) that are interconnect-intensive.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents an overview of modern

mesh based FPGA architectures and the state of the art CAD tools to map circuits to

these FPGAs. It also includes some discussion on previous techniques to reduce

MRCW. Chapter 3 compares two basic depopulation approaches for channel width

reduction. Chapter 4 presents two benchmark suites (Meta and Stdev) that mimic

system-on-chip (SoC) designs and discusses the benchmark circuit characteristics that

are important for channel width reduction. Chapter 5 presents the FPGA CAD tool

DHPack which uses the natural design hierarchy of the circuit to identify high

congestion regions. Chapter 6 presents the FPGA CAD tool Un/DoPack which

iteratively depopulates circuits to meet hard channel width constraints. Finally, some

conclusions are provided in Chapter 7 along with some possible future work.

 6

 Chapter 2

2 BACKGROUND

This chapter begins with an overview of modern FPGA architectures. The two

most typical FPGA architectures are mesh-based and hierarchical. Since industrial

FPGA vendors typically use mesh-based structures, the architectures and CAD tools

discussed in this thesis will only target mesh-based FPGAs. An overview of the

current state-of-the-art CAD algorithms that map digital circuits into FPGAs is then

provided. The FPGA CAD flow can be split into 5 steps: synthesis, technology

mapping, clustering, placement and routing. A survey of the most commonly used

tools for each of these 5 steps is provided. The chapter concludes with a discussion on

previous methods to reduce MRCW.

2.1 FPGA Architecture

A commercial FPGA family consists of a number of devices, each with a

different logic capacity. Figure 2-1 illustrates the logic resources: CLBs and BLEs. A

basic logic element (BLE) is composed of a K-input look-up table (LUT) and flip-

flop. A K-input LUT has one dedicated output and is capable of implementing any

Boolean function of its K-inputs. Logic capacity of an FPGA is measured by the

number of BLEs. Alternatively, it can be measured by the number of CLBs, or

 7

configurable logic blocks, which are simply fixed-size clusters of BLEs. Since mesh-

based FPGAs are typically laid out in a 2-dimensional structure, device logic capacity

can also be expressed by the logical dimensions of the CLB array.

‘I’ Inputs

BLE #1

BLE #3

BLE #4

BLE #5

BLE #2

Configurable Logic Block (CLB)

K-Input
LUT D Q

Basic Logic Element (BLE)

Figure 2-1: BLE and CLB

The logic elements in an FPGA are connected through a mesh based

programmable interconnect network. A typical mesh based FPGA architecture similar

to [2] and [53] is given in Figure 2-2.

The channel width of a mesh based FPGA architecture is defined by the

number of routing tracks running in each horizontal and vertical channel. In Figure

2-2, the channel width is 4 since there are 4 tracks in each horizontal and vertical

channel. This channel width is fixed across an entire FPGA family. The reason it is

fixed is that larger sized FPGAs in the same family are created by placing more tiles

 8

on a larger sized die. Since the channel width is a fixed feature on a tile, the inclusion

of more tiles has no effect on the channel width of a family. For example, the Altera

Cyclone device contains five different options in terms of logic capacity. This is

demonstrated in Table 2-1. However each of these devices contains the same channel

width constraint of 80 routing tracks per channel.

LCLB LCLB LCLB

LCLB CLB LCLB

CLB CLB CLB

L L L

L

L

LLCLB LCLB LCLB

LCLB

LCLB

CLB

LCLB

IO IO IO IO

IO IO IO IO

IO

IO

IO

IO

IO

IO

IO

IO

Figure 2-2: Mesh Based FPGA Architecture

Altera Device EP1C3 EP1C4 EP1C6 EP1C12 EP1C20
Number of LEs 2,910 4,000 5,980 12,060 20,060

Number of Routing Tracks 80 80 80 80 80

Table 2-1: Altera Cyclone Size Options (from [2])

The LUT size, number of BLEs in each CLB and the number of inputs per

cluster vary across many different vendors. For all of the experiments performed in the

 9

remainder of this thesis, an FPGA architecture based on the parameters given below is

used unless otherwise specified. Note that the channel width of the FPGA is left as a

variable. The CAD tools described in this thesis attempt to find the minimum possible

channel width needed to route a circuit.

• LUT Size (K)= 6

• Cluster Size (N) = 16

• Number of Inputs Per Cluster (I) = 51 = k/2*(N+1) (from [1])

• Length of Wires (L) = 4

• Switch Block Type (SBtype) = Subset

• C-Block Input Connectivity (Fcin) = 0.366

• C-Block Output Connectivity (Fcout) = 0.1

• C-Block I/O Pad Connectivity (Fcpad) = 1

• Fully Buffered Switches

• I/O Ratio = Minimum value to ensure circuit is logic limited

• Process Parameters = 0.18µm TSMC

• Channel Width = Variable

 10

2.2 FPGA CAD Flow

The process of converting a circuit description into a format that can be loaded

into an FPGA can be roughly divided into five discrete steps, namely: synthesis,

technology mapping, clustering, placement and routing. The final output of FPGA

CAD tools is a bitstream that configures the state of the memory bits in an FPGA. The

state of these bits determine the logical function that the FPGA implements. Figure

2-3 shows a flowchart of the FPGA CAD flow. The following sections will describe

the algorithms that are typically used in each step of the CAD flow.

Circuit Description

Technology
Mapping

Synthesis

Clustering

Placement

Routing

Bitstream

Figure 2-3: FPGA CAD Flow

 11

2.2.1 Synthesis

Synthesis involves translating a circuit description, traditionally in a hardware

description language (HDL) (e.g. VHDL or Verilog), into a gate-level representation.

The gate-level representation is a network consisting of Boolean logic gates and flip-

flops. There are no FPGA-specific optimizations performed during synthesis since this

is normally a technology independent step. Further details concerning synthesis are

omitted because it is beyond the scope of this thesis.

2.2.2 Technology Mapping

The output from synthesis tools is a circuit description of Boolean logic gates,

flip-flops and the wiring connections between these elements. The circuit can also be

represented by a directed acyclic graph (DAG). Each of the nodes in the graph

represents a gate, flip-flop, primary input or primary output. Each of the wires in the

graph represents the connections between the different circuit elements. Figure 2-4

shows an example of a DAG representation of a circuit.

A Boolean network An equivalent directed
acyclic graph (DAG)

Figure 2-4: Directed Acyclic Graph Representation of a Circuit (from [29])

 12

Given a library of “cells”, the technology mapping problem can be expressed

as finding a network of “cells” that implements the Boolean network. In the FPGA

technology mapping problem, the library of “cells” is composed of K-input LUTs and

flip-flops. Therefore, FPGA technology mapping involves transforming the Boolean

network into K-bounded cells. Each cell can then be implemented as an independent

K-LUT. Figure 2-5 shows an example of transforming a Boolean network into K-

bounded cells.

0 0 0 0 0

1 1

1

4-LUT

s

X X

0 0 0 0 0

1 1 1 1

11

2

s

t

Figure 2-5: Example of Technology Mapping (from [29])

Technology mapping algorithms can optimize for a variety of objectives

including depth, area or power. The FlowMap algorithm [12] is the most widely used

academic tool for FPGA technology mapping. FlowMap was a breakthrough in FPGA

technology mapping because it is able to find a depth-optimal solution in polynomial

time. FlowMap guarantees depth optimality at the expense of logic duplication. Since

the introduction of FlowMap, numerous technology mappers have been designed that

optimize for area and run-time while still maintaining the depth-optimality of the

 13

circuit ([13], [14], [15]). A series of technology mapping algorithms that optimize for

power ([4], [11], [29]) have recently attracted much interest as well.

For the CAD tools discussed in this thesis, all technology mapping of circuits

was performed by running FlowMap [12] for depth optimality and FlowPack [13] for

area reduction. The SIS scripts scipt.rugged and script.algebraic were run and the

lower area solution out of the two was chosen. The result of the technology mapping

step generates a network of K-bounded LUTs and flip-flops.

2.2.3 Clustering

The logic elements in a mesh-based FPGA are typically arranged in two levels

of hierarchy. The first level consists of basic logic elements (BLEs) which are K-input

LUT and flip-flop pairs. The second level hierarchy groups ‘N’ BLEs together to form

configurable logic blocks (CLBs). The clustering phase of the FPGA CAD flow is the

process of forming groups of ‘N’ BLEs. These clusters can then be mapped directly to

a logic element on an FPGA. Figure 2-6 shows an example of the clustering process.

LE
1

LE
2

LE
4LE

1
LE
2

LE
4

LE
5

LE
3

LE
5

LE
3

Clusters

Figure 2-6: Example of Clustering (from [29])

 14

Clustering algorithms can be broadly categorized into three general

approaches, namely top-down ([20], [22]), depth-optimal ([16], [40], [54]) and

bottom-up ([6], [7], [8], [37], [46]). Top-down approaches involves recursively

partitioning a circuit into fixed size clusters. Depth-optimal solutions attempt to

minimize delay (similar to [12]) at the expense of logic duplication. Bottom-up

approaches are generally preferred for FPGA CAD tools because of their fast run

times and reasonable timing delays.

Bottom-up approaches build clusters sequentially one at a time. The process

starts with choosing a BLE which acts as a cluster seed. BLEs are then greedily

selected and added to the cluster based on various attraction functions. The VPack

[37] attraction function is based on the number of shared nets between a candidate

BLE and the BLEs that are already in the cluster. T-VPack [6] is a timing driven

version of VPack which gives added weight to grouping BLEs on the critical path

together. RPack [7] improves the routability of a circuit by introducing a new set of

routability metrics. RPack significantly reduced the required channel widths required

by circuits compared to VPack. T-RPack [8] is a timing driven version of RPack

which is similar to T-VPack by giving added weight to grouping BLEs on the critical

path. iRAC [46] improves the routability of circuits even further by using an attraction

function that attempts to encapsulate as many low fanout nets as possible within a

cluster. If a net can be completely encapsulated within a cluster, there is no need to

route that net in the external routing network. By encapsulating as many nets as

 15

possible within clusters, routability is improved because there are less external nets to

route in total.

For the experimental results discussed in this thesis, a replica of the iRAC

algorithm was constructed based upon the description given in [46]. The replica was

used because the original tool is no longer available. The replica implements the

cluster seed and attraction function of the original iRAC algorithm but omits the Rent

based input limiting function. Despite this, the iRAC replica achieves results within

2% of the number of external nets given in [46].

2.2.4 Placement

The placement step in the CAD flow involves placing the clustered netlist on

to fixed locations on the FPGA. Figure 2-7 shows an example of the placement

problem.

e

a i

f l d

h g n

c

m

b

k

j

a b

d e

c

f g h

i j k

l m n

Figure 2-7: Example of Placement (from [29])

Placement algorithms traditionally attempt to minimize routing congestion and

critical-path delays. Routing congestion is minimized by arranging the highly

 16

connected blocks close together and critical-path delay is minimized by placing blocks

on the critical path close together. Placement techniques can be broadly categorized

into three different approaches: min-cut ([18], [24], [43]), analytical ([26], [42], [45]),

and simulated annealing ([6], [27], [38]). Although all three methods produce good

results, simulated annealing provides the most flexibility for new optimization goals

and architectural changes.

Simulated annealing begins with a random initial placement of all the blocks.

Pairs of blocks are then randomly swapped repeatedly. After each swap, the quality of

the placement solution is analyzed. In VPR [6], the placement quality is determined by

the sum of the half-perimeter bounding box of all the nets in the circuit. The

probability of accepting a swap is based on the temperature of the simulated annealing

schedule. Initially, the temperature is high which results in almost all swaps (good and

bad) being accepted. As the temperature is slowly lowered, the probability of

accepting a bad swap is reduced. Once the temperature reaches 0, only good swaps are

permitted. The process of initially accepting bad swaps allows the placement process

to find its way out of local minima in the solution space. For the CAD tools discussed

in this thesis, the T-VPlace algorithm in the VPR tool is used unless otherwise

specified.

2.2.5 Routing

The final stage in the FPGA CAD flow is the routing step which connects the

placed blocks though the programmable routing network. Connections between wires

on an FPGA are formed by using a programmable routing switch. Traditionally, wires

 17

were bi-directional which indicates that tri-state drivers are placed on both ends of a

wire. More recently, [33] has suggested that single driver, directional wires improve

area and delay. However, since the directional VPR tool was unavailable at the time of

this work, a bi-directional model for wiring was used.

Routing techniques can be broadly categorized into two methods, namely two-

step routers ([10], [31], [32]) and combined global-detailed ([6], [39], [52]) routers.

Two-step routers perform global routing and detailed routing in two discrete steps.

Global routing assigns nets to specific channels and logic block pins. After global

routing is complete, detailed routing assigns the nets to specific wire segments in its

assigned channel. Two-step routers are generally used for ASIC flows and are not

normally used for FPGAs because the limited flexibility of the FPGA routing

architecture makes detailed routing difficult under global routing constraints. FPGAs

use combined global-detailed routers because of the inflexibility of the two-step

routers.

The VPR router (combined global-detailed) is based on a modified version of

the PathFinder [39] algorithm. Pathfinder is an iterative algorithm which allows nets to

share wires in the initial iterations. Successive iterations penalize the use of wires that

were shared or used in previous iterations. The penalty factor is continually increased

until a routing solution is found where each wire segment has at most one net assigned

to it. The VPR router is also timing-driven. This is achieved by assigning the shortest

possible paths to critical nets. Other non-timing critical nets may tend to take longer

 18

routes in the presence of congestion. For the CAD tools discussed in this thesis, the T-

VRoute algorithm in the VPR tool is used unless otherwise specified.

2.3 Previous Methods to Reduce Channel Width

One of the earliest attempts to balance logic and routing elements to decrease

area was performed by DeHon [17]. However, this analysis was performed for an

FPGA with a binary tree interconnect structure. In this work, we use a mesh based

interconnect which is more representative of commercial FPGAs. Tessier [48] showed

that depopulation of clusters can result in reduced MRCW of circuits. The algorithm

presented in [48] depopulates each cluster equally so there is a uniform distribution of

empty BLEs across the chip. Although this reduces MRCW, it also depopulates

regions of the circuit that are not heavily congested. This leads to unnecessary CLB

inflation in these regions. The tools presented in this thesis use a different cluster size

limit for different partitions of the circuit. This cluster size limit value may vary across

the chip such that routing-congested areas are depopulated more.

Singh [46] presented a clustering algorithm (iRAC) which is very effective at

reducing channel width. iRAC reduces channel width by identifying low fan-out nets

and completely absorbing them into a cluster. This reduces the total number of

external nets, hence reducing the MRCW. iRAC also limits the number of inputs to

each CLB by using the Rent parameter of the underlying architecture, resulting in

solutions that have some depopulation. The tools in this thesis differ from [46] by

targeting specific channel-width constraints.

 19

Independence, a FPGA placement tool by Sharma [44], targets hard channel

width and array size constraints. It works by using the router tool as an inner loop

during placement and runs 10,000 times slower. In comparison, the tools presented in

this thesis run much faster and can work with most clustering, placement and routing

tools. Also, Independence inserts entire CLBs as whitespace, while the tools in this

thesis insert individual BLEs.

 20

Chapter 3

3 METHODS TO REDUCE MINIMUM ROUTABLE

CHANNEL WIDTH

This chapter compares two basic techniques for channel width reduction.

These methods are input-limiting and BLE-limiting. Results will show that contrary to

popular belief (such as results in [46]), input-limiting is not effective at reducing

channel width. Instead, BLE-limiting is shown to be much more effective.

3.1 Input-Limits vs. BLE-Limits

This section evaluates the effectiveness of two different CLB depopulation

methods, namely input-limiting and BLE-limiting. The first method, similar to [48], is

to strictly limit the number of BLEs that can be packed into a CLB (BLE-limit). The

second method, similar to [46], is to strictly limit the number of inputs that can be

used on a CLB (input-limit). Figure 3-1 shows the MRCW for circuit clma after

implementing the two limits in two different clustering algorithms: (T-VPack, iRAC

replica). Other circuits produce similar results. For example, a BLE-limit size of 7

would indicate that 9 of the BLEs in each cluster are empty. Alternatively, an input-

limit size of 24 indicates that 27 of the inputs in every cluster are left unused.

 21

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 6 8 10 12 14 16

 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

M
in

im
um

 R
ou

ta
bl

e
C

ha
nn

el
 W

id
th

Cluster Size (BLE-Limit)

Number of Inputs (Input-Limit)

Input-limited T-VPack
Input-limited iRAC Replica
BLE-limited T-VPack
BLE-limited iRAC Replica

Figure 3-1: Input- and BLE-Limits during Clustering for Circuit clma

Figure 3-1 shows that the BLE-limit method exhibits a monotonically

increasing relationship between the BLE-limit size and the MRCW. Hence, BLE-limit

can be effectively used to decrease routed channel widths. Surprisingly, the input-limit

approach did not exhibit this same relationship. This contradicts traditional thinking

that reducing inputs is an effective way to reduce channel width. This occurs because

there are two competing factors that affect the MRCW. As the BLE-limit or input-

limit size is decreased, the increase in array size tends to reduce the MRCW but the

increase in the total number of routable nets tends to increase the MRCW. BLE-

limiting ensures that the array size increases more quickly than the number of routable

nets, leading to a decrease in MRCW. In contrast, for the input-limiting case of Figure

3-1, as the number of used inputs decreases from 51 to 30, the number of routable nets

is increasing while the array size remains relatively constant. Effectively, the reduction

in the number of inputs is causing poor clustering solutions to be generated (e.g.

 22

increase in total number of routable nets) without any increase in the required array

size. Because BLE-limiting is an effective control method for reducing channel width,

it is used as the depopulation method for all the depopulation tools discussed in this

thesis.

 23

Chapter 4

4 BENCHMARK CIRCUITS

Before the channel width reduction tools are presented, this chapter will

discuss the importance of benchmark circuits to channel width reduction tools and

present two new synthetic benchmark suites. FPGA researchers need large circuits to

investigate new FPGA device architectures and CAD algorithms. However, the gap

between the size of real world circuits and those available to the academic community

for designing FPGAs continues to grow. Modern, multi-million gate System-on-Chip

designs are highly proprietary; hence, they are not commonly available for academic

research. Instead, the only designs available are small MCNC benchmark circuits [36]

that have been in use since 1993. In an industry where circuit density doubles every

18-24 months, these circuits are rapidly becoming outdated.

A viable alternative to real world circuits is the use of synthetic circuits.

Synthetic circuits can be generated using a variety of different methods. This chapter

will present two different benchmark suites and discuss the mechanisms used to create

the circuits. The first benchmark suite, Meta, was used to test the DHPack

depopulation strategy described in Chapter 5. The second benchmark suite, Stdev, was

used to test the Un/DoPack depopulation strategy described in Chapter 6.

 24

4.1 Meta Benchmark Circuits

The System-on-Chip (SoC) design philosophy consists of integrating multiple

components from different sources into a single chip. For FPGA systems, these

components are normally digital intellectual property (IP) blocks. The IP blocks can

be widely varied in their function and purpose, and are often developed by different

designers. During development, each IP block might be individually placed and routed

on an FPGA several times. As well, these different blocks may have different

interconnect demands, just like those shown in Figure 1-1.

To mimic a large SoC design, the Meta circuit benchmarks were created by

treating the largest 20 MCNC circuits [36] as individual IP blocks of a common SoC

and randomly stitching them into a single, large Meta circuit. Stitching involves

connecting compatible inputs and outputs of the blocks together. Each MCNC circuit

is a unique, self-contained function with an appropriate input/output (I/O) count, just

like an IP block. Connections between IP blocks are made only at these I/O boundaries

and not to internal nodes of the block. Also, some of these MCNC circuits (e.g.

bigkey) have many inputs and outputs, making them similar to “glue logic” that may

be used to connect multiple IP blocks together. To avoid creating combinational loops,

the stitching process adds a flip-flop to the primary outputs of each MCNC circuit.

The IP blocks were stitched together in three different ways to create three different

circuits in the Meta benchmark suite:

 25

• Independent: Each primary input and primary output of each IP block

remains a primary input and primary output of the Meta circuit. There is no

interaction between IP blocks.

• Pipeline: The IP blocks are placed in a random, sequential order, each

representing stages in a pipeline. Additional (leftover) inputs/outputs between

pipeline stages become primary inputs/outputs of the Meta circuit.

• Clique: The outputs of each individual IP block are uniformly distributed to

the inputs of all other circuits in the Meta circuit. The connections are made to

encourage as much inter-block communication as possible.

When stitching, precise output-to-input connections are randomly assigned

once. From this stitching assignment, multiple versions of each benchmark circuit

were created by stitching different clustering solutions of each IP block. During

stitching, only connections with a fan-out of one are formed. Alternatively, synthetic

circuit generating techniques ([23], [28]) could have been used. These techniques are

good for cloning existing circuits: they typically work by top-down partitioning or

bottom-up clustering of modules and adding nets between the modules while

enforcing stochastic interconnect parameters. Unfortunately, we do not have any

initial SoC designs to clone. Another synthetic benchmark generator developed by

Stroobandt [51] is discussed section 4.2.

When developing the Meta benchmarks, the primary concern was to create

large circuits with varying interconnect usage among the IP blocks. The names of the

 26

3 benchmark circuits are Clique, Pipeline and Independent. These benchmark

circuits were used to test the DHPack depopulation strategy described in Chapter 5

which requires strict IP block boundary definitions.

4.2 Stdev Benchmark Circuits

The Meta benchmark suite was created by randomly stitching together

existing, smaller benchmarks (MCNC circuits) and treating the smaller circuits as IP

blocks. However, the stitching was somewhat unrealistic as a flip-flop was placed at

every IP block output to prevent combinational loops. Un/DoPack (the depopulation

technique described in Chapter 6) does not have the requirement that the circuit be

strictly partitioned into IP blocks. To mimic more realistic benchmark circuits, a

synthetic benchmark generator, GNL [51] was used to generate a second benchmark

suite. GNL allows benchmarks to be generated hierarchically and allows control over

the Rent parameter [30] in each division. GNL is also able to prevent combinational

loops and can place limits on the maximum depth of a circuit. The key parameter of

GNL is that it is able to create synthetic benchmarks based on Rent’s rule. Empirical

evidence has shown that most circuits follow Rent’s rule. Since it is not known how

much interconnect variation is present in real world circuits, GNL gives provides a

mechanism to generate circuits that have a controllable amount of interconnect

variation.

The GNL synthetic circuits generated consist of two levels of hierarchy. The

root level defines the overall structure of the circuit. This level includes the total

 27

number of logic cells in the circuit, as well as a required input and output count. The

number of primary inputs and outputs were defined as 240 and 120 respectively. The

root level is defined such that it is made up of twenty leafs that mimic the 20 largest

MCNC circuits [36]. Each leaf represents an IP block with a specific Rent parameter.

The Rent parameter and number of logic blocks of each IP block was chosen to match

the same parameter values as each corresponding MCNC circuit. These Rent numbers

were extracted from [46]. The number of inputs and outputs for each sub-circuit was

not defined, thus allowing GNL to randomly stitch each Rent region together to form

the overall circuit. The standard deviation of the Rent parameter for the 20 MCNC

circuits was calculated to be 0.08 and the average value was 0.62. Using these Rent

values, we produced a clone of the Meta circuit and named it Stdev008. To create a

family of circuits, a linear interpolation scheme was applied to keep the same overall

mean, but to vary the standard deviation to produce 4 smaller values and 2 larger ones.

Figure 4-1 shows a graphical representation of our linear interpolation scheme. For

clarity, only 10 of the 20 MCNC circuits are shown.

 28

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

ex1010ex5ppdcmisex3alu4s298diffeqelliptics38584bigkey
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

R
en

t P
ar

am
et

er

N
um

be
r

of
 L

ut
s

MCNC Circuits

Stdev000
Stdev002
Stdev004
Stdev006

clone/Stdev008
Stdev010
Stdev012

Figure 4-1: Rent Linear Interpolation for GNL Benchmark Circuits

Each line in Figure 4-1 represents a benchmark circuit for a specific standard

deviation of the Rent parameters. Circuit Stdev000 contains 20 IP blocks each having

the identical Rent parameter of 0.62, producing a flat line. The average Rent parameter

is a simple average of the sub-circuits and is not weighted by the sub-circuit size.

Three other circuits with standard deviations 0.02, 0.04, 0.06 were created between the

flat line and bold clone circuit line. Circuits Stdev010 and Stdev012 were obtained by

extrapolating the Rent parameter 2 steps farther. The “bar line” in Figure 4-1 shows

the size of each of the IP blocks in terms of the number of LUTs; the size does not

depend on the Rent parameter.

The resulting circuits had standard deviations of 0.0, 0.02, 0.04, 0.06, 0.08,

0.10 and 0.12 in their Rent value and contained 51,900 to 52,200 6-input BLEs. The

names of the circuits are Stdev000, Stdev002, Stdev004, Stdev006,

Stdev008/clone, Stdev010 and Stdev012. The linear interpolation scheme will

 29

be used to show that a large amount of depopulation is necessary to reduce the MRCW

in circuits with a low standard deviation. This is because the circuit is uniform, and

routing resources demands should be fairly consistent across the entire circuit. In

contrast, with a high standard deviation, routing resource demands should be non-

uniform, thus allowing the depopulation scheme to reduce the routing demands of high

Rent regions. Appendix A gives complete information on the size and Rent parameter

of the IP blocks in the Stdev benchmark circuits.

It was not possible to use the Stdev circuits to test DHPack (Chapter 5)

because DHPack requires that the IP block boundaries be strictly defined. Even though

it is possible to specify the Rent parameter of each IP block, GNL is still random in

nature. Therefore, there is no method of determining where the boundaries of these IP

blocks are located. The Stdev benchmarks will be used primarily in Chapter 6 to

demonstrate the significance of interconnect variation in channel width reduction

strategies. Experimental results will show that Un/DoPack is effective at reducing

MRCW for the Stdev circuits and the Meta circuits regardless of their interconnect

variation. However, the amount of interconnect variation has a direct affect on the

overall area increase and run time of this tool.

 30

Chapter 5

5 CHANNEL WIDTH REDUCTION USING DESIGN

HIERARCHY PACKING: DHPACK

This chapter describes a non-uniform depopulation technique (DHPack) that

uses the natural design hierarchy of the benchmark circuits to identify depopulation

regions. DHPack requires that the benchmark circuits have clearly defined IP block

boundaries. Since the Meta benchmarks (Section 4.1) were created from a strict design

hierarchy, they were ideal for evaluating DHPack. The Meta circuits were formed by

stitching together individual clustering solutions of each IP block. This allows

DHPack to depopulate only the routing-intensive blocks. Clustering individually

preserves each IP block in a form that more closely resembles how each was

developed and tested by separate designers prior to integration.

This chapter begins with an explanation of the DHPack algorithm. An analysis

of the experimental results will then show that this technique is effective at reducing

the minimum routable channel width (MRCW) of the benchmark circuits. The chapter

concludes with a discussion of some of the limitations of this technique. Note that this

technique is described in [49].

 31

5.1 DHPack - Depopulation Strategy

Design Hierarchy Pack (DHPack) uses the design hierarchy of the

benchmark circuit to identify depopulation regions. This approach enforces BLE-

limits during clustering, profiles each IP block's channel width needs for different

depopulation levels, and chooses the one with the fewest CLBs that meet a given

channel width constraint. Results will show that a large, flat area region exists where

CLB count can be safely traded off for channel width.

For FPGA designs that contain multiple IP blocks, it was hypothesized that the

channel width needed to route the entire circuit will be similar to the IP block with the

highest channel width needs. That is, the other IP blocks do not temper the channel

width needs of the hard-to-route IP block. Although this is just a first-order

approximation that ignores the effects of inter-block communication, results show that

it is a good estimate of the final routed channel width. Hence, the first step of DHPack

is to develop a channel-width profile of each IP block. Then, DHPack selects the

depopulation level needed by each IP block to meet the overall channel-width

constraint. DHPack is described in pseudo-code in Figure 5-1. Each of the 4 different

steps of DHPack is discussed in the following sections.

 32

Routed_Circuit DHPack (circuit, channel_width_constraint,
 cluster_size) {

 IP_Blocks[] = Decompose_Circuit_into_IP_Blocks(circuit);

 // Step 1: Generate Channel Width Profile
 foreach (IP_Block) {
 for(LimitSize=1; LimitSize<=cluster_size; LimitSize++) {
 cluster_ip_blk = Cluster(IP_Block, LimitSize);
 routed_ip_blk = Place&Route(cluster_ip_blk);
 CW[IP_Block][LimitSize] = get_CW(routed_ip_blk);
 }
 }

 // Step 2: Calculate Maximal Cluster Sizes
 foreach (IP_Block) {
 Limit = Cluster_Size;
 while(CW[IP_Block][Limit] > channel_width_constraint &&
 Limit > 0) {
 Limit--;
 }
 if(Limit == 0) {
 return(NO_SOLN);
 } else {
 BLE_Limit[IP_Block] = Limit;
 }
 }

 // Step 3: Cluster IP Blocks
 foreach (IP_Block) {
 Clustered_Soln[IP_Block] = Cluster(IP_Block,
 BLE_Limit[IP_Block]);
 }

 // Step 4: Stitch Circuit back together & P&R
 Clustered_Circuit = Stitch_Circuit(circuit, Clustered_Soln[]);
 Routed_Circuit = Place&Route(Clustered_Circuit);

 return (Routed_Circuit)

}

Figure 5-1: Pseudo-code for DHPack Flow

 33

5.1.1 Steps 1,2: Channel Width Profiling and BLE-Limits

The channel width profile of each IP block in the Meta circuits were created by

placing and routing each IP block independently of each other for all possible BLE-

limit sizes. Figure 5-2 shows the channel width needs of two IP blocks for BLE-limits

2 to 16. A BLE-limit size of 16 indicates that the clustering tool has no restriction on

the number of BLEs that can be used in a cluster. Conversely, a BLE-limit size of 2

indicates that a maximum of 2 BLEs can be used per cluster.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2 4 6 8 10 12 14 16 18

M
in

im
um

 R
ou

ta
bl

e
C

ha
nn

el
 W

id
th

BLE-Limit Size

T-VPack clma
iRAC Replica clma
T-VPack tseng
iRAC Replica tseng

Figure 5-2: Channel Width Profile of IP Blocks clma/tseng

If a channel-width constraint of 60 is imposed using T-VPack, a BLE-limit size

of 6 is required to route clma. We say 6 is the maximal cluster size for clma at the

given channel-width constraint. In contrast, the maximal cluster size for tseng is 16 for

the same constraint. Once a channel width profile is created for each IP block in the

design, the maximal cluster size for each IP block can be calculated given a channel

width constraint.

 34

For the 3 Meta circuits, 11 different channel-width constraints were set and the

maximal cluster sizes were determined for each IP block using both T-VPack and the

iRAC replica. The maximal cluster sizes using T-VPack are shown in Table 5-1.

Channel-width constraints below 45 were not possible because some circuits could not

be depopulated enough to route with such a small channel width. Channel-width

constraints greater than 95 were not interesting because all CLBs were fully populated.

A table with the maximal cluster sizes using the iRAC replica is also given in Table

5-2.

 Channel-Width Constraint
Circuit 95 90 85 80 75 70 65 60 55 50 45

alu4 16 16 16 16 16 16 16 16 16 16 16
apex2 16 16 16 16 16 16 16 16 16 16 12
apex4 16 16 16 16 16 16 16 14 10 9 8
bigkey 16 16 16 16 16 16 16 16 16 14 9
clma 16 15 14 12 11 10 8 6 5 5 3
des 16 16 16 16 16 16 16 15 4 3 2

diffeq 16 16 16 16 16 16 16 16 16 16 16
dsip 16 16 16 16 16 16 16 16 16 13 6

elliptic 16 16 16 16 16 16 16 14 11 9 7
ex1010 16 16 16 16 16 15 12 9 7 5 4
ex5p 16 16 16 16 16 16 16 16 16 16 15
frisc 16 16 16 15 13 10 9 7 7 5 4

misex3 16 16 16 16 16 16 16 16 16 16 16
pdc 16 16 16 16 16 14 12 9 7 6 4
s298 16 16 16 16 16 16 16 16 16 16 16

s38417 16 16 16 16 16 16 16 16 16 16 14
s38584 16 16 16 16 16 16 16 16 13 11 9

seq 16 16 16 16 16 16 16 16 16 15 11
spla 16 16 16 16 16 16 13 11 8 6 5
tseng 16 16 16 16 16 16 16 16 16 16 16

Table 5-1: Maximal BLE-Limit Sizes from T-VPack

 35

 Channel-Width Constraint
Circuit 80 76 72 68 64 60 56 52 48 44 40

alu4 16 16 16 16 16 16 16 16 16 16 16
apex2 16 16 16 16 16 16 16 16 16 14 9
apex4 16 16 16 16 16 16 16 13 11 8 5
bigkey 16 16 16 16 16 16 15 15 15 15 12
clma 16 16 16 16 13 10 8 7 6 5 3
des 16 16 16 16 16 16 15 15 15 15 15

diffeq 16 16 16 16 16 16 16 16 14 12 8
dsip 16 16 16 16 16 16 16 15 15 15 15

elliptic 16 15 12 11 9 8 6 5 5 4 3
ex1010 16 16 16 16 15 11 8 8 5 4 3
ex5p 16 16 16 16 16 16 16 16 16 16 11
frisc 16 16 16 16 14 10 9 8 8 6 4

misex3 16 16 16 16 16 16 16 16 16 16 16
pdc 16 16 16 16 12 10 9 6 5 5 3
s298 16 16 16 16 16 16 16 16 16 16 16

s38417 16 16 16 16 16 16 16 16 16 16 16
s38584 16 16 16 16 16 16 16 16 16 16 15

seq 16 16 16 16 16 16 16 16 16 12 8
spla 16 16 16 16 16 14 11 9 7 5 4
tseng 16 16 16 16 16 16 16 16 16 16 16

Table 5-2: Maximal BLE-Limit Sizes from iRAC

5.1.2 Steps 3,4: Cluster IP blocks and Stitch Circuit

Once the maximal cluster sizes have been determined for a given channel

width constraint, DHPack selects the individual clustering solutions for each IP block

and stitches the circuit back together. When clustering the IP blocks, there are two

choices for the BLE-limit size with a given channel-width constraint:

• Uniform (Minimum) Cluster Size: Depopulate all of the IP blocks to the

same BLE-limit size, the minimum of the maximal cluster sizes for all IP

blocks. This is similar to [48] which uses uniform depopulation of clusters.

 36

• Non-uniform (Maximal) Cluster Size: Depopulate the IP blocks by

different amounts, using the maximal cluster size for each one.

For each of the 11 channel width constraints in Table 5-1, we generated a

Uniform and Non-uniform clustered version of Meta using T-VPack. This was also

repeated for the iRAC replica algorithm. As discussed earlier, the Uniform version

will contain more CLBs than necessary and results in lower BLE utilization. Figure

5-3 shows the total CLBs and BLE utilization obtained from the Meta circuits

produced from T-VPack and iRAC replica clustering.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 40 45 50 55 60 65 70 75 80 85 90 95 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
ot

al
 N

um
be

r
of

 C
LB

s
(T

-V
P

ac
k)

B
LE

 U
til

iz
at

io
n

(T
-V

P
ac

k)

Channel Width Constraint

BLE Utilization, Non-uniform
BLE Utilization, Uniform
Num CLBs, Uniform
Num CLBs, Non-uniform

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 35 40 45 50 55 60 65 70 75 80 85
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
T

ot
al

 N
um

be
r

of
 C

LB
s

(iR
A

C
 R

ep
lic

a)

B
LE

 U
til

iz
at

io
n

(iR
A

C
 R

ep
lic

a)

Channel Width Constraint

BLE Utilization, Non-uniform
BLE Utilization, Uniform
Num CLBs, Uniform
Num CLBs, Non-uniform

Figure 5-3: DHPack CLB Count and BLE Utilization

It is evident from Figure 5-3 that Non-uniform clustering of the IP blocks

significantly improves both BLE utilization and reduces CLB count as the channel

width constraint is decreased

5.2 Experimental Results

In total, 66 Meta netlists were created and placed using VPR (11 channel width

constraints, 3 Meta circuits, using 2 clustering tools (T-VPack and the iRAC replica)).

 37

Figure 5-4 shows a post place and route screen shot from VPR of the Meta circuit

Clique with a channel width constraint of 50. The screen shot has been edited to show

the location of the IP blocks.

Figure 5-4: VPR Placement of Non-Uniform Clique with T-VPack

The numbers below each IP block indicate the BLE-limit size of that IP block.

Analyzing the place and route results from the Meta circuits led to two key

observations.

 38

Observation 1: VPR placer successfully groups IP blocks from a random

initial placement

It was expected that large SoC designs will be floor planned prior to the final

placement process, but VPR does not support floor planning. Instead, it starts with a

random placement of all CLBs and uses simulated-annealing to find a minimum-cost

placement. Interestingly, VPR was able to generate solutions that appear to be floor

planned. This reduced the need to impose an artificial floor plan on the design a priori.

Observation 2: VPR router confirms the MRCW of a Meta circuit is

dominated by a few IP blocks

Figure 5-4 illustrates that only a few IP blocks (i.e. des, clma, frisc, ex1010)

needed a large amount of depopulation for the given channel width constraint. It is

these IP blocks that dominate the channel width needs of the entire circuit.

While routing, the channel width was continuously reduced until the circuit

became un-routable. This produced the final minimum routable channel width

(MRCW). It is a minimum because the FPGA architecture must have at least this

minimum channel width in order for the circuit to be routable. Routing results for the

6 Meta circuits are shown in Figure 5-5. A comprehensive table of results is given in

Appendix B.

 39

 50

 60

 70

 80

 90

 100

 45 50 55 60 65 70 75 80 85 90 95 100 105

C
ha

nn
el

 W
id

th
 (

T
-V

P
ac

k
C

liq
ue

)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 40

 50

 60

 70

 80

 40 45 50 55 60 65 70 75 80 85

C
ha

nn
el

 W
id

th
 (

iR
A

C
 C

liq
ue

)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 50

 60

 70

 80

 90

 100

 45 50 55 60 65 70 75 80 85 90 95 100 105

C
ha

nn
el

 W
id

th
 (

T
-V

P
ac

k
P

ip
el

in
e)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 40

 50

 60

 70

 80

 40 45 50 55 60 65 70 75 80 85

C
ha

nn
el

 W
id

th
 (

iR
A

C
 P

ip
el

in
e)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 50

 60

 70

 80

 90

 100

 45 50 55 60 65 70 75 80 85 90 95 100 105

C
ha

nn
el

 W
id

th
 (

T
-V

P
ac

k
In

de
pe

nd
en

t)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 40

 50

 60

 70

 80

 40 45 50 55 60 65 70 75 80 85

C
ha

nn
el

 W
id

th
 (

iR
A

C
 In

de
pe

nd
en

t)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

Figure 5-5: DHPack MRCW and Average Channel Width

The results show that the non-uniform MRCW was usually higher than what

was imposed by the channel-width constraint. In contrast, the uniform MRCW results

track the channel width constraint more closely. However, this comes at the expense

of area which is shown in Figure 5-6. The high MRCW values for some Independent

and Pipeline cases involving iRAC led to further investigation. It was found that on

 40

these occasions, the I/O intensive IP blocks were strongly attracted to the I/O

padframe during placement and stretched into highly rectangular shapes. This caused

severe localized congestion in the routing channels nearest to the padframe. Figure 5-5

also shows the average channel width of all routing channels. The average channel

width tracks the channel-width constraint much more closely, suggesting that the

approach is viable if the I/O padframe congestion can be reduced.

Figure 5-6 shows the normalized area results of the 3 Meta circuits for non-

uniform and uniform depopulation cases. For the non-uniform case, the final routed

area shows a substantially flat area response (small area increases) for channel widths

of 70-95 for T-VPack and 65-80 for iRAC. Channel width decreases of up to 50% are

possible with much larger area increases. In comparison, the uniform area curves

increases much more quickly as the channel width constraint is decreased. This

suggests that uniform depopulation unnecessarily depopulates in low-congestion areas.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 40 45 50 55 60 65 70 75 80 85 90 95 100

A
re

a
F

ac
to

r
(T

-V
P

ac
k)

Channel Width Constraint

Uniform Clique
Uniform Pipeline
Uniform Independent
Non-Uniform Clique
Non-Uniform Pipeline
Non-Uniform Independent

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 35 40 45 50 55 60 65 70 75 80 85

A
re

a
F

ac
to

r
(iR

A
C

 R
ep

lic
a)

Channel Width Constraint

Uniform Clique
Uniform Pipeline
Uniform Independent
Non-Uniform Clique
Non-Uniform Pipeline
Non-Uniform Independent

Figure 5-6: DHPack Routed Area Factor

Table 5-3 shows a summary of the channel width decreases that were obtained

for each Meta benchmark circuit. Small MRCW decreases of 23%/13% for T-

 41

VPack/iRAC are possible with 4%/3% increase in area. Larger MRCW decreases of

39%/29% are possible with 166%/146% increase in area.

Channel Width Changes
Circuit Clustering

Tool CW Avg
CW Area CW Avg

CW
Area

T-VPack -19% -14% +6% -50% -47% +129% Clique iRAC Rep. -7% -4% -1% -29% -39% +187%
T-VPack -25% -15% +2% -55% -51% +184% Pipeline iRAC Rep. -17% -11% +1% -30% -30% +69%
T-VPack -24% -19% +3% -42% -48% +184% Independent iRAC Rep. -15% -11% +6% -27% -44% +183%
T-VPack -23% -16% +4% -49% -49% +166% Arithmetic

Mean iRAC Rep. -13% -9% +3% -29% -38% +146%

Table 5-3: Reductions in Channel Width for DHPack

In some cases, only small decreases in MRCW were achievable. As explained

earlier, this is because some IP blocks introduce heavy congestion at the periphery due

to high I/O padframe needs. Table 5-3 also shows the average channel width required.

In the cases where I/O congestion occurs, the average channel width tracks the

channel width constraint more closely. This suggests that if the I/O congestion can be

somehow eliminated the MRCW will also decrease and track the channel width

constraint more closely.

Figure 5-7 shows the critical-path delay results. It was initially expected

critical-path delay would increase as more depopulation is applied. Critical-path delay

does seem to follow this trend, but it tends to “jump around”. This delay “noise”

appears to result from instability in the placement. As depopulation is applied, the

VPR placement engine keeps IP blocks together, but sometimes their location in the

floor plan is shifted significantly relative to other IP blocks. This caused the critical

 42

path to sometimes relocate from within an IP block (which gradually degrades as

depopulation is applied) to connections between IP blocks (which introduces large

delay jumps). Imposing a pre-defined floor plan may help reduce this “noise” in large

designs.

 20

 22

 24

 26

 28

 30

 32

 34

 36

 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 13

 14

 15

 16

 17

 18

 19

 20

 21

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

A
vg

. R
ou

te
d

W
ire

le
ng

th
 p

er
 N

et

Channel Width Constraint (Clique)

CP T-VPack
CP iRAC Replica
Avg. WL/Net T-VPack
Avg. WL/Net iRAC Replica

 20

 22

 24

 26

 28

 30

 32

 34

 36

 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 13

 14

 15

 16

 17

 18

 19

 20

 21

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

A
vg

. R
ou

te
d

W
ire

le
ng

th
 p

er
 N

et

Channel Width Constraint (Independent)

CP T-VPack
CP iRAC Replica
Avg. WL/Net T-VPack
Avg. WL/Net iRAC Replica

 20

 22

 24

 26

 28

 30

 32

 34

 36

 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 13

 14

 15

 16

 17

 18

 19

 20

 21

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

A
vg

. R
ou

te
d

W
ire

le
ng

th
 p

er
 N

et

Channel Width Constraint (Pipeline)

CP T-VPack
CP iRAC Replica
Avg. WL/Net T-VPack
Avg. WL/Net iRAC Replica

Figure 5-7: DHPack Critical-Path Delay

Figure 5-7 also shows the average wirelength per net. Average wirelength per

net increased as more depopulation is applied (e.g. channel width constraint reduced).

This is expected because an increase in CLB count must also increase the average

distance a net must traverse. Also, depopulating will cause connections that were

previously internal to a CLB (hence, ignored) to become external nets with a small

measurable distance. This slightly tempers the increase in average wirelength. Note

 43

that iRAC replica produces a higher average wirelength than T-VPack. However, the

total wirelength was lower and the critical-path delay results were similar.

5.3 Experimental Conclusions

This chapter has proposed a system-level technique for mapping large system-

on-chip (SoC) designs to channel-width constrained FPGAs. In particular, the method

helps fit hard-to-route circuits into FPGAs that have narrow channel widths at the

expense of using more CLBs. Since larger devices with more CLBs are usually

available, this is a practical trade-off.

Results have shown that depopulating CLBs (e.g. not filling them to capacity)

is a very effective way to reduce channel width needs of a circuit. It is important to

apply non-uniform depopulation when clustering. Otherwise, area increases very

rapidly and limits the usefulness of the approach. It was shown that channel width

reduction can be achieved by selectively depopulating parts of a large circuit that

would otherwise have routing congestion. The most routing-intensive IP blocks are

depopulated until the routing demands of those blocks are comparable to the demands

of the other blocks. On average, small MRCW decreases of 23%/13% for T-

VPack/iRAC are possible with 4%/3% increases in area. Large MRCW decreases of

39%/29% are possible with 166%/146% increases in area. Although this is a high area

cost, it may be the only viable solution in a real FPGA device where hard channel-

width constraints are imposed. By purchasing an FPGA device with higher logic

capacity, designs which are otherwise un-routable can be made routable.

 44

5.4 Technique Limitations and Future Work

This section will discuss some of the limitations of DHPack and some possible

directions for future work.

5.4.1 I/O Padframe Congestion

The main reason why DHPack was not able to track the channel width

constraint for large channel width decreases is because some IP blocks stretched into

highly rectangular shapes along the I/O padframe causing congestion hotspots along

the channel adjacent to the I/Os. Xilinx FPGAs have added additional routing

resources to the I/O channel that runs in between the I/O pads and the logic blocks so

that I/O pad placement does not impact routability and speed [47]. Hallschmid [21]

also investigated the impact the aspect ratio of a circuit has on the required channel

width. [21] suggests that a square aspect ratio generates the lowest channel widths and

that larger aspect ratios increase the required channel width because the majority of

the signals run along the tracks in the longer dimension. Table 5-3 demonstrated that

the average channel width tracked the channel width constraint more closely than the

MRCW. This suggests that if the channels adjacent to the I/O padframe were larger

relative to the rest of the chip, channel width reductions could be improved. Another

alternative is to tune the placement algorithms to avoid creating this congestion at all.

These techniques need further investigation.

 45

5.4.2 IP Block Granularity Too Coarse

DHPack is dependent on the design having a well-defined IP block

partitioning. Often, SoC designs have multiple levels of hierarchy which makes it

difficult to choose appropriate boundaries. DHPack does not allow the exploration of

other design partitions. A more efficient partitioning of the circuit that does not rely on

the design hierarchy may more accurately identify high congestion regions. This issue

is addressed in Chapter 6 which presents a CAD tool (Un/DoPack) that does not rely

on design hierarchy information.

5.4.3 Hard Channel Width Constraints

Even though a channel width constraint is an input parameter, DHPack may

generate a routed solution that exceeds the constraint. In practice, industrial FPGAs

have hard channel width constraints and routed solutions that exceed the constraint by

even 1 track are not routable. Un/DoPack in Chapter 6 addresses this limitation by

iterating to meet hard channel width constraints.

5.4.4 Congestion Profile Run Time Long

The run time to create the congestion profile of each IP block can be very time

consuming. In our Meta circuit example, each of the 20 IP blocks needed to be placed

and routed individually for BLE-limit size 2 to 16 (15*20=300 place and route

executions). It may be argued that since each IP block is assigned to a different

engineer that this channel width profiling must be done before integration into the

 46

overall system. Nonetheless, this profiling step will increase the total CAD time

significantly.

 47

Chapter 6

6 CHANNEL WIDTH REDUCTION USING

AUTOMATED CONGESTION IDENTIFICATION:

UN/DOPACK

This chapter describes a depopulation technique (Un/DoPack) that iteratively

applies non-uniform depopulation on a circuit until a given channel width constraint is

met. The main difference between Un/DoPack and DHPack is that Un/DoPack is a

multi-pass technique whereas DHPack is single-pass. Un/DoPack does not have the

requirement that the design hierarchy be known a priori. It can be applied on any

circuit irrespective of whether the design hierarchy is known or not.

This chapter begins by describing the Un/DoPack algorithm including a

detailed discussion of each step of the CAD flow. The experimental results will show

that Un/DoPack is effective at reducing channel width. The results will also highlight

the importance of interconnect variation in benchmark circuits for determining the

device channel width in FPGA architecture design. Finally, a comparison between

DHPack and Un/DoPack is made followed by some of the limitations of this

technique.

 48

6.1 Un/DoPack - Depopulation Strategy

Figure 6-1 shows a flowchart of the Un/DoPack algorithm.

Circuit Description
Architecture Description

Channel Width Constraint
Array Size Constraint

Cluster
(iRAC Replica)

Placement
(VPR)

Routing
(VPR)

Channel Width
Constraint Met?

Success!

Congestion
Calculator
(UnPack)

Fast Placement
(Incremental or

VPR)

Fast Routing
(VPR)

Channel Width
Constraint Met?

Yes Yes

No No

Array Size Limits
Reached?

Failure

Yes

No

Synthesize and
Technology Map
(SIS/Flowmap)

Incremental
Cluster

(DoPack)

1

3

2

4

4

Figure 6-1: Un/DoPack CAD Flow

 49

Un/DoPack can be roughly divided into 4 steps. Each of these steps are

highlighted in Figure 6-1 and discussed below.

6.1.1 Step 1: Traditional SIS/VPR Flow

The first step is highlighted in the shaded portion of Figure 6-1. This step is the

traditional academic FPGA CAD flow which uses SIS / FlowMap [12] and VPR [6] to

synthesize, cluster, place and route a circuit. If the traditional CAD flow fails to

produce a routed solution given a fixed channel width constraint, the iterative portion

of Un/DoPack is invoked to reduce the MRCW.

There are four inputs to Un/DoPack: the circuit description, the architecture

description, the channel width constraint and the maximum array size (logic capacity

constraint). Traditionally, VPR performs a binary search on the device channel width

until the MRCW is found. Un/DoPack does not perform this binary search but requires

the user to specify a hard channel width constraint. This has many practical

applications since industrial FPGAs have hard channel width constraints as well. The

iterative portion of Un/DoPack is invoked only if the routed solution does not meet the

given channel width constraint and the logic capacity of the FPGA will not be

exceeded through depopulation.

6.1.2 Step 2: UnPack - Congestion Calculator

The second step (UnPack) determines which portion of the circuit to

depopulate, calculates the amount of depopulation required as a new cluster size

 50

constraint (BLE-limit size), and un-packs the BLEs. A smaller BLE-limit size

constraint ensures the new CLBs will be “less full” than before.

Following a failed routing attempt, UnPack creates a congestion map based on

the final routed solution. The congestion map is created by labeling each CLB with

the maximum of the required channel width in each of the four channel segments

adjacent to the CLB. Some wiring tracks may have multiple nets assigned to it from

the failed routing solution. This is acceptable as the required channel width is

estimated by counting the total number of nets traveling through the channel

segment.

Figure 6-2 shows a sample 3-D congestion map of circuit Stdev008 before

(top) and after (bottom) Un/DoPack meets a channel width constraint of 100. The x-y

coordinates indicate the CLB locations and the z coordinate indicates the CLB

congestion label. The peak / avg / stddev of channel utilization were 120 / 79.4 / 26.9

tracks before Un/DoPack, and 100 / 79.2 / 19.6 afterwards.

 51

Figure 6-2: Congestion Map Before and After Un/DoPack

From Figure 6-2, it is observed that both the peak and variation of CLB labels were

both decreased.

The depopulation region center is determined by finding the largest label in the

congestion map. In the case of a tie, the CLB that is closest to the center of the map is

chosen as the depopulation center. Two different methods were considered to

determine how large the depopulation region is and how much to depopulate the

region by.

1. Coarse Grained: A circle is drawn around the depopulation center with a

radius of 1/4 the logical dimension of the array. For example, in a 19x19 CLB

grid, the region radius would be floor(1/4*19)=4. All CLBs within the drawn

circle are inserted into the depopulation region. The new BLE-limit size is

0
10

20
30

40
50

0
10

20
30

40
50

0

20

40

60

80

100

120

CLB X-LocationCLB Y-Location

C
LB

 L
ab

el

0
10

20
30

40
50

60

0
10

20
30

40
50

60
0

20

40

60

80

100

120

CLB X-LocationCLB Y-Location

C
LB

 L
ab

el

 52

determined such that the increase in the total number of CLBs will fill an entire

new row/column in the entire array.

2. Fine Grained: A circle is drawn around the depopulation center with a

possible radius of 1/4, 1/5, 1/6 or 1/8 the logical dimension of the array. The

new cluster size is determined so that the increase in the total number of CLBs

will fill an entire row/column in just the depopulation region.

The coarse grained approach increases the array size by one in the x and y

direction in every iteration. In comparison, the fine grained approach grows the array

size much more slowly as there is no guarantee that enough new CLBs will be created

to fill an entire new row/column in the array after each iteration.

6.1.3 Step 3: DoPack - Incremental Re-Cluster

The third step (DoPack) performs incremental re-clustering of the depopulated

region with the smaller BLE-limit size constraint. It re-clusters the BLEs from the

depopulation region identified by UnPack and leaves all other CLBs outside of this

region untouched. UnPack provides DoPack with the new BLE-limit size limit to use,

which guarantees the production of more CLBs. This is crucial: by using more CLBs,

the congested region can span more routing channels to obtain more total routing

tracks. This tool can use any existing clustering method (e.g. T-VPack [6], T-RPack

[8], iRAC [46]) as the underlying packing engine since the only changing constraint is

the BLE-limit size.

 53

6.1.4 Step 4: Placement and Routing

Finally, the fourth step produces a new placed and routed solution. The

purpose of the place and route steps is to accurately identify regions of routing

congestion. Ideally, this could be done with a fast congestion estimator that can

precisely locate the regions of peak routing demand before placement is done.

Unfortunately, no such tool exists for FPGAs. Meanwhile, Un/DoPack uses actual

place and route directly; this is slow, but accurate. If the channel width constraint is

not met, Steps 2-4 are iterated until the given channel width constraint is met. Due to

iteration in the flow, it is important to speed up both the placement and routing steps

as much as possible. These options are discussed below.

6.1.4.1 Faster Placement

To speed up placement, VPR was modified to perform incremental placement.

The work is currently being performed by David Leong in the UBC SoC

research group. The incremental placer was compared to VPR’s builtin “–fast”

mode. The incremental placer attempts to preserve the placement locations of CLBs

outside of the depopulation region. It provides placement stability by preserving the

previous placement solution as much as possible. This should not only decrease run

time, but also provide consistent and predictable changes as the CAD flow iterates to

reduce channel width. The incremental placer works in stages. The first stage is an

“expansion” phase which squeezes the numerous “depopulated” CLBs into the “too

small” space left behind. This produces illegal solutions when CLBs are pushed

 54

outside of the array bounds. The second stage is a “compaction” phase used to legalize

the solution. The third stage is an optional low-temperature anneal to clean up the

solution. The output of the incremental algorithm is a solution that is computed using a

fraction of the time required for a full placement. Development of the incremental

placer continues to be an on-going process.

6.1.4.2 Faster Routing

To speed up routing, we attempted to obtain congestion results from the first

iterations of the VPR Pathfinder routing algorithm. At this stage, there is significant

illegal wire sharing. Because wire sharing is not heavily penalized, most nets will take

the shortest paths from source to sink. These failed routing solutions do not represent

the final congestion regions so this data was not very useful. Since this data could not

be used, the VPR router was allowed to run to completion which is the primary reason

why this approach is slow. No attempts to develop an incremental routing algorithm

have been made yet.

6.2 Experimental Results

This section presents the performance results of running Un/DoPack on the

two benchmark circuit suites (Meta and GNL). The first set of benchmarks is the Meta

benchmark suite presented in Section 4.1. The second set of benchmarks is the Stdev

benchmark suite presented in Section 4.2. The baseline flow of Un/DoPack uses the

following options:

• UnPack: Coarse grained congestion calculated (Section 6.1.2).

 55

• DoPack: A replica of the iRAC algorithm as the underlying clustering

algorithm (Section 6.1.3).

• Fast Placement: Incremental placer described in section 6.1.4.1.

• Fast Routing: None. Use fully routed solution.

Because of large run times and limited computing resources, a maximum run

time of 48 hours is imposed. If the time limit is exceeded, Un/DoPack concludes that

no solution exists. All computations were performed on a dedicated Intel Xeon, 3GHz

processor with 1.5GB of RAM. Before Un/DoPack was run on a benchmark circuit,

VPR was first used to determine the MRCW of a circuit (with no depopulation). This

was done by invoking the binary search option of the VPR router. This is the

maximum channel width constraint for each circuit. Then, Un/DoPack was

run with various channel width constraints up to 45% below the maximum channel

width constraint. Since these channel width constraints are below the maximum, some

amount of depopulation must occur to meet the given channel width constraint. The

next sub-section presents experimental results after running Un/DoPack on the Stdev

benchmark suite. The subsequent sub-section compares the performance of

Un/DoPack to DHPack using the Meta benchmark suite.

6.2.1 Stdev Benchmark Circuit Results

This section presents the experimental results for the baseline flow of

Un/DoPack on the Stdev benchmark suite. These results will demonstrate that

Un/DoPack is effective at reducing MRCW. The results will also show that the

 56

effectiveness (amount of area inflation) of Un/DoPack at reducing MRCW is

dependent on the amount of interconnect variation in the benchmark circuit. The

choices for the baseline flow is then justified by a series of experiments designed to

test placement stability and congestion region selection.

6.2.1.1 Baseline Flow Results

Table 6-1 shows the maximum achievable channel width reductions

(normalized to the case where no depopulation was required) Un/DoPack was able to

generate within CPU time limit and array size constraints.

Circuit Max. Channel
Width Change

Critical Path
Change Area Change # of iterations

Stdev000 -34% +12% +91% 30
Stdev002 -42% +22% +79% 30
Stdev004 -35% +21% +68% 25
Stdev006 -32% +17% +86% 28

Stdev008/clone -33% +17% +60% 26
Stdev010 -48% +22% +39% 23
Stdev012 -35% +13% +25% 16

Arithmetic
Mean -38% +18% +64% 25

Table 6-1: Maximum % Change in Channel Width, Critical Path and Area

On average, channel width decreases of 38% was possible for the set of Stdev

benchmark circuits with an 18% penalty in critical path delay and a 64% increase in

total area required. A complete table of results is given in Appendix C.

 57

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 A
re

a

% Max Channel Width Constraint

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 6-3: Normalized Area vs. % Max Channel Width Constraint

Figure 6-3 shows the normalized area increase for each Stdev circuit as the

channel width constraint is decreased (e.g. more depopulation is applied). In general,

area tends to decrease due to lower channel widths, but increase due to more CLBs.

Therefore a total area increase indicates that the area added by more CLBs exceeds the

savings in area due to a shrink in channel width.

Figure 6-3 also suggests that the amount of interconnect variation in a circuit

affects the effectiveness of Un/DoPack. For circuits with high interconnect variation

(Stdev010, Stdev012), significant channel width savings is possible with virtually no

area inflation. Circuits with low interconnect variation (Stdev004, Stdev002,

Stdev000) show quick area increases with modest channel width reduction. For

example, circuit Stdev010 shows a 40% decrease in channel width with only 10%

increase in area. This occurs because there is a very local high congestion region and

only a small amount of depopulation is needed to reduce the congestion in this region.

 58

In contrast, circuit Stdev000 shows large area increases for small decreases in channel

width (e.g. 25% channel width decrease, 90% area increase). This suggests that a large

amount of depopulation is needed to reduce the channel width of a circuit that has a

uniformly distributed congestion map. Note that the ordering of the curves in Figure

6-3 does not exactly match the standard deviation of the circuit. For example,

Stdev006 has higher area increases than Stdev002. This is likely due to the variation

in the Stdev benchmark circuits. GNL is random in nature and although a Rent

parameter can be specified for each IP block, there is no guarantee that Rent parameter

was achieved. Interconnect variation in a circuit is also not solely defined by the

standard deviation of the Rent parameters of the IP blocks. Many other factors

including placement and routing constraints may affect the amount of interconnect

variation in a circuit. The important result from Figure 6-3 is that the general trend

indicates that circuits with low interconnect variation require large area increases to

reduce channel width and circuits with high interconnect variation require smaller area

increases for channel width reduction.

 59

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 60 80 100 120 140 160

N
or

m
al

iz
ed

 A
re

a

Channel Width Constraint

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 6-4: Normalized Area vs. Absolute Channel Width Constraint

Figure 6-4 shows the same data as Figure 6-3 but the x-axis shows the absolute

channel widths instead of the normalized channel width. Note that circuits with high

interconnect variation require significantly higher absolute channel widths to route

(without constraints). This suggests that it is crucial for FPGA architects to know the

amount of interconnect variation within their benchmark circuits. If the variation

is too high, it is possible that the routing networks will be designed with excess

capacity, resulting in undue cost to the consumer. Fortunately, these very circuits are

the most amenable to channel width reduction using the Un/DoPack flow.

 60

 70

 80

 90

 100

 110

 120

 130

 140

Stdev000 Stdev002 Stdev004 Stdev006 Stdev008 Stdev010 Stdev012

M
in

im
um

 R
ou

te
d

C
ha

nn
el

 W
id

th

Circuits

Baseline
10% Area Increase
20% Area Increase
25% Area Increase

Figure 6-5: MRCW vs. Stdev Circuit

Another view of the data from Figure 6-3 and Figure 6-4 is given in Figure

6-5. Figure 6-5 shows the channel widths that were attainable with the baseline flow

(with no constraints) and for constraints that produce net area increases of 10%, 20%

and 25%. FPGA architects typically choose channel widths for their devices to fit the

most number of circuits possible. If an architect were to choose a channel width for a

specific device with only the unconstrained baseline results, a channel width greater

than 140 tracks would be chosen so that all the circuits would have a routable solution.

However, a more realistic choice for the channel width of the device may be 110

tracks. This would result in a 21% (= 1–110/140) decrease in channel width which

translates directly into a significant area savings. The few circuits that could not be

mapped to such a device could then be depopulated to meet the given channel width

constraint. Although this is a simplistic method for an architect to choose a channel

width for a device, it does highlight that being able to quantify the amount of

interconnect variation in the circuit is important in FPGA design.

 61

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 C
rit

ic
al

 P
at

h
D

el
ay

% Max Channel Width Constraint

Stdev000
Stdev002
Stdev004
Stdev006

Clone/Stdev008
Stdev010
Stdev012

Figure 6-6: Critical Path Delay vs. Channel Width Constraint

The other trade-off for channel width reduction is an increase in critical path

delay. Figure 6-6 shows the normalized critical path vs. channel width constraint

expressed as a percentage of the maximum channel width. Since the data points have

significant noise, trendlines (least squares fit) are shown for each circuit. There is on

average a 10% penalty in critical path for a 20% decrease in channel width, and a 23%

increase in critical path for a 45% decrease in channel width. Most likely, designs that

have very strict timing constraints would likely use high performance FPGAs which

have high-capacity routing networks (e.g. Altera Stratix II). Channel width reduction

techniques such as DHPack and Un/DoPack are intended for low-cost FPGA families

(e.g. Altera Cyclone II) where designs are not as timing critical.

Figure 6-7 shows the run times of Un/DoPack, which are dominated by the

slow routing step. Run times quickly increase for channel width reductions of greater

than 20%, but are relatively small for channel width constraints below 20%. On

 62

average, a 20% channel width reduction is possible with approximately 200% increase

in run time. Figure 6-7 shows that run times increase more quickly for circuits with

low interconnect variation (eg. Stdev000) than circuits with high variation (Stdev010).

Also shown are run-times of Stdev010 with fine-grained depopulation. These

experiments are explained in the next sub-section.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
un

 T
im

e
in

 H
ou

rs

% Max Channel Width Constraint

Stdev000
Stdev010
Stdev006

Stdev010 cr4
Stdev010 cr8

Figure 6-7: Run Times vs. Channel Width Constraint

6.2.1.2 Placement Stability and Congestion Region Experiments

Three different experiments were performed to determine the suitability of

some of the choices made in the baseline flow. These experiments are designed to test

the effects of placement stability and congestion region estimation. The three

experiments are described below.

1. PlaceScratch: After Un/DoPack finishes, the final clustered solution for

each channel width constraint is re-placed and re-routed using the default VPR

placer. Since the default VPR placer starts with a completely random initial

 63

placement, all of the placement stability maintained during the iterative process

will be lost. This test determines if the critical path is degraded by many calls

to the incremental placer.

2. VPR –fast: Un/DoPack was re-run with the VPR –fast option as the fast

placement engine instead of the incremental placer. The VPR –fast option

begins with a random initial placement which means no placement stability is

maintained in the iterative loop of Un/DoPack. This test seeks to find the effect

of placement stability on run time and whether the congested regions “move

around” unpredictably.

3. Fine Grained Congestion Estimation: Un/DoPack was re-run using

the fine grained technique described in section 6.1.2. This test seeks to

determine if performing depopulation more slowly can lead to superior area

results.

Experiment Description

Geometric
Mean of

Normalized
Area

Geometric
Mean of

Normalized
CP

Geometric
Mean of

Total Run
Time

channel
width

constr. w/
no sol’n
(74 total)

0 Baseline 1.00 1.00 1.00 0
1 PlaceScratch 1.00 0.98 N/A 18
2 -fast 1.01 0.99 0.93 3
 cr4 0.98 1.00 1.55 10
3 cr5 0.96 0.99 1.39 8
 cr6 0.95 1.01 1.48 6
 cr8 0.94 0.99 1.65 11

Table 6-2: Results for PlaceScratch, -fast and Fine Grained

 64

Table 6-2 shows the simulation results for each of the 3 experiments. In

Experiment 3, cr4 to cr8 indicates fine grained congestion estimation was used with a

congestion radius of 1/4 to 1/8 the logical dimension of the array and the maximum

run time was increased from 48 hours to 72 hours.

The data in Table 6-2 is calculated as follows. There are 74 total channel width

constraints across the 7 different Stdev benchmark circuits. These 74 channel width

constraints were chosen because the baseline flow was able to find solutions for these

channel width constraints under the time limit constraints (e.g. 48 hours). These

constraints ranged from 0% to 45% below the maximum channel width constraint for

each circuit. However, these channel width constraints could not always be met for a

given experiment. For example, experiment 3 (cr6) was not able to generate solutions

for 6 of the 74 channel width constraints because the time limit of 72 hours was

exceeded. For experiment 3 (cr6) ,the averages reported in Table 6-2 represents the

geometric mean of normalized results for all channel width constraints excluding the 6

constraints that could not be met. This same method is used to calculate all of the data

in Table 6-2. In most cases, the channel width constraints that are not met are the

“aggressive” channel width constraints (e.g. more than 30% below maximum

channel width constraint). Hence, the results may be somewhat conservative

considering the “aggressive” channel width constraints are often excluded from the

reported results.

Table 6-2 shows that performing a placement and route from scratch on the

final clustered netlist shows a modest 2% decrease in critical path delay. This suggests

 65

that the incremental placement engine is generating high quality placements. The last

column in Table 6-2 is a measure of the stability of the Baseline flow. When placing

the final clustered netlist from scratch, 18 out of the 72 circuits could no longer meet

the given channel width constraint. This is because the incremental placement

provides stability in the channel width reduction process. By re-placing the entire

circuit from scratch, the circuit is disturbed enough such that the channel width

constraint an no longer be met. This suggests that the incremental placer is important

to preserve placement stability during the iterative channel width reduction process.

Table 6-2 shows that using the “–fast” option in VPR generates similar results

in terms of area and critical path delay with a 7% decrease in run time. This suggests

that the “–fast” option is generating good placements and that placement stability

present in the incremental placer is not as important as originally hypothesized.

Table 6-2 also shows that using fine grained congestion estimation improves

area at the expense of increased run time. Area reductions of 2%, 4%, 5% and 6% are

possible for cr4, cr5, cr6 and cr8 congestion radii respectively with a run time penalty

of 55%, 39%, 48% and 65%. Once again, the final column shows that although

superior area results are achievable using fine grained congestion estimation, the

ability of Un/DoPack to converge to a solution is also affected. For example,

experiment cr8 could not converge to a solution in 11 out of the 74 channel width

constraints in the 72 hour time limit. Figure 6-7 also highlights that fine grained

congestion estimation significantly increases run time since a larger number of

 66

iterations needs to be performed to converge to a solution. Future work is needed to

tune the Un/DoPack congestion region choices and run times.

6.2.2 Comparison of Un/DoPack and DHPack

This section will compare the performance of Un/DoPack to DHPack. It was

not possible to run DHPack using the Stdev circuits because the precise design

hierarchy of the Stedev benchmarks is unknown. Therefore, the comparison in this

section is limited to the Meta benchmark circuits. The Meta benchmark suite was

created stitching IP blocks together post-clustering. Since Un/DoPack has no

partitioning requirement, the Meta benchmarks were stitched together pre-clustering.

Functionally, the new Meta benchmarks are identical to the old set. The difference is

the new set gives Un/DoPack the ability to merge BLEs from different IP blocks

together. Un/DoPack was run for all 3 Meta benchmark circuits: Clique, Pipeline, and

Independent.

DHPack

 45

 50

 55

 60

 65

 70

 75

 80

 85

 45 50 55 60 65 70 75 80 85

M
in

im
um

 R
ou

te
d

C
ha

nn
el

 W
id

th

Channel Width Constraint

Clique
Independent
Pipeline

Un/DoPack

 45

 50

 55

 60

 65

 70

 75

 80

 85

 45 50 55 60 65 70 75 80 85

M
in

im
um

 R
ou

te
d

C
ha

nn
el

 W
id

th

Channel Width Constraint

Clique
Independent
Pipeline

Figure 6-8: MRCW for DHPack vs. Un/DoPack

 67

Figure 6-8 shows the MRCW versus the channel width constraint for DHPack

and Un/DoPack. Figure 6-8 highlights that although DHPack can target a channel

width constraint, many solutions are generated that exceed the constraint. In contrast,

Un/DoPack consistently meets the given channel width constraint.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 A
re

a

% Max Channel Width Constraint

Clique, DHPack
Clique, Un/DoPack

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 A
re

a

% Max Channel Width Constraint

Independent, DHPack
Independent, Un/DoPack

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

N
or

m
al

iz
ed

 A
re

a

% Max Channel Width Constraint

Pipeline, DHPack
Pipeline, Un/DoPack

Figure 6-9: Comparison of Area between DHPack and Un/DoPack

Figure 6-9 show an area comparison between DHPack and Un/DoPack for the

Meta benchmark circuits. In these graphs, the x-axis represents the routed channel

width expressed as a percentage of the maximum channel width constraint. The

DHPack curves appear a bit erratic in Figure 6-9 because even if a channel width

constraint is specified, there is no guarantee that DHPack will meet that given channel

 68

width constraint; in many cases, the routed channel width was greater than the channel

width constraint. Figure 6-9 suggests that DHPack produces similar (but less

predictable) area results for small channel width reductions whereas Un/DoPack

generates superior area results for more aggressive channel width reductions. Future

work includes tuning Un/DoPack to more accurately identify congestion regions for

modest channel width reductions.

6.3 Experimental Conclusions

This chapter has presented an iterative CAD tool (Un/DoPack) for channel

width reduction. Compared to DHPack, Un/DoPack does not have the requirement

that the design hierarchy be known a priori. Un/DoPack identifies a congestion region

and iteratively depopulates this region until a given channel width constraint is met.

On average, a channel width reduction of 38% was achievable with an 18% penalty in

critical path delay and a 64% increase in area for the Stdev benchmark circuits.

Un/DoPack highlighted the importance of the interconnect variation metric for

channel width reduction. Since large circuits are not available to the academic

community, it is difficult for researchers to know how much interconnect variation

exists in real world circuits. The Stdev benchmark circuits address this by providing a

set of circuits that have a wide range of interconnect variation from virtually no

interconnect variation (Stdev000) to an extreme amount of variation (Stdev012). The

experimental results demonstrate that a large amount of depopulation is necessary to

reduce channel width in circuits with low interconnect variation. Conversely, a small

 69

amount of depopulation is needed to reduce channel width in circuits with high

interconnect variation.

The amount of interconnect variation also has consequences to FPGA

architecture design. It was found that circuits with high interconnect variation tend to

have large absolute channel widths. Being able to quantify the amount of interconnect

variation is important for FPGA architects who may unnecessarily over design their

routing networks.

Finally, a comparison between the single pass technique DHPack and the multi

pass technique Un/DoPack shows that Un/DoPack is much more effective at meeting

hard channel width constraints. This is an important property in practice as mapping to

industrial FPGAs requires hard channel width constraints. Results show that

Un/DoPack produces superior area results for larger channel width constraints but may

benefit from more tuning when only small channel width reductions are needed.

6.4 Technique Limitations and Future Work

This section will discuss some of the limitations of Un/DoPack and some

possible directions for future work.

6.4.1 Fast Placement Improvements

The biggest disadvantage of Un/DoPack is the long run times associated with

“aggressive” channel width constraints. The large portion of the run time is consumed

by the placement and routing portions of the iterative flow. Two possible methods to

 70

improve the fast placement process are to improve the incremental placement tool or

to use a congestion-driven placer.

6.4.1.1 Incremental Placement

It was originally hypothesized that the incremental placer would decrease run

times by decreasing placement time and decreasing the number of iterations required

to converge to a solution. Unfortunately, the incremental placer did not perform much

better than the VPR –fast option in terms of total run time. The advantage of the

incremental placer is placement stability. Figure 6-2 shows that the congestion peaks

remain in the same relative locations using the incremental placer. Generating similar

congestion profiles using the –fast option in VPR does not show this type of stability.

Future work involves using the placement stability feature of the incremental placer to

more quickly converge to a solution and improving incremental placement speed.

6.4.1.2 Congestion Driven Placement

It should also be noted that VPR placement is wirelength-driven, not

congestion-driven. Congestion-driven placement tools such as [9] or [44] attempt to

reduce interconnect variation by finding placements which evenly distribute

interconnect demand across the circuit. These tools perform this by using congestion

metrics in the placement cost function rather than enforcing depopulation. The use of

congestion aware placement tools along with a depopulation strategy should be

explored in the future. It may reduce the number of iterations needed by Un/DoPack to

converge to a solution.

 71

6.4.2 Benchmark Interconnect Variation Verification

It is very difficult to predict how much interconnect variation is present in

current industrial designs. The Stdev benchmark circuits attempt to address this by

presenting a set of benchmark circuits that have a range of interconnect variation.

However, the Stdev circuits are still synthetic in nature and may not be entirely

representative of real circuits. Since the performance of Un/DoPack is dependent on

the amount of interconnect variation and the size or granularity of different congestion

regions, it is important to measure the amount of interconnect variation in real circuits.

Real world designs should be analyzed to determine the extent of interconnect

variation within each design. Studies have been published on Rent parameter variation

across different designs [41] but not within a single design. Future work includes

running Un/DoPack on commercial SoC designs and measuring the amount of

interconnect variation within these circuits.

 72

Chapter 7

7 CONCLUSION AND FUTURE WORK

Despite the over-design in the capacity of routing networks in FPGAs, there

may still be circuits that remain un-routable in a specific FPGA family. The traditional

solution to this problem was to switch to the next higher performance FPGA family

(e.g. Altera Cyclone [2] to Altera Stratix[3]) resulting in significantly higher monetary

costs. This thesis has shown that rather than migrating to the next FPGA family, a

circuit can be made routable by using a larger FPGA device in the same family. This is

performed by trading-off logic utilization for channel width. This thesis has presented

two CAD tools (DHPack and Un/DoPack) capable of performing this trade-off so that

a circuit can be mapped to a channel width constrained FPGA. In particular, the

methods help fit hard-to-route circuits into FPGAs with limited interconnect. It does

this at the expense of using more CLBs. Since larger devices with more CLBs are

usually available, this is a practical trade-off. Experimental results have demonstrated

that it is sufficient to selectively depopulate parts of a large circuit that would

otherwise have routing congestion. Only the routing intensive portions of the circuit

are depopulated to keep area inflation to a minimum. A summary of the maximum

channel width reductions for DHPack and Un/DoPack are given in Table 7-1 and

Table 7-2.

 73

Channel Width and Area Changes Circuit Clustering
Tool CW Area CW Area

T-VPack -19% +6% -50% +129% Clique iRAC Rep. -7% -1% -29% +187%
T-VPack -25% +2% -55% +184% Independent iRAC Rep. -17% +1% -30% +69%
T-VPack -24% +3% -42% +184% Pipeline iRAC Rep. -15% +6% -27% +183%
T-VPack -23% +4% -49% +166% Arithmetic

Mean iRAC Rep. -13% +3% -29% +146%

Table 7-1: Summary of Channel Width Decreases for DHPack

Circuit Channel Width
Change

Critical Path
Change Area Change

Stdev000 -34% +12% +91%
Stdev002 -42% +22% +79%
Stdev004 -35% +21% +68%
Stdev006 -32% +17% +86%

Stdev008/clone -33% +17% +60%
Stdev010 -48% +22% +39%
Stdev012 -35% +13% +25%

Arithmetic Mean -38% +18% +64%

Table 7-2: Summary of Channel Width Decreases for Un/DoPack

DHPack results show that non-uniform depopulation is important for keeping

area inflation to a minimum during channel width reduction. DHPack is able to

achieve, on average, MRCW decreases of 23% / 13% for T-VPack / iRAC with 4% /

3% increases in area. On average, larger MRCW decreases of 39% / 29% are possible

with 166% / 146% increase in area.

On average, Un/DoPack can target channel width constraints 38% below the

max channel width constraint with an 18% penalty in critical path delay and 64%

increase in area. Un/DoPack results have shown that channel width reduction is “easy”

 74

for circuits with high interconnect variation whereas channel width reduction is “hard”

for circuits with low interconnect variation.

Most importantly, both DHPack and Un/DoPack have demonstrated that un-

routable circuits can be made routable by buying an FPGA with more logic!

7.1 Future Work

This section will summarize the future work already presented in Section 5.4

for DHPack and Section 6.4 for Un/DoPack. Some discussion into other possible

methods for congestion estimation and improved FPGA modeling is then provided.

7.1.1 DHPack Future Work

Section 5.4 discusses the limitations and possible future work for DHPack in

more detail. This future work is summarized below.

• I/O Padframe Congestion: The MRCW did not track the channel width

constraint in some cases because of congestion in the channel adjacent to the

I/O padframe. Doubling the channel width of the I/O channels relative to the

rest of the chip may help alleviate this problem. Another possible solution is to

adjust the placement algorithm to be aware of localized congestion, especially

at the I/O periphery.

• IP Block Granularity Too Coarse: DHPack relies on a pre-defined IP

block partitioning to identify congestion regions. This strict partitioning

requirement does not allow the exploration of other possible partitioning

 75

methods which may more accurately identify congestion regions. A congestion

method that does not rely on the design hierarchy was presented in Chapter 6

(Un/DoPack).

• Hard Channel Width Constraints: DHPack may generate MRCW results

greater than the channel width constraint. For practical purposes, channel

width reduction tools must be able to target hard channel width constraints.

This issue was addressed in Chapter 6 (Un/DoPack).

• Congestion Profile Run Time Long: Creating the congestion profile for

each IP block can be a time consuming process. Each possible BLE-limit size

for each IP block must be individually placed and routed. Faster methods of

computing congestion were suggested in Chapter 6 (Un/DoPack) and is

discussed at the end of this chapter.

7.1.2 Un/DoPack Future Work

Section 6.4 discusses the limitations and possible future work for Un/DoPack

in more detail. This future work is summarized below.

• Fast Placement Improvements: The largest contributor to the long run

times of Un/DoPack is the iterative placement and routing step. An

incremental placement tool (developed by David Leong at UBC) attempts to

preserve placement stability to improve run time. However, experimental

results showed that VPR “-fast” option runs just as quickly. Work continues in

the UBC SoC group to use the placement stability of the incremental placer to

 76

improve run times. Use of a congestion driven placement tool ([9], [44]) may

also improve MRCW and area results by more evenly distributing interconnect

demand and reducing interconnect variation. It may also improve Un/DoPack

run-time if fewer iterations are required.

• Benchmark Interconnect Variation: Since it is unknown how much

interconnect variation exists in real SoC designs, the Stdev benchmarks were

created to represent a set of circuits with a wide range of interconnect

variation. However, the Stdv benchmark circuits are still synthetic in nature

and may not accurately represent commercial SoC designs. It is important to

quantify how much interconnect variation exists in real world circuit and to

evaluate Un/DoPack on these circuits.

7.1.3 System Level Interconnect Prediction

Because of the orthogonal nature of the different steps of the FPGA CAD flow,

designers must often go back and forth between synthesis, placement and routing to

satisfy user specified criteria (e.g. timing constraints). To help alleviate the large effort

typically used to meet these constraints, the use of a priori interconnect estimation

methods have been widely studied to help predict which regions of a circuit will be

difficult to route. This information is then used to help drive the synthesis, placement

and routing process. These same methods could also be used to help determine

whether a given hard channel width constraint can be met without having to do a

complete place and route. Some of these techniques include probabilistic methods

[35], post-placement methods [25], and a priori (pre-placement) methods [5]. These

 77

techniques should be further investigated to determine whether the run time of the

iterative portion of the Un/DoPack flow can be improved.

7.1.4 Improved FPGA Modeling

The FPGA model used in this thesis consisted of programmable logic elements

and programmable routing elements.

LCLB LCLB LCLB

LCLB CLB LCLB

CLB CLB CLB

L L L

L

L

LLCLB LCLB LCLB

LCLB

LCLB

CLB

LCLB

IO IO IO IO

IO IO IO IO

IO

IO

IO

IO

IO

IO

IO

IO

Memory

Embedded
Components

Figure 7-1: FPGA Architecture with Macro Blocks

 78

However, most commercial FPGAs contain an increasingly larger number of hard

macro blocks. These macro blocks can include embedded memories, multipliers, or

high speed I/Os. Figure 7-1 shows an example of FPGA architecture with macro

blocks. The channel width reduction techniques described in this thesis assumes that

logic can be spread out uniformly across the FPGA. However, in an FPGA

architecture with macro blocks, the logic blocks do not have as much freedom to

migrate to other locations. I/O connections to the macro blocks can also be a source of

routing congestion. Since depopulation of macro blocks is not possible, other methods

to reduce congestion around the periphery of these blocks needs to be investigated.

 79

8 REFERENCES

[1] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size on Deep-Submicron
FPGA Performance and Density”, ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp 3-12, 2000.

[2] Altera Corp. Cyclone FPGA Family Overview.

http://www.altera.com/products/devices/cyclone/overview/cyc-overview.html

[3] Altera Corp. Stratix FPGA Family Overview.

http://www.altera.com/products/devices/stratix/overview/stx-overview.html

[4] J. Anderson and F. Najm, “Power-Aware Technology Mapping for LUT-based

FPGAs”, IEEE International Conference on Field Programmable Technology,
pp. 211-218, 2002.

[5] S. Balachandran, “A-Priori Interconnect Estimation for Field Programmable

Gate Arrays”, PhD Dissertation, University of Texas at Dallas, 2005.

[6] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-

Submicron FPGAs”, Kluwer Academic Publishers, Boston, 1999.

[7] E. Bozorgzadah et al, “RPack: Routability-Driven Packing for Cluster-Based

FPGAs”, IEEE Asia South Pacific Design Automation Conference, 2001.

[8] E. Bozorgzadeh et al, “Routability-Driven Packing : Metrics and Algorithms for

Cluster-based FPGAs”, IEEE Journal of Circuits, Systems, and Computers, Vol.
13, No. 1, pp. 77-100, 2004.

[9] U. Brenner, A. Rohe, “An Effective Congestion Driven Placement Framework”,

ACM International Symposium on Physical Design, pp.6-11, 2002.

[10] Y. Chang, S. Thakur, K. Zhu, and D. Wong, “A New Global Routing Algorithm

for FPGAs”, IEEE/ACM International Conference on Computer Aided Design,
pp. 356-361, 1994.

 80

[11] D. Chen, et al, “Low-Power Technology Mapping for FPGA Architectures with
dual Supply Voltages”, ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 109-117, 2004.

[12] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm

for Delay Optimization in Lookup-Table Based FPGA Designs”, IEEE
Transactions on Computer-Aided Design, pp. 1-12, 1994.

[13] J. Cong and Y. Ding, “On Area/Depth Trade-off in LUT-Based FPGA

Technology Mapping”, IEEE Transactions on VLSI Systems, Vol. 2, No. 2, pp.
137-148, 1994.

[14] J. Cong, and Y. Hwang, “Simultaneous Depth and Area Minimization in LUT-

Based FPGA Mapping”, ACM/SIGDA International Symposium on Field-
Programmable Gate Array, pp. 68-74, 1995.

[15] J. Cong, and Y. Hwang, “Structural Gate Decomposition for Depth-Optimal

Technology in LUT-based FPGA Designs”, ACM Transactions on Design
Automation of Electronic Systems, Vol. 5, No. 3, 2000.

[16] M. Dehkordi and S. D. Brown, “The Effect of Cluster Packing and Node

Duplication Control in Delay Driven Clustering”, IEEE International Conference
on Field Programmable Technology, pp. 227-233, 2002

[17] A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable

Computing Array”, ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pp. 69-78, 1999.

[18] A. Dunlop and B. Kernighan, “A Procedure for Placement of Standard-Cell

VLSI Circuits”, IEEE Transactions on Computer-Aided Design, pp. 92-98, 1985.

[19] Future Electronics E-Store. http://www.futureestore.com/eStore/Default.aspx

[20] L.W. Hagen and A.B. Kahng, “Combining Problem Reduction and Adaptive

Multi-Start: A New Technique for Superior Iterative Partitioning”, IEEE
Transactions on Computer-Aided Design, pp. 709-717, 1997.

[21] P. Hallschmid, “Detailed Routing Architectures for Embedded Programmable IP

Cores”, M.A.Sc. Thesis, University of British Columbia, 2003.

[22] D.J.H Huang and A.B. Kahng, “When Clusters Meet Partitions: New Density-

Based Methods for Circuit Decomposition”, IEEE European Design and Test
Conference, pp. 60-64, 1995.

 81

[23] M. Hutton, J. Rose, and D. Corneil, “Automatic Generation of Synthetic
Sequential Benchmark Circuits”, IEEE Transactions on Computer-Aided
Design, Vol. 21, No. 8, 2002.

[24] D. Huang and A. Kahng, “Partitioning-Based Standard-Cell Global Placement

with an Exact Objective”, ACM Symposium on Physical Design, pp. 18-25,
1997.

[25] P. Kannan, S. Shankar and D. Bhatia, “fGREP – Fast Generic Routing Demand

Estimation for Placed FPGA Circuits”, International Conference on Field
Programmable Logic and Applications, pp. 37-47 , 2001.

[26] A. Kennings and I. L. Markov, “Analytical Minimization of Half-perimeter Wire

Length”, IEEE Asia and South Pacific Design Automation Conference, pp. 179-
184, 2000.

[27] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated

Annealing”, Science, Vol. 220, No. 4698, pp. 671-680, 1983.

[28] P. Kundarewich and J. Rose, “Synthetic Circuit Generation Using Clustering and

Iteration”, IEEE Transactions on Computer-Aided Design, Vol. 23, No. 6, 2004.

[29] J. Lamoureux, “On the Interaction between Power-Aware Computer-Aided

Design Algorithms for Field-Programmable Gate Arrays”, M.A.Sc. Thesis,
University of British Columbia, 2003.

[30] B.Landman and R. Russo, “On a Pin Versus Block Relationship for Partitions of

Logic Graphs”, IEEE Transactions on Computers, Vol. C-20, pp. 1469-1479,
1971.

[31] G. Lemieux, S. Brown, “A Detailed Router for Allocating Wire Segments in

FPGAs”, ACM Physical Design Workshop, pp. 215-226, 1993.

[32] G. Lemieux, S. Brown, D. Vranesic, “On Two-Step Routing for FPGAs”, ACM

Symposium on Physical Design, pp. 60-66, 1997.

[33] G. Lemieux, E. Lee, M. Tom and A. Yu, “Directional and Single-Driver Wiring

in FPGA Interconnect”, IEEE International Conference on Field-Programmable
Technology, pp. 41-48, 2004.

[34] P. Leventis, M. Chan, et al, “Cyclone: A Low-Cost, High-Performance FPGA”,

IEEE Custom Integrated Circuits Conference, pp. 49-52, 2003.

 82

[35] J. Lou, S. Krishnamoorthy, and H. Sheng, “Estimating Routing Congestion
Using Probabilistic Analysis”, ACM International Symposium on Physical
Design, pp 112-117, 2001.

[36] LGSynth93 Benchmark Suite, “Microelectronics Centre of North Carolina”,

Tech. Report, 1993.

[37] A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks and

Timing-Driven Packing to Improve FPGA Speed and Density”, ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pp. 37-46, 1999.

[38] A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Placement for FPGAs”,

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 203-213, 2000.

[39] L. McMurchie, and C. Ebeling, “PathFinder: A Negotiation-Based Performance-

Driven Router for FPGAs”, ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 111-117, 1995.

[40] R. Murgai, R. Brayton and A. Sangiavanni-Vincentelli, “On Clustering for

Minimum Delay/Area”, IEEE International Conference on Computer Aided
Design, pp.6-9, 1991.

[41] J. Pistorius and M. Hutton, “Placement Rent Exponent Calculation Methods,

Temporal Behaviour and FPGA Architecture Evaluation”, ACM International
Workshop on System-Level Interconnect Prediction, pp. 31-38, 2003.

[42] B. Riess, K. Doll, and F. Johannes, “Partitioning Very Large Circuits Using

Analytical Placement Techniques”, ACM/SIGDA Design Automation
Conference, pp. 646-651, 1994.

[43] J. Rose, W. Snelgrove and Z. Vranesic, “ALTOR: An Automatic Standard Cell

Layout Program”, Proceedings of Canadian Conference on VLSI, pp. 169-173,
1985.

[44] A. Sharma, C. Ebeling and S. Hauck, “Architecture-Adaptive Routability-Driven

Placement for FPGAs”, International Conference on Field Programmable Logic,
pp. 427-432, 2005.

[45] G. Sigl, K. Doll and F. Johannes, “Analytical Placement: A Linear or Quadratic

Objective Function?”, ACM/SIGDA Design Automation Conference, pp. 427-
432, 1991.

 83

[46] A. Singh and M. Marek-Sadowska, “Efficient Circuit Clustering for Area and
Power reduction in FPGAs”, International Symposium on Field Programmable
Gate Arrays, pp. 59-66, 2002.

[47] D. Tavana, W. Lee, S. Young and B. Fawcett, “Logic Block and Routing

Considerations for a New SRAM-Based FPGA Architecture“, IEEE Custom
Integrated Circuits Conference, pp. 24.6.1 – 24.6.4, 1995.

[48] R. Tessier and H. Giza, “Balancing Logic Utilization and Area Efficiency in

FPGAs”, International Workshop on Field Programmable Logic and
Applications, pp. 535-544, 2000.

[49] M. Tom and G. Lemieux, “Logic Block Clustering of Large Designs for

Channel-Width Constrained FPGAs”, ACM/SIGDA Design Automation
Conference, pp. 726-731, 2005.

[50] M. Tom, D. Leong and G. Lemieux, “Un/DoPack: Re-Clustering of Large

System-on-Chip Designs with Interconnect Variation for Low-Cost FPGAs”,
Submitted to ACM/SIGDA Design Automation Conference 2006.

[51] P. Verplaetse, D. Stroobandt, and J. van Campenhout, “Synthetic Benchmark

Circuits for Timing-Driven Physical Design Applications”, Proceedings of
International Conference on VLSI, pp 31-37, 2002.

[52] Y.-L. Wu and M. Marek-Sadowska, “An Efficient Router for 2-D Field-

Programmable Gate Arrays”, Proceedings of European Design Automation
Conference, pp. 412-416, 1994.

[53] Xilinx Corp. Spartan-3 FPGA Family Overview.

http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3_
fpgas/index.htm

[54] H. Yang and D. Wong, “Circuit Clustering for Delay Minimization Under Area

and Pin Constraints”, IEEE Transactions on Computer Aided Design, Vol. 16,
No. 9, pp. 976-986, 1997.

 84

Appendix A – Stdev Benchmark Circuit Parameters

IP Block 000 002 004 006 008 010 012 Num BLEs
bigkey.blif 0.62 0.58 0.55 0.51 0.48 0.44 0.40 915
dsip.blif 0.62 0.59 0.56 0.52 0.49 0.46 0.42 912
s38584.1.blif 0.62 0.60 0.57 0.55 0.52 0.50 0.48 5411
tseng.blif 0.62 0.60 0.58 0.56 0.54 0.52 0.50 1182
elliptic.blif 0.62 0.61 0.59 0.58 0.56 0.55 0.53 3255
s38417.blif 0.62 0.61 0.59 0.58 0.56 0.55 0.53 4555
diffeq.blif 0.62 0.61 0.59 0.58 0.57 0.56 0.54 1245
des.blif 0.62 0.61 0.60 0.59 0.58 0.57 0.57 554
s298.blif 0.62 0.61 0.61 0.60 0.60 0.59 0.58 1309
frisc.blif 0.62 0.62 0.62 0.61 0.61 0.61 0.61 3814
alu4.blif 0.62 0.63 0.63 0.64 0.65 0.65 0.66 1173
clma.blif 0.62 0.63 0.63 0.64 0.65 0.66 0.66 6273
misex3.blif 0.62 0.63 0.65 0.66 0.67 0.69 0.70 1158
spla.blif 0.62 0.64 0.65 0.66 0.68 0.69 0.71 3005
pdc.blif 0.62 0.64 0.65 0.67 0.69 0.70 0.72 3629
seq.blif 0.62 0.64 0.66 0.68 0.70 0.71 0.73 1325
ex5p.blif 0.62 0.64 0.66 0.68 0.70 0.72 0.75 740
apex2.blif 0.62 0.64 0.67 0.69 0.72 0.74 0.77 1478
ex1010.blif 0.62 0.65 0.67 0.70 0.73 0.75 0.78 3093
apex4.blif 0.62 0.65 0.67 0.70 0.73 0.75 0.78 969

Rent Parameters (Stdev)

 85

Appendix B – DHPack Simulation Results

DHPack Non-Uniform Depopulation (T-VPack)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs average channel
width

Clique
95 93 1.41E+08 2.35E-08 2550 83.14
90 82 1.35E+08 2.55E-08 2576 79.34
85 85 1.39E+08 3.09E-08 2605 80.21
80 79 1.38E+08 3.55E-08 2692 76.08
75 77 1.41E+08 2.39E-08 2770 73.95
70 75 1.49E+08 2.30E-08 2939 71.44
65 73 1.65E+08 3.46E-08 3268 67.33
60 69 1.90E+08 2.34E-08 3882 62.49
55 57 2.15E+08 2.34E-08 4651 54.14
50 52 2.44E+08 2.37E-08 5404 50.55

Pipeline
95 102 1.53E+08 2.34E-08 2550 88.26
90 90 1.48E+08 2.36E-08 2576 85.21
85 93 1.48E+08 2.92E-08 2605 88.21
80 82 1.46E+08 2.32E-08 2692 78.52
75 82 1.53E+08 2.23E-08 2770 78.57
70 76 1.57E+08 2.27E-08 2939 74.61
65 73 1.66E+08 2.30E-08 3268 70.14
60 64 1.91E+08 2.36E-08 3882 62.37
55 55 2.29E+08 2.38E-08 4651 54.35
50 56 2.62E+08 2.33E-08 5404 53.19

Independent
95 106 1.47E+08 2.40E-08 2550 94.24
90 99 1.40E+08 2.39E-08 2576 92.21
85 92 1.46E+08 2.63E-08 2605 86.27
80 87 1.41E+08 2.31E-08 2692 83.20
75 89 1.45E+08 2.23E-08 2770 83.21
70 81 1.50E+08 2.62E-08 2939 76.68
65 71 1.65E+08 2.26E-08 3268 67.78
60 66 1.87E+08 2.77E-08 3882 63.95
55 67 2.13E+08 2.48E-08 4651 59.41
50 65 2.48E+08 2.35E-08 5404 56.55

 86

DHPack Non-Uniform Depopulation (iRAC Replica)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs average channel
width

Clique
80 76 1.30E+08 2.67E-08 2544 71.41
76 74 1.29E+08 2.73E-08 2553 70.84
72 71 1.28E+08 2.86E-08 2588 68.63
68 76 1.34E+08 2.87E-08 2604 71.41
64 71 1.42E+08 2.67E-08 2853 66.33
60 68 1.60E+08 2.53E-08 3273 63.03
56 67 1.83E+08 2.57E-08 3765 59.22
52 62 2.03E+08 2.59E-08 4273 54.96
48 66 2.35E+08 2.50E-08 4897 55.81
44 58 2.65E+08 2.62E-08 5758 48.56
40 54 3.72E+08 2.67E-08 8219 43.59

Pipeline
80 70 2.13E+08 2.77E-08 2544 60.02
76 72 2.18E+08 2.69E-08 2553 61.05
72 82 2.36E+08 2.87E-08 2588 63.91
68 76 2.26E+08 2.67E-08 2604 63.10
64 67 2.18E+08 2.69E-08 2853 57.98
60 58 2.16E+08 2.58E-08 3273 53.19
56 55 2.26E+08 2.58E-08 3765 51.38
52 59 2.46E+08 2.52E-08 4273 52.78
48 57 2.62E+08 2.52E-08 4897 50.06
44 53 2.81E+08 2.56E-08 5758 47.12
40 49 3.61E+08 2.63E-08 8219 42.16

Independent
80 85 1.38E+08 2.57E-08 2544 78.29
76 81 1.36E+08 2.70E-08 2553 76.97
72 82 1.38E+08 2.80E-08 2588 76.59
68 76 1.37E+08 2.68E-08 2604 72.82
64 72 1.46E+08 2.68E-08 2853 69.78
60 67 1.63E+08 2.52E-08 3273 64.29
56 65 1.84E+08 2.59E-08 3765 60.30
52 65 2.09E+08 2.50E-08 4273 58.62
48 63 2.35E+08 2.56E-08 4897 54.96
44 62 2.75E+08 2.54E-08 5758 50.34
40 62 3.91E+08 2.57E-08 8219 43.75

 87

DHPack Uniform Depopulation (T-VPack)

channel width
constraint

routed channel
width

area (#min size
transistors) critical path (s) # of CLBs

Clique
95 106 1.48E+08 2.91E-08 2539
90 105 1.56E+08 3.97E-08 2709
85 97 1.57E+08 4.94E-08 2901
80 91 1.76E+08 4.68E-08 3385
75 86 1.83E+08 4.32E-08 3692
70 83 1.96E+08 5.09E-08 4062
65 74 2.29E+08 3.66E-08 5084
60 62 2.79E+08 5.64E-08 6776
55 51 3.82E+08 6.92E-08 10172
50 44 4.87E+08 1.19E-07 13500
45 40 7.07E+08 6.96E-08 20250

Pipeline
95 101 1.46E+08 2.55E-08 2539
90 99 1.52E+08 2.74E-08 2708
85 95 1.57E+08 4.53E-08 2901
80 87 1.73E+08 2.79E-08 3384
75 85 1.83E+08 4.62E-08 3692
70 78 1.93E+08 5.23E-08 4064
65 74 2.29E+08 3.70E-08 5082
60 63 2.80E+08 5.16E-08 6775
55 51 3.83E+08 4.78E-08 10172
50 43 4.85E+08 6.53E-08 13500
45 time exceeded time exceeded time exceeded time exceeded

Independent
95 104 1.51E+08 3.31E-08 2539
90 99 1.56E+08 3.46E-08 2708
85 100 1.63E+08 2.84E-08 2901
80 87 1.76E+08 2.98E-08 3386
75 87 1.88E+08 4.01E-08 3692
70 79 1.97E+08 5.39E-08 4063
65 67 2.25E+08 5.56E-08 5084
60 65 2.86E+08 2.75E-08 6778
55 64 4.06E+08 2.49E-08 10172
50 60 5.21E+08 2.33E-08 13500
45 57 7.54E+08 3.03E-08 20250

 88

DHPack Uniform Depopulation (iRAC Replica)

channel width
constraint

routed channel
width

area (#min size
transistors) critical path (s) # of CLBs

Clique
80 79 1.31E+08 7.07E-08 2533
76 77 1.35E+08 4.49E-08 2702
72 69 1.59E+08 5.09E-08 3378
68 73 1.73E+08 6.87E-08 3685
64 61 1.95E+08 5.49E-08 4507
60 62 2.17E+08 4.33E-08 5071
56 51 2.66E+08 4.74E-08 6763
52 45 3.05E+08 1.09E-07 8125
48 45 3.05E+08 1.09E-07 8125
44 43 3.70E+08 7.94E-08 10158
40 39 4.77E+08 1.17E-07 13500

Pipeline
80 81 1.33E+08 2.77E-08 2533
76 80 1.37E+08 3.28E-08 2702
72 70 1.60E+08 3.33E-08 3378
68 69 1.70E+08 3.39E-08 3685
64 62 1.97E+08 4.07E-08 4507
60 60 2.15E+08 4.22E-08 5071
56 51 2.66E+08 4.69E-08 6764
52 47 3.08E+08 3.25E-08 8124
48 47 3.08E+08 3.25E-08 8124
44 45 3.74E+08 6.77E-08 10159
40 42 4.84E+08 6.98E-08 13500

Independent
80 84 1.38E+08 3.90E-08 2533
76 82 1.42E+08 3.40E-08 2702
72 72 1.65E+08 3.45E-08 3378
68 68 1.73E+08 4.38E-08 3685
64 65 2.02E+08 4.17E-08 4507
60 64 2.22E+08 2.72E-08 5071
56 63 2.83E+08 2.66E-08 6764
52 63 3.32E+08 2.66E-08 8125
48 63 3.32E+08 2.66E-08 8125
44 62 4.03E+08 2.74E-08 10160
40 61 5.23E+08 2.64E-08 13500

 89

Appendix C – Un/DoPack Simulation Results

Un/DoPack (Baseline)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7695
95 95 2.03E+08 7.23E-08 3349 10199
90 90 2.31E+08 8.11E-08 3892 14630
85 85 2.19E+08 7.61E-08 3820 13637
80 80 2.84E+08 7.70E-08 5067 32156
75 75 3.28E+08 8.01E-08 6061 47542
70 70 3.79E+08 8.56E-08 7214 132652
65 65 3.78E+08 8.01E-08 7394 172100

Stdev002
105 103 2.04E+08 6.79E-08 3157 6995
100 100 2.08E+08 7.08E-08 3360 9937
95 95 2.09E+08 7.17E-08 3428 11617
90 90 2.03E+08 6.92E-08 3424 11298
85 85 1.99E+08 7.07E-08 3473 11085
80 80 2.40E+08 7.37E-08 4310 17509
75 75 2.57E+08 7.68E-08 4728 25406
70 70 2.78E+08 7.87E-08 5272 36858
65 65 3.11E+08 7.97E-08 6057 83070
60 60 3.64E+08 8.29E-08 7339 117923

Stdev004
100 100 1.98E+08 6.87E-08 3148 8184
95 95 2.03E+08 7.10E-08 3328 9163
90 90 1.97E+08 6.87E-08 3310 8290
85 85 2.12E+08 7.21E-08 3681 13711
80 80 2.49E+08 7.42E-08 4479 21905
75 75 2.95E+08 7.86E-08 5455 36421
70 70 3.35E+08 8.39E-08 6374 60015
65 65 3.33E+08 8.34E-08 6487 97740

Stdev006
95 95 1.94E+08 7.22E-08 3139 8043
90 90 2.11E+08 7.37E-08 3571 11731
85 85 2.33E+08 7.23E-08 4067 15749
80 80 2.63E+08 7.68E-08 4727 22742
75 75 2.62E+08 7.78E-08 4786 28865
70 70 3.33E+08 7.62E-08 6306 63077
65 65 3.59E+08 8.42E-08 7011 116596

 90

Un/DoPack (Baseline)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 8278
120 120 2.27E+08 7.27E-08 3333 9147
115 114 2.23E+08 7.60E-08 3357 8767
110 110 2.33E+08 7.41E-08 3593 11125
105 105 2.28E+08 7.57E-08 3575 11482
100 100 2.28E+08 7.40E-08 3644 13311
95 95 2.47E+08 7.54E-08 4086 19057
90 90 2.70E+08 7.88E-08 4578 25888
85 85 2.79E+08 8.16E-08 4891 37240
80 80 2.93E+08 7.89E-08 5248 55563
75 75 3.37E+08 8.06E-08 6225 104358
70 70 3.57E+08 8.37E-08 6738 145958

Stdev010
165 162 2.61E+08 7.08E-08 3152 9013
160 155 2.67E+08 7.29E-08 3335 9740
155 151 2.63E+08 7.64E-08 3341 11463
150 147 2.57E+08 7.42E-08 3326 11033
145 145 2.52E+08 7.66E-08 3312 11153
140 139 2.47E+08 7.70E-08 3333 11255
135 135 2.42E+08 7.61E-08 3325 11972
130 130 2.45E+08 8.07E-08 3451 13388
125 125 2.41E+08 7.41E-08 3459 14454
120 120 2.44E+08 7.73E-08 3595 17004
115 115 2.44E+08 7.78E-08 3638 21693
110 110 2.55E+08 7.96E-08 3915 27715
105 105 2.89E+08 8.18E-08 4516 37099
100 100 2.67E+08 8.30E-08 4281 47924
95 95 3.21E+08 8.29E-08 5307 68951
90 90 3.26E+08 8.29E-08 5500 89670
85 85 3.63E+08 8.63E-08 6360 127204

Stdev012
155 153 2.52E+08 7.50E-08 3163 11323
150 148 2.56E+08 8.30E-08 3320 12837
145 144 2.62E+08 7.62E-08 3480 15609
140 139 2.56E+08 7.77E-08 3461 14954
135 135 2.51E+08 7.94E-08 3451 15965
130 130 2.54E+08 8.10E-08 3579 20082
125 125 2.65E+08 8.16E-08 3813 24351
120 119 2.67E+08 7.94E-08 3917 29451
115 115 2.61E+08 8.12E-08 3909 31113
110 110 2.89E+08 8.20E-08 4473 47925
105 105 2.92E+08 8.52E-08 4597 63338
100 100 3.16E+08 8.44E-08 5060 117460

 91

Un/DoPack (PlaceScratch)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 time exceeded time exceeded time exceeded time exceeded N/A
95 95 2.03E+08 7.15E-08 3349 N/A
90 90 2.31E+08 7.14E-08 3892 N/A
85 time exceeded time exceeded time exceeded time exceeded N/A
80 80 2.84E+08 7.59E-08 5067 N/A
75 75 3.28E+08 7.60E-08 6061 N/A
70 70 3.79E+08 8.10E-08 7214 N/A
65 time exceeded time exceeded time exceeded time exceeded N/A

Stdev002
105 103 2.04E+08 6.77E-08 3157 N/A
100 99 2.08E+08 6.89E-08 3360 N/A
95 94 2.09E+08 7.19E-08 3428 N/A
90 90 2.03E+08 6.98E-08 3424 N/A
85 85 1.99E+08 7.15E-08 3473 N/A
80 80 2.40E+08 7.45E-08 4310 N/A
75 75 2.57E+08 7.15E-08 4728 N/A
70 70 2.78E+08 7.37E-08 5272 N/A
65 65 3.11E+08 7.63E-08 6057 N/A
60 time exceeded time exceeded time exceeded time exceeded N/A

Stdev004
100 time exceeded time exceeded time exceeded time exceeded N/A
95 94 2.03E+08 7.13E-08 3328 N/A
90 90 1.97E+08 7.26E-08 3310 N/A
85 85 2.12E+08 7.14E-08 3681 N/A
80 80 2.49E+08 7.28E-08 4479 N/A
75 75 2.95E+08 7.47E-08 5455 N/A
70 70 3.35E+08 7.51E-08 6374 N/A
65 time exceeded time exceeded time exceeded time exceeded N/A

Stdev006
95 time exceeded time exceeded time exceeded time exceeded N/A
90 90 2.11E+08 7.00E-08 3571 N/A
85 85 2.33E+08 7.82E-08 4067 N/A
80 80 2.63E+08 7.30E-08 4727 N/A
75 time exceeded time exceeded time exceeded time exceeded N/A
70 70 3.33E+08 7.75E-08 6306 N/A
65 65 3.59E+08 8.25E-08 7011 N/A

 92

Un/DoPack (PlaceScratch)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 123 2.23E+08 7.08E-08 3151 N/A
120 118 2.27E+08 6.93E-08 3333 N/A
115 115 2.23E+08 7.01E-08 3357 N/A
110 109 2.33E+08 6.98E-08 3593 N/A
105 104 2.28E+08 7.05E-08 3575 N/A
100 100 2.28E+08 7.58E-08 3644 N/A
95 95 2.47E+08 7.26E-08 4086 N/A
90 time exceeded time exceeded time exceeded time exceeded N/A
85 time exceeded time exceeded time exceeded time exceeded N/A
80 time exceeded time exceeded time exceeded time exceeded N/A
75 time exceeded time exceeded time exceeded time exceeded N/A
70 70 3.57E+08 7.80E-08 6738 N/A

Stdev010
165 163 2.61E+08 7.20E-08 3152 N/A
160 154 2.67E+08 7.27E-08 3335 N/A
155 147 2.63E+08 7.50E-08 3341 N/A
150 145 2.57E+08 7.87E-08 3326 N/A
145 143 2.52E+08 7.45E-08 3312 N/A
140 139 2.47E+08 7.29E-08 3333 N/A
135 135 2.42E+08 7.51E-08 3325 N/A
130 129 2.45E+08 7.44E-08 3451 N/A
125 124 2.41E+08 7.43E-08 3459 N/A
120 119 2.44E+08 7.50E-08 3595 N/A
115 114 2.44E+08 7.49E-08 3638 N/A
110 110 2.55E+08 7.47E-08 3915 N/A
105 105 2.89E+08 7.69E-08 4516 N/A
100 time exceeded time exceeded time exceeded time exceeded N/A
95 95 3.21E+08 8.33E-08 5307 N/A
90 90 3.26E+08 7.90E-08 5500 N/A
85 time exceeded time exceeded time exceeded time exceeded N/A

Stdev012
155 155 2.52E+08 7.60E-08 3163 N/A
150 148 2.56E+08 8.37E-08 3320 N/A
145 142 2.62E+08 8.44E-08 3480 N/A
140 137 2.56E+08 8.71E-08 3461 N/A
135 135 2.51E+08 7.41E-08 3451 N/A
130 129 2.54E+08 7.54E-08 3579 N/A
125 124 2.65E+08 7.71E-08 3813 N/A
120 time exceeded time exceeded time exceeded time exceeded N/A
115 115 2.61E+08 7.68E-08 3909 N/A
110 time exceeded time exceeded time exceeded time exceeded N/A
105 time exceeded time exceeded time exceeded time exceeded N/A
100 time exceeded time exceeded time exceeded time exceeded N/A

 93

Un/DoPack (--fast)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7898
95 95 2.09E+08 7.27E-08 3423 9678
90 90 2.32E+08 7.29E-08 3918 15691
85 85 2.25E+08 7.25E-08 3901 16422
80 80 2.95E+08 7.60E-08 5329 30228
75 75 3.42E+08 7.66E-08 6265 67524
70 70 4.01E+08 7.99E-08 7572 115332
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 7520
100 98 2.08E+08 7.19E-08 3360 8613
95 95 2.04E+08 6.86E-08 3359 7910
90 90 2.18E+08 7.16E-08 3670 11531
85 85 2.12E+08 7.56E-08 3683 11604
80 80 2.34E+08 7.32E-08 4204 16649
75 75 2.47E+08 7.39E-08 4523 26645
70 70 3.26E+08 7.88E-08 6197 54553
65 65 3.52E+08 7.75E-08 6881 92238
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 7856
95 95 2.03E+08 7.28E-08 3328 7805
90 90 2.05E+08 7.06E-08 3467 8616
85 85 2.19E+08 7.33E-08 3796 11303
80 80 2.34E+08 7.22E-08 4189 17412
75 75 2.47E+08 7.56E-08 4520 19596
70 70 3.50E+08 7.64E-08 6624 46381
65 65 3.60E+08 7.65E-08 7038 61765

Stdev006
95 95 1.94E+08 7.22E-08 3139 7113
90 90 1.97E+08 7.12E-08 3318 7442
85 85 2.26E+08 7.34E-08 3932 14061
80 80 2.42E+08 8.03E-08 4350 15446
75 75 2.49E+08 7.67E-08 4576 18592
70 70 3.51E+08 8.26E-08 6665 65325
65 65 3.76E+08 8.07E-08 7337 71711

 94

Un/DoPack (--fast)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 8781
120 118 2.27E+08 7.13E-08 3333 9990
115 113 2.23E+08 7.13E-08 3357 8753
110 110 2.16E+08 7.37E-08 3310 8108
105 105 2.13E+08 7.43E-08 3334 8271
100 100 2.30E+08 7.40E-08 3713 12261
95 95 2.45E+08 7.23E-08 4012 16803
90 90 2.84E+08 7.58E-08 4780 25825
85 85 3.11E+08 7.60E-08 5431 49176
80 80 2.92E+08 7.79E-08 5228 52517
75 75 2.88E+08 7.75E-08 5316 68675
70 70 3.61E+08 8.16E-08 6871 119092

Stdev010
165 162 2.61E+08 7.08E-08 3152 8653
160 155 2.67E+08 7.18E-08 3335 8605
155 152 2.63E+08 7.21E-08 3341 9248
150 145 2.57E+08 7.28E-08 3326 9362
145 145 2.52E+08 7.93E-08 3312 10544
140 140 2.47E+08 7.40E-08 3333 11555
135 135 2.42E+08 7.67E-08 3325 12727
130 128 2.45E+08 7.42E-08 3436 12252
125 125 2.33E+08 7.39E-08 3360 11105
120 120 2.60E+08 7.49E-08 3838 19516
115 115 2.46E+08 7.56E-08 3693 19576
110 110 2.46E+08 8.25E-08 3761 25958
105 105 2.92E+08 8.34E-08 4606 38219
100 100 2.76E+08 8.25E-08 4463 42320
95 95 2.86E+08 7.97E-08 4732 55761
90 90 3.38E+08 8.12E-08 5742 99029
85 85 3.55E+08 8.55E-08 6234 113725

Stdev012
155 153 2.52E+08 7.50E-08 3163 9588
150 148 2.56E+08 7.74E-08 3320 10721
145 142 2.70E+08 7.54E-08 3586 16121
140 138 2.56E+08 8.52E-08 3463 13294
135 134 2.51E+08 7.70E-08 3449 14334
130 130 2.54E+08 7.79E-08 3589 17002
125 125 2.56E+08 8.82E-08 3660 20452
120 120 3.01E+08 7.72E-08 4428 38847
115 115 2.62E+08 8.07E-08 3935 38892
110 110 3.05E+08 8.44E-08 4671 69455
105 105 3.17E+08 8.48E-08 5010 77107
100 time exceeded time exceeded time exceeded time exceeded time exceeded

 95

Un/DoPack (Fine Grain cr4)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 8471
95 95 2.02E+08 7.21E-08 3300 12317
90 90 2.38E+08 7.43E-08 3998 26777
85 85 2.38E+08 7.31E-08 4101 36121
80 80 2.68E+08 7.96E-08 4783 62678
75 75 2.84E+08 8.02E-08 5186 105735
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 7978
100 100 2.00E+08 7.25E-08 3198 8270
95 95 2.02E+08 7.02E-08 3313 11501
90 90 2.02E+08 7.17E-08 3389 13099
85 85 2.12E+08 7.17E-08 3678 18578
80 80 2.32E+08 7.25E-08 4140 35017
75 75 2.55E+08 7.68E-08 4682 50968
70 70 2.92E+08 8.34E-08 5489 155298
65 time exceeded time exceeded time exceeded time exceeded time exceeded
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 8234
95 95 2.02E+08 7.28E-08 3294 9309
90 90 1.95E+08 6.99E-08 3261 9283
85 85 1.91E+08 7.21E-08 3318 12600
80 80 2.39E+08 7.38E-08 4249 34324
75 75 2.55E+08 7.37E-08 4652 51740
70 70 3.02E+08 7.73E-08 5710 101079
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 7134
90 90 2.16E+08 7.18E-08 3625 14185
85 85 2.12E+08 7.24E-08 3685 21663
80 80 2.54E+08 9.49E-08 4529 35402
75 75 2.77E+08 7.67E-08 5069 70393
70 70 3.11E+08 7.50E-08 5918 143285
65 time exceeded time exceeded time exceeded time exceeded time exceeded

 96

Un/DoPack (Fine Grain cr4)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7509
120 120 2.25E+08 7.26E-08 3257 10320
115 115 2.21E+08 7.87E-08 3278 10641
110 110 2.25E+08 7.73E-08 3479 16077
105 105 2.20E+08 7.55E-08 3470 15926
100 100 2.36E+08 7.44E-08 3792 25533
95 95 2.32E+08 7.46E-08 3820 29578
90 90 2.32E+08 7.83E-08 3902 33066
85 85 2.79E+08 7.92E-08 4866 74683
80 80 3.01E+08 7.85E-08 5381 131647
75 75 3.35E+08 7.93E-08 6157 228512
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 8183
160 159 2.57E+08 7.31E-08 3189 9400
155 154 2.53E+08 7.73E-08 3190 9244
150 149 2.48E+08 7.78E-08 3223 10372
145 143 2.51E+08 7.40E-08 3289 11724
140 140 2.46E+08 7.76E-08 3295 14032
135 135 2.43E+08 8.10E-08 3361 16368
130 130 2.44E+08 7.99E-08 3404 17554
125 125 2.48E+08 7.57E-08 3549 26880
120 120 2.42E+08 8.16E-08 3550 24782
115 115 2.45E+08 7.66E-08 3641 32658
110 110 2.40E+08 8.42E-08 3705 44565
105 105 2.67E+08 7.97E-08 4225 74664
100 100 2.85E+08 8.19E-08 4622 127301
95 time exceeded time exceeded time exceeded time exceeded time exceeded
90 time exceeded time exceeded time exceeded time exceeded time exceeded
85 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev012
155 153 2.52E+08 7.50E-08 3163 11326
150 148 2.47E+08 8.08E-08 3195 11960
145 144 2.50E+08 7.59E-08 3269 14902
140 140 2.53E+08 7.92E-08 3369 19045
135 135 2.42E+08 7.72E-08 3336 18308
130 130 2.54E+08 7.69E-08 3579 29567
125 125 2.63E+08 8.58E-08 3728 43890
120 120 2.60E+08 8.03E-08 3842 61118
115 115 2.78E+08 8.17E-08 4171 89943
110 110 3.07E+08 8.63E-08 4743 158373
105 105 3.01E+08 8.25E-08 4754 188420
100 100 2.99E+08 8.01E-08 4786 198160

 97

Un/DoPack (Fine Grain cr5)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7308
95 95 2.02E+08 7.30E-08 3291 9844
90 90 2.16E+08 7.48E-08 3604 20066
85 85 2.26E+08 7.35E-08 3943 27829
80 80 2.79E+08 7.54E-08 5035 59611
75 75 3.11E+08 8.05E-08 5726 153841
70 70 3.32E+08 7.94E-08 6250 210952
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 8614
100 100 2.00E+08 6.95E-08 3211 7978
95 95 2.01E+08 7.28E-08 3257 8735
90 90 2.03E+08 7.21E-08 3405 14688
85 85 2.10E+08 7.05E-08 3615 18542
80 80 2.27E+08 7.59E-08 4078 36797
75 75 2.40E+08 8.05E-08 4366 51391
70 70 2.70E+08 7.33E-08 5094 112252
65 65 2.99E+08 7.86E-08 5782 183348
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 6747
95 95 2.01E+08 6.97E-08 3282 10872
90 90 1.97E+08 6.97E-08 3332 9901
85 85 1.97E+08 7.27E-08 3415 11875
80 80 2.24E+08 7.33E-08 3984 30918
75 75 2.63E+08 7.57E-08 4829 81675
70 70 2.86E+08 7.62E-08 5423 88617
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 6560
90 90 2.11E+08 7.62E-08 3568 17801
85 85 2.10E+08 7.16E-08 3615 17388
80 80 2.46E+08 7.20E-08 4374 36987
75 75 2.63E+08 7.41E-08 4820 72897
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 65 3.02E+08 7.86E-08 5868 191051

 98

Un/DoPack (Fine Grain cr5)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7151
120 120 2.19E+08 7.40E-08 3203 8066
115 115 2.16E+08 7.29E-08 3238 11009
110 110 2.15E+08 7.33E-08 3261 12225
105 105 2.11E+08 7.64E-08 3276 10467
100 100 2.28E+08 7.55E-08 3664 26911
95 95 2.18E+08 7.56E-08 3588 26431
90 90 2.48E+08 7.78E-08 4193 49063
85 85 2.63E+08 7.89E-08 4578 82963
80 time exceeded time exceeded time exceeded time exceeded time exceeded
75 75 3.09E+08 7.75E-08 5670 222197
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 7852
160 159 2.57E+08 7.41E-08 3204 8832
155 152 2.53E+08 7.36E-08 3206 8858
150 150 2.48E+08 7.72E-08 3203 9002
145 144 2.44E+08 7.74E-08 3243 12513
140 140 2.46E+08 7.52E-08 3297 12264
135 135 2.42E+08 7.63E-08 3317 13467
130 130 2.36E+08 7.99E-08 3299 16727
125 125 2.41E+08 7.48E-08 3459 23626
120 120 2.41E+08 7.49E-08 3490 28776
115 115 2.44E+08 7.79E-08 3614 31842
110 110 2.47E+08 8.19E-08 3770 46464
105 105 2.59E+08 7.77E-08 4077 62333
100 100 2.58E+08 8.13E-08 4141 83755
95 95 2.92E+08 8.27E-08 4790 165006
90 time exceeded time exceeded time exceeded time exceeded time exceeded
85 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev012
155 153 2.52E+08 7.50E-08 3163 9160
150 148 2.48E+08 8.23E-08 3209 12823
145 144 2.50E+08 7.70E-08 3265 12630
140 140 2.39E+08 8.27E-08 3244 13346
135 135 2.41E+08 7.98E-08 3283 17650
130 130 2.44E+08 7.77E-08 3392 21991
125 125 2.50E+08 8.17E-08 3598 40364
120 120 2.49E+08 8.07E-08 3634 60756
115 115 2.63E+08 8.20E-08 3966 76521
110 110 2.78E+08 8.35E-08 4243 132110
105 105 3.09E+08 8.73E-08 4890 200707
100 100 3.16E+08 8.56E-08 5068 210189

 99

Un/DoPack (Fine Grain cr6)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 8465
95 95 1.95E+08 7.38E-08 3192 9961
90 90 2.04E+08 7.52E-08 3450 15171
85 85 2.24E+08 7.37E-08 3855 33693
80 80 2.47E+08 7.21E-08 4427 57179
75 75 2.80E+08 7.59E-08 5153 93545
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 7052
100 100 2.00E+08 6.97E-08 3201 9611
95 95 2.01E+08 6.94E-08 3276 11680
90 90 2.10E+08 7.69E-08 3516 17716
85 85 2.11E+08 7.28E-08 3647 23903
80 80 2.12E+08 7.22E-08 3778 29967
75 75 2.64E+08 8.53E-08 4851 90594
70 70 2.69E+08 7.52E-08 5063 95327
65 time exceeded time exceeded time exceeded time exceeded time exceeded
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 6650
95 95 1.95E+08 6.92E-08 3192 7396
90 90 1.97E+08 7.09E-08 3335 10676
85 85 2.17E+08 7.46E-08 3760 22456
80 80 2.26E+08 7.45E-08 4048 32613
75 75 2.25E+08 7.41E-08 4102 44358
70 70 2.84E+08 7.75E-08 5336 114758
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 6836
90 90 2.02E+08 7.07E-08 3367 11580
85 85 2.18E+08 8.32E-08 3790 27344
80 80 2.45E+08 7.88E-08 4362 55837
75 75 2.41E+08 7.40E-08 4422 51874
70 70 3.08E+08 8.10E-08 5804 176043
65 65 3.25E+08 8.11E-08 6306 236774

 100

Un/DoPack (Fine Grain cr6)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7515
120 119 2.19E+08 7.68E-08 3195 8111
115 115 2.15E+08 7.11E-08 3208 8971
110 110 2.25E+08 7.35E-08 3462 17234
105 105 2.20E+08 7.30E-08 3458 15662
100 100 2.19E+08 7.72E-08 3488 19644
95 95 2.24E+08 7.38E-08 3698 27897
90 90 2.45E+08 8.46E-08 4112 50205
85 85 2.53E+08 7.81E-08 4380 80109
80 80 2.70E+08 7.68E-08 4836 139538
75 75 3.00E+08 8.58E-08 5494 212419
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 8185
160 157 2.57E+08 7.93E-08 3196 9297
155 153 2.53E+08 7.46E-08 3196 9347
150 148 2.47E+08 7.58E-08 3195 10095
145 144 2.44E+08 7.65E-08 3225 10892
140 140 2.45E+08 7.79E-08 3263 11996
135 134 2.40E+08 7.62E-08 3266 14322
130 130 2.36E+08 7.81E-08 3292 16738
125 125 2.41E+08 7.75E-08 3462 22348
120 120 2.41E+08 7.96E-08 3503 28773
115 115 2.36E+08 8.13E-08 3498 28329
110 110 2.41E+08 8.19E-08 3717 48848
105 105 2.41E+08 7.76E-08 3773 53242
100 100 2.60E+08 8.38E-08 4200 104875
95 95 2.62E+08 8.20E-08 4321 113149
90 90 2.70E+08 8.54E-08 4570 163037
85 85 2.79E+08 8.05E-08 4890 212494

Stdev012
155 153 2.52E+08 7.50E-08 3163 9603
150 149 2.48E+08 8.20E-08 3202 11319
145 144 2.51E+08 7.74E-08 3277 15534
140 138 2.47E+08 7.96E-08 3325 16067
135 135 2.43E+08 8.18E-08 3349 21361
130 130 2.45E+08 7.84E-08 3452 25725
125 125 2.41E+08 7.97E-08 3470 35349
120 120 2.66E+08 8.41E-08 3871 69080
115 115 2.69E+08 8.56E-08 4026 99555
110 110 2.71E+08 8.47E-08 4150 147757
105 105 2.98E+08 8.72E-08 4656 192552
100 100 3.11E+08 8.64E-08 5034 252139

 101

Un/DoPack (Fine Grain cr8)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7235
95 95 1.95E+08 7.26E-08 3169 8122
90 90 2.18E+08 7.38E-08 3674 26926
85 85 2.40E+08 7.32E-08 4176 53565
80 80 2.53E+08 7.53E-08 4501 94278
75 75 2.64E+08 7.85E-08 4863 94580
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 8224
100 100 1.99E+08 7.32E-08 3178 8908
95 95 1.95E+08 7.02E-08 3178 9700
90 90 1.98E+08 7.02E-08 3336 15622
85 85 2.04E+08 7.17E-08 3532 25189
80 80 2.34E+08 7.77E-08 4213 51456
75 75 2.33E+08 7.86E-08 4270 66071
70 70 2.54E+08 7.60E-08 4762 107035
65 time exceeded time exceeded time exceeded time exceeded time exceeded
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 6723
95 95 1.95E+08 7.12E-08 3169 9072
90 90 1.91E+08 6.98E-08 3216 10913
85 85 1.91E+08 6.97E-08 3298 12060
80 80 2.17E+08 7.59E-08 3847 37634
75 75 2.13E+08 7.24E-08 3903 39072
70 70 2.72E+08 7.85E-08 5151 119123
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 8037
90 90 2.09E+08 7.29E-08 3489 21762
85 85 2.10E+08 7.45E-08 3614 26789
80 80 2.34E+08 7.26E-08 4196 62392
75 75 2.47E+08 7.48E-08 4515 77992
70 70 2.55E+08 7.50E-08 4817 101670
65 time exceeded time exceeded time exceeded time exceeded time exceeded

 102

Un/DoPack (Fine Grain cr8)
channel width

constraint
routed channel

width
area (#min size

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7172
120 120 2.19E+08 7.11E-08 3199 10904
115 115 2.15E+08 7.33E-08 3223 11154
110 110 2.17E+08 7.29E-08 3320 13852
105 105 2.12E+08 7.30E-08 3314 14911
100 100 2.27E+08 7.33E-08 3611 32670
95 95 2.25E+08 7.37E-08 3715 36062
90 90 2.31E+08 7.68E-08 3899 51642
85 85 2.53E+08 7.62E-08 4387 83331
80 80 2.84E+08 8.01E-08 5056 164058
75 time exceeded time exceeded time exceeded time exceeded time exceeded
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 9631
160 159 2.56E+08 7.35E-08 3173 8929
155 153 2.53E+08 7.50E-08 3194 9774
150 149 2.47E+08 7.83E-08 3173 9019
145 144 2.43E+08 7.44E-08 3202 10361
140 139 2.44E+08 7.49E-08 3252 13412
135 134 2.41E+08 7.67E-08 3283 14400
130 130 2.37E+08 7.78E-08 3328 23259
125 124 2.39E+08 7.76E-08 3412 27820
120 120 2.35E+08 7.90E-08 3457 35342
115 115 2.31E+08 7.86E-08 3460 39320
110 110 2.47E+08 7.62E-08 3770 65816
105 105 2.43E+08 8.12E-08 3828 90177
100 100 2.51E+08 8.05E-08 4011 108768
95 95 2.69E+08 7.77E-08 4407 147167
90 90 2.84E+08 8.19E-08 4773 210930
85 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev012
155 153 2.52E+08 7.50E-08 3163 10208
150 148 2.47E+08 8.15E-08 3184 10735
145 144 2.44E+08 7.69E-08 3243 20352
140 140 2.45E+08 8.19E-08 3259 16878
135 134 2.49E+08 7.74E-08 3395 26331
130 129 2.53E+08 7.89E-08 3558 40240
125 125 2.47E+08 7.95E-08 3499 41796
120 120 2.50E+08 7.99E-08 3672 68370
115 115 2.54E+08 8.30E-08 3814 112121
110 110 2.80E+08 8.33E-08 4317 172236
105 time exceeded time exceeded time exceeded time exceeded time exceeded
100 time exceeded time exceeded time exceeded time exceeded time exceeded

