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ABSTRACT 

Users of field-programmable gate arrays (FPGAs) typically measure the size of 

a FPGA by its logic capacity. If a design fits within the logic capacity limits of an 

FPGA, it is generally assumed that it must also be routable. To ensure this high 

routability, FPGA vendors typically over-design the routing network. Despite this 

over-design, there may still be circuits that remain un-routable in a given FPGA 

family. This thesis presents two new computer-aided design (CAD) tools, DHPack and 

Un/DoPack, that are able to route these un-routable circuits by trading off logic 

utilization for interconnect. DHPack uses the natural design hierarchy of the circuit to 

identify high congestion regions. For a set of benchmark circuits used in this thesis, 

DHPack is able to reduce channel width by 13% with a small area increase of 3%. 

DHPack can continue to decrease channel width by 29% with a larger area increase of 

146%. Un/DoPack improves on DHPack by targeting hard channel width constraints 

without having to rely on the design hierarchy of the circuit to perform congestion 

estimation. For a set of benchmark circuits presented in this thesis, Un/DoPack can 

reduce channel width by 38% with an 18% penalty in critical path delay and 64% 

increase in area. The primary application of these tools is to make previously un-

routable circuits routable by using an FPGA with more logic. 
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GLOSSARY 

Application Specific 
Integrated Circuit (ASIC): 

An integrated circuit intended for a specific use rather 
than general-purpose use. Once manufactured, the 
logical function of an ASIC cannot be changed 

  
Basic Logic Element (BLE): Logic element in an FPGA composed of a K-input 

LUT and flip-flop. 
  
Computer Aided Design 
(CAD) Tools: 

Software automation tools to aid in the design of 
electrical systems. 

  
Configurable Logic Block 
(CLB): 

Logic element in an FPGA composed of ‘N’ BLEs. 
 

  
CLB Depopulation: The process of inserting empty BLEs into a circuit 

mapped to a FPGA to reduce the MRCW. 
  
Design Hierarchy Pack 
(DHPack):  

An FPGA channel width reduction tool which relies on 
the design hierarchy of the circuit to identify 
congestion regions. 

  
Field Programmable Gate 
Array (FPGA): 

An integrated circuit that can be programmed, erased 
and re-programmed again to implement digital logic 
functions. 

  
Generate Netlist (GNL): A synthetic benchmark generator [51]. 
  
Interconnect Resource 
Aware Clustering (iRAC): 

The state of the art FPGA clustering algorithm for 
channel width reduction [46]. 

  
Intellectual Property Blocks 
(IP Blocks): 

A reusable unit of logic, cells or layout of an integrated 
circuit. SoC designs are created by merging IP blocks 
that have been pre-designed and pre-tested. 

  
Look Up Table (LUT): An FPGA element capable of implementing any logical 

function of its inputs. 
  



 xi

Meta Benchmark Circuits: A synthetic benchmark circuit suite created by stitching 
together the 20 largest MCNC benchmark circuits. 

  
Microelectronics 
Corporation of North 
Carolina (MCNC) Circuits: 

A standard set of benchmark circuits used in the FPGA 
academic community [36]. 

  
Minimum Routable Channel 
Width (MRCW): 

The minimum channel width an FPGA must have to 
route a given circuit. 

  
Non-Recurring Engineering 
Fees (NRE): 

The one time costs of product development. This often 
includes mask costs and costs of CAD tools in 
integrated circuit design. 

  
SIS: A logic synthesis package developed at the University 

of California at Berkeley which allows interactive 
optimization of sequential digital circuits. 

  
System-on-Chip (SoC): A design philosophy which integrates all the 

components of an electronic system into a single 
integrated circuit. A SoC design philosophy makes the 
design of complex systems simpler by merging 
together pre-existing and pre-tested circuit designs. 

  
Stdev Benchmark Circuits: A synthetic benchmark suite created by cloning the 

Meta benchmarks. Each circuit in this suite represents a 
circuit with a varying amount of interconnect variation. 

  
T-VPack: The most commonly used academic FPGA clustering 

algorithm. 
  
Un/DoPack: An FPGA channel width reduction tool that can target 

hard channel width constraints. 
  
Versatile Place and Route 
(VPR): 

The most commonly used academic FPGA place and 
route tool. 
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Chapter 1 

1 INTRODUCTION 

A field- programmable gate array (FPGA) is capable of implementing a large 

variety of digital logic applications. Typically, FPGAs can be programmed, erased and 

re-programmed again multiple times. An alternative to FPGAs are application specific 

integrated circuits (ASICs) which are designed to perform one specific function. 

ASICs provide much higher speed, density and power characteristics than FPGAs but 

require very large up-front costs and cannot be changed after the manufacturing 

process. FPGAs are generally slower, larger and consume more power than their ASIC 

counterparts, but offer faster time-to-market and are programmable in the field after 

the manufacturing process. Many digital logic applications would benefit from the 

high performance characteristics of an ASIC, but these applications don’t have the 

manufacturing volume needed to justify the $10+ million in computer-aided design 

(CAD) tools, design and verification costs, and non-recurring engineering (NRE) fees. 

Because FPGAs are not subject to most of these up-front costs, they are very attractive 

to low-to-medium density logic and low-to-medium volume designs. 

As FPGAs increase in capacity and capability, it has become common to offer 

separate low-cost and resource-rich families. For a similar number of logic elements, 

also known as configurable logic blocks (CLBs), the low-cost families often have less 
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embedded memory, embedded multipliers, and routing tracks. This is demonstrated by 

Table 1-1, where the low-cost Altera Cyclone family offers significant savings. 

Unfortunately, some designs may fit within the Cyclone logic and memory capacity 

limits but not within the routing capacity limits. This can be solved by switching to the 

resource-rich family (e.g. Altera Stratix) at ~4x the cost. Instead, it is preferable to 

stay in the low-cost family and use the same or next-larger device (at ~2x cost). To do 

this, the FPGA computer-aided design (CAD) tools must meet the device routing 

capacity by targeting a hard channel width constraint. Since interconnect use of a 

design varies spatially with placement, this can be done by spreading out regions of 

peak demand to use fewer routing tracks but more CLBs.  

Altera Device Logic Elements Memory Mult. Routing Cost 
Cyclone 1C12 12,060 239,616 0 80 $56 
Stratix 1S10 10,570 920,448 48 232 $190 
Cyclone 1C20 20,060 294,448 0 80 $100 
Stratix 1S20 18,460 1,669,249 80 232 $350 

Table 1-1: Features and Costs of Two FPGA Families (from [2], [3], [19]) 

1.1 Motivation and Objectives 

The minimum routable channel width (MRCW) of a circuit is 

defined as the smallest possible channel width a FPGA device must have in order to 

route that circuit. This thesis presents an algorithmic way of reducing the minimum 

routable channel width (MRCW) of a logic design by inserting whitespace in the form 

of empty look-up tables (LUTs) into congested areas. Whitespace is inserted by 

identifying a congested region of CLBs, unpacking the CLBs into its constituent basic 
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logic elements (BLEs), and then re-packing these BLEs into more CLBs so they are 

“less full” than before. This process of inserting whitespace into each CLB is called 

depopulating.  

Note that it is possible to reduce the MRCW of a circuit through clustering. 

Traditional clustering algorithms, such as T-VPack [6], fully pack the clusters to 

minimize the total number of CLBs needed. However, DeHon [17] and Tessier [48] 

have shown that the channel width needs of a circuit can be decreased by packing 

fewer BLEs into each CLB. The resulting “under-utilization” of CLBs is known as 

depopulation. 
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Figure 1-1: Channel Width / CLB Count Tradeoff 

To see how depopulation works, consider the two large dashed boxes in Figure 

1-1 representing the logic and routing capacities of two FPGA devices. These FPGAs 

contain 16 BLEs per CLB and 60 wiring tracks per routing channel. The MRCW of 20 

MCNC benchmark circuits [36] after clustering (T-VPack [6]) and routing (VPR [6]) 
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are shown. Notice that circuits with similar CLB counts can require vastly different 

channel widths (varying from 25 to 65). Similar results for industrial benchmarks are 

shown in [34].  

In Figure 1-1, FPGA 1 contains 300 CLBs and can implement all circuits 

inside its box. In comparison, FPGA 2 has 600 CLBs and the same channel-width 

constraint of 60 because it is based on the same layout tile. Even though it is larger, 

FPGA 2 is incapable of realizing any circuits that require a channel width greater than 

60, e.g. apex4 or elliptic. After depopulation (limiting to 6 BLEs per CLB), apex4's 

MRCW shrinks from 62 to 41 tracks. Although the CLB count increases, it still fits 

into FPGA 1. More importantly, apex4 now has a viable, routed solution. Similarly, 

some circuits like elliptic can be made to fit FPGA 2. 

The problem with depopulation is that it quickly leads to an inflated CLB 

count. In the example, circuits pdc and clma are too large for FPGA 2. They must be 

depopulated less to meet the CLB constraint as well. What is needed is a way to 

depopulate only the routing-congested regions of a circuit so CLB count is inflated as 

little as possible. Such an approach is important for fitting large System-on-Chip 

designs onto modern FPGAs.  

1.2 Contributions 

This thesis presents two FPGA CAD tools that can depopulate an FPGA 

design to target channel width constraints. The first tool, DHPack, relies on the design 

hierarchy of the design to detect areas of congestion. Results of this work have been 
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published at the Design Automation Conference (DAC 2005) [49]. The second tool, 

Un/DoPack, is an iterative tool designed to target hard channel width constraints. A 

paper based on this work has been submitted to DAC 2006 [50]. The primary 

application of these tools is to reduce the channel width requirements of a circuit so 

that it can be mapped to a channel-width constrained FPGA. Rather than depopulate 

the entire circuit, which would inflate area rather quickly, the tools depopulate smaller 

regions (possibly entire IP blocks) that are interconnect-intensive.  

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 presents an overview of modern 

mesh based FPGA architectures and the state of the art CAD tools to map circuits to 

these FPGAs. It also includes some discussion on previous techniques to reduce 

MRCW. Chapter 3 compares two basic depopulation approaches for channel width 

reduction. Chapter 4 presents two benchmark suites (Meta and Stdev) that mimic 

system-on-chip (SoC) designs and discusses the benchmark circuit characteristics that 

are important for channel width reduction. Chapter 5 presents the FPGA CAD tool 

DHPack which uses the natural design hierarchy of the circuit to identify high 

congestion regions. Chapter 6 presents the FPGA CAD tool Un/DoPack which 

iteratively depopulates circuits to meet hard channel width constraints. Finally, some 

conclusions are provided in Chapter 7 along with some possible future work. 



 6

 Chapter 2 

2 BACKGROUND 

This chapter begins with an overview of modern FPGA architectures. The two 

most typical FPGA architectures are mesh-based and hierarchical. Since industrial 

FPGA vendors typically use mesh-based structures, the architectures and CAD tools 

discussed in this thesis will only target mesh-based FPGAs. An overview of the 

current state-of-the-art CAD algorithms that map digital circuits into FPGAs is then 

provided. The FPGA CAD flow can be split into 5 steps: synthesis, technology 

mapping, clustering, placement and routing. A survey of the most commonly used 

tools for each of these 5 steps is provided. The chapter concludes with a discussion on 

previous methods to reduce MRCW. 

2.1 FPGA Architecture 

A commercial FPGA family consists of a number of devices, each with a 

different logic capacity. Figure 2-1 illustrates the logic resources: CLBs and BLEs. A 

basic logic element (BLE) is composed of a K-input look-up table (LUT) and flip-

flop. A K-input LUT has one dedicated output and is capable of implementing any 

Boolean function of its K-inputs. Logic capacity of an FPGA is measured by the 

number of BLEs. Alternatively, it can be measured by the number of CLBs, or 
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configurable logic blocks, which are simply fixed-size clusters of BLEs. Since mesh-

based FPGAs are typically laid out in a 2-dimensional structure, device logic capacity 

can also be expressed by the logical dimensions of the CLB array. 

‘I’ Inputs

BLE #1

BLE #3

BLE #4

BLE #5

BLE #2

Configurable Logic Block (CLB)

K-Input
LUT D Q

Basic Logic Element (BLE)

 

Figure 2-1:  BLE and CLB 

The logic elements in an FPGA are connected through a mesh based 

programmable interconnect network.  A typical mesh based FPGA architecture similar 

to [2] and [53] is given in Figure 2-2. 

The channel width of a mesh based FPGA architecture is defined by the 

number of routing tracks running in each horizontal and vertical channel. In Figure 

2-2, the channel width is 4 since there are 4 tracks in each horizontal and vertical 

channel. This channel width is fixed across an entire FPGA family. The reason it is 

fixed is that larger sized FPGAs in the same family are created by placing more tiles 



 8

on a larger sized die. Since the channel width is a fixed feature on a tile, the inclusion 

of more tiles has no effect on the channel width of a family. For example, the Altera 

Cyclone device contains five different options in terms of logic capacity. This is 

demonstrated in Table 2-1. However each of these devices contains the same channel 

width constraint of 80 routing tracks per channel. 

LCLB LCLB LCLB

LCLB CLB LCLB

CLB CLB CLB

L L L

L

L

LLCLB LCLB LCLB

LCLB
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CLB
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IO IO IO IO
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IO

IO

IO

IO
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Figure 2-2: Mesh Based FPGA Architecture 

Altera Device EP1C3 EP1C4 EP1C6 EP1C12 EP1C20
Number of LEs 2,910 4,000 5,980 12,060 20,060 

Number of Routing Tracks 80 80 80 80 80 

Table 2-1: Altera Cyclone Size Options (from [2]) 

The LUT size, number of BLEs in each CLB and the number of inputs per 

cluster vary across many different vendors. For all of the experiments performed in the 
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remainder of this thesis, an FPGA architecture based on the parameters given below is 

used unless otherwise specified. Note that the channel width of the FPGA is left as a 

variable. The CAD tools described in this thesis attempt to find the minimum possible 

channel width needed to route a circuit.  

• LUT Size (K)= 6 

• Cluster Size (N) = 16 

• Number of Inputs Per Cluster (I) = 51 = k/2*(N+1) (from  [1]) 

• Length of Wires (L) = 4 

• Switch Block Type (SBtype) = Subset 

• C-Block Input Connectivity (Fcin) = 0.366 

• C-Block Output Connectivity (Fcout) = 0.1 

• C-Block I/O Pad Connectivity (Fcpad) = 1 

• Fully Buffered Switches 

• I/O Ratio = Minimum value to ensure circuit is logic limited 

• Process Parameters = 0.18µm TSMC 

• Channel Width = Variable 
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2.2 FPGA CAD Flow 

The process of converting a circuit description into a format that can be loaded 

into an FPGA can be roughly divided into five discrete steps, namely: synthesis, 

technology mapping, clustering, placement and routing. The final output of FPGA 

CAD tools is a bitstream that configures the state of the memory bits in an FPGA. The 

state of these bits determine the logical function that the FPGA implements. Figure 

2-3 shows a flowchart of the FPGA CAD flow. The following sections will describe 

the algorithms that are typically used in each step of the CAD flow. 

Circuit Description

Technology
Mapping

Synthesis

Clustering

Placement

Routing

Bitstream
 

Figure 2-3: FPGA CAD Flow 
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2.2.1 Synthesis 

Synthesis involves translating a circuit description, traditionally in a hardware 

description language (HDL) (e.g. VHDL or Verilog), into a gate-level representation. 

The gate-level representation is a network consisting of Boolean logic gates and flip-

flops. There are no FPGA-specific optimizations performed during synthesis since this 

is normally a technology independent step. Further details concerning synthesis are 

omitted because it is beyond the scope of this thesis.  

2.2.2 Technology Mapping 

The output from synthesis tools is a circuit description of Boolean logic gates, 

flip-flops and the wiring connections between these elements. The circuit can also be 

represented by a directed acyclic graph (DAG). Each of the nodes in the graph 

represents a gate, flip-flop, primary input or primary output.  Each of the wires in the 

graph represents the connections between the different circuit elements.  Figure 2-4 

shows an example of a DAG representation of a circuit. 

A Boolean network An equivalent directed
acyclic graph (DAG)  

Figure 2-4: Directed Acyclic Graph Representation of a Circuit (from [29]) 
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Given a library of “cells”, the technology mapping problem can be expressed 

as finding a network of “cells” that implements the Boolean network. In the FPGA 

technology mapping problem, the library of “cells” is composed of K-input LUTs and 

flip-flops. Therefore, FPGA technology mapping involves transforming the Boolean 

network into K-bounded cells. Each cell can then be implemented as an independent 

K-LUT. Figure 2-5 shows an example of transforming a Boolean network into K-

bounded cells. 

 

0 0 0 0 0

1 1

1

4-LUT

s

X X

0 0 0 0 0

1 1 1 1

11

2

s

t

 
 

Figure 2-5: Example of Technology Mapping (from [29]) 

Technology mapping algorithms can optimize for a variety of objectives 

including depth, area or power. The FlowMap algorithm [12] is the most widely used 

academic tool for FPGA technology mapping. FlowMap was a breakthrough in FPGA 

technology mapping because it is able to find a depth-optimal solution in polynomial 

time. FlowMap guarantees depth optimality at the expense of logic duplication. Since 

the introduction of FlowMap, numerous technology mappers have been designed that 

optimize for area and run-time while still maintaining the depth-optimality of the 
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circuit ([13], [14], [15]). A series of technology mapping algorithms that optimize for 

power ([4], [11], [29]) have recently attracted much interest as well. 

For the CAD tools discussed in this thesis, all technology mapping of circuits 

was performed by running FlowMap [12] for depth optimality and FlowPack [13] for 

area reduction. The SIS scripts scipt.rugged and script.algebraic were run and the 

lower area solution out of the two was chosen. The result of the technology mapping 

step generates a network of K-bounded LUTs and flip-flops.  

2.2.3 Clustering 

The logic elements in a mesh-based FPGA are typically arranged in two levels 

of hierarchy. The first level consists of basic logic elements (BLEs) which are K-input 

LUT and flip-flop pairs. The second level hierarchy groups ‘N’ BLEs together to form 

configurable logic blocks (CLBs). The clustering phase of the FPGA CAD flow is the 

process of forming groups of ‘N’ BLEs.  These clusters can then be mapped directly to 

a logic element on an FPGA. Figure 2-6 shows an example of the clustering process. 

LE
1

LE
2

LE
4LE

1
LE
2

LE
4

LE
5

LE
3

LE
5

LE
3

Clusters

 

Figure 2-6: Example of Clustering (from [29]) 
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Clustering algorithms can be broadly categorized into three general 

approaches, namely top-down ([20], [22]), depth-optimal ([16], [40], [54]) and 

bottom-up ([6], [7], [8], [37], [46]). Top-down approaches involves recursively 

partitioning a circuit into fixed size clusters. Depth-optimal solutions attempt to 

minimize delay (similar to [12]) at the expense of logic duplication. Bottom-up 

approaches are generally preferred for FPGA CAD tools because of their fast run 

times and reasonable timing delays.  

Bottom-up approaches build clusters sequentially one at a time. The process 

starts with choosing a BLE which acts as a cluster seed. BLEs are then greedily 

selected and added to the cluster based on various attraction functions. The VPack 

[37] attraction function is based on the number of shared nets between a candidate 

BLE and the BLEs that are already in the cluster. T-VPack [6] is a timing driven 

version of VPack which gives added weight to grouping BLEs on the critical path 

together. RPack [7] improves the routability of a circuit by introducing a new set of 

routability metrics. RPack significantly reduced the required channel widths required 

by circuits compared to VPack. T-RPack [8] is a timing driven version of RPack 

which is similar to T-VPack by giving added weight to grouping BLEs on the critical 

path. iRAC [46] improves the routability of circuits even further by using an attraction 

function that attempts to encapsulate as many low fanout nets as possible within a 

cluster. If a net can be completely encapsulated within a cluster, there is no need to 

route that net in the external routing network. By encapsulating as many nets as 
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possible within clusters, routability is improved because there are less external nets to 

route in total.  

For the experimental results discussed in this thesis, a replica of the iRAC 

algorithm was constructed based upon the description given in [46]. The replica was 

used because the original tool is no longer available. The replica implements the 

cluster seed and attraction function of the original iRAC algorithm but omits the Rent 

based input limiting function. Despite this, the iRAC replica achieves results within 

2% of the number of external nets given in [46]. 

2.2.4 Placement 

The placement step in the CAD flow involves placing the clustered netlist on 

to fixed locations on the FPGA. Figure 2-7 shows an example of the placement 

problem.  
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Figure 2-7: Example of Placement (from [29]) 

Placement algorithms traditionally attempt to minimize routing congestion and 

critical-path delays. Routing congestion is minimized by arranging the highly 
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connected blocks close together and critical-path delay is minimized by placing blocks 

on the critical path close together.  Placement techniques can be broadly categorized 

into three different approaches: min-cut ([18], [24], [43]), analytical ([26], [42], [45]), 

and simulated annealing ([6], [27], [38]). Although all three methods produce good 

results, simulated annealing provides the most flexibility for new optimization goals 

and architectural changes. 

Simulated annealing begins with a random initial placement of all the blocks.  

Pairs of blocks are then randomly swapped repeatedly. After each swap, the quality of 

the placement solution is analyzed. In VPR [6], the placement quality is determined by 

the sum of the half-perimeter bounding box of all the nets in the circuit. The 

probability of accepting a swap is based on the temperature of the simulated annealing 

schedule. Initially, the temperature is high which results in almost all swaps (good and 

bad) being accepted. As the temperature is slowly lowered, the probability of 

accepting a bad swap is reduced. Once the temperature reaches 0, only good swaps are 

permitted. The process of initially accepting bad swaps allows the placement process 

to find its way out of local minima in the solution space. For the CAD tools discussed 

in this thesis, the T-VPlace algorithm in the VPR tool is used unless otherwise 

specified. 

2.2.5 Routing 

The final stage in the FPGA CAD flow is the routing step which connects the 

placed blocks though the programmable routing network. Connections between wires 

on an FPGA are formed by using a programmable routing switch. Traditionally, wires 
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were bi-directional which indicates that tri-state drivers are placed on both ends of a 

wire. More recently, [33] has suggested that single driver, directional wires improve 

area and delay. However, since the directional VPR tool was unavailable at the time of 

this work, a bi-directional model for wiring was used.  

Routing techniques can be broadly categorized into two methods, namely two-

step routers ([10], [31], [32]) and combined global-detailed ([6], [39], [52]) routers. 

Two-step routers perform global routing and detailed routing in two discrete steps. 

Global routing assigns nets to specific channels and logic block pins. After global 

routing is complete, detailed routing assigns the nets to specific wire segments in its 

assigned channel. Two-step routers are generally used for ASIC flows and are not 

normally used for FPGAs because the limited flexibility of the FPGA routing 

architecture makes detailed routing difficult under global routing constraints. FPGAs 

use combined global-detailed routers because of the inflexibility of the two-step 

routers. 

The VPR router (combined global-detailed) is based on a modified version of 

the PathFinder [39] algorithm. Pathfinder is an iterative algorithm which allows nets to 

share wires in the initial iterations. Successive iterations penalize the use of wires that 

were shared or used in previous iterations. The penalty factor is continually increased 

until a routing solution is found where each wire segment has at most one net assigned 

to it. The VPR router is also timing-driven. This is achieved by assigning the shortest 

possible paths to critical nets. Other non-timing critical nets may tend to take longer 
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routes in the presence of congestion. For the CAD tools discussed in this thesis, the T-

VRoute algorithm in the VPR tool is used unless otherwise specified. 

2.3 Previous Methods to Reduce Channel Width 

One of the earliest attempts to balance logic and routing elements to decrease 

area was performed by DeHon [17]. However, this analysis was performed for an 

FPGA with a binary tree interconnect structure. In this work, we use a mesh based 

interconnect which is more representative of commercial FPGAs. Tessier [48] showed 

that depopulation of clusters can result in reduced MRCW of circuits. The algorithm 

presented in [48] depopulates each cluster equally so there is a uniform distribution of 

empty BLEs across the chip. Although this reduces MRCW, it also depopulates 

regions of the circuit that are not heavily congested. This leads to unnecessary CLB 

inflation in these regions. The tools presented in this thesis use a different cluster size 

limit for different partitions of the circuit. This cluster size limit value may vary across 

the chip such that routing-congested areas are depopulated more. 

Singh [46] presented a clustering algorithm (iRAC) which is very effective at 

reducing channel width. iRAC reduces channel width by identifying low fan-out nets 

and completely absorbing them into a cluster. This reduces the total number of 

external nets, hence reducing the MRCW. iRAC also limits the number of inputs to 

each CLB by using the Rent parameter of the underlying architecture, resulting in 

solutions that have some depopulation. The tools in this thesis differ from [46] by 

targeting specific channel-width constraints. 
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Independence, a FPGA placement tool by Sharma [44], targets hard channel 

width and array size constraints. It works by using the router tool as an inner loop 

during placement and runs 10,000 times slower. In comparison, the tools presented in 

this thesis run much faster and can work with most clustering, placement and routing 

tools. Also, Independence inserts entire CLBs as whitespace, while the tools in this 

thesis insert individual BLEs. 
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Chapter 3 

3 METHODS TO REDUCE MINIMUM ROUTABLE 

CHANNEL WIDTH 

This chapter compares two basic techniques for channel width reduction.  

These methods are input-limiting and BLE-limiting. Results will show that contrary to 

popular belief (such as results in [46]), input-limiting is not effective at reducing 

channel width. Instead, BLE-limiting is shown to be much more effective. 

3.1 Input-Limits vs. BLE-Limits 

This section evaluates the effectiveness of two different CLB depopulation 

methods, namely input-limiting and BLE-limiting. The first method, similar to [48], is 

to strictly limit the number of BLEs that can be packed into a CLB (BLE-limit). The 

second method, similar to [46], is to strictly limit the number of inputs that can be 

used on a CLB (input-limit). Figure 3-1 shows the MRCW for circuit clma after 

implementing the two limits in two different clustering algorithms: (T-VPack, iRAC 

replica). Other circuits produce similar results. For example, a BLE-limit size of 7 

would indicate that 9 of the BLEs in each cluster are empty. Alternatively, an input-

limit size of 24 indicates that 27 of the inputs in every cluster are left unused. 
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Figure 3-1: Input- and BLE-Limits during Clustering for Circuit clma 

Figure 3-1 shows that the BLE-limit method exhibits a monotonically 

increasing relationship between the BLE-limit size and the MRCW. Hence, BLE-limit 

can be effectively used to decrease routed channel widths. Surprisingly, the input-limit 

approach did not exhibit this same relationship. This contradicts traditional thinking 

that reducing inputs is an effective way to reduce channel width. This occurs because 

there are two competing factors that affect the MRCW. As the BLE-limit or input-

limit size is decreased, the increase in array size tends to reduce the MRCW but the 

increase in the total number of routable nets tends to increase the MRCW.  BLE-

limiting ensures that the array size increases more quickly than the number of routable 

nets, leading to a decrease in MRCW.  In contrast, for the input-limiting case of Figure 

3-1, as the number of used inputs decreases from 51 to 30, the number of routable nets 

is increasing while the array size remains relatively constant. Effectively, the reduction 

in the number of inputs is causing poor clustering solutions to be generated (e.g. 
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increase in total number of routable nets) without any increase in the required array 

size. Because BLE-limiting is an effective control method for reducing channel width, 

it is used as the depopulation method for all the depopulation tools discussed in this 

thesis. 
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Chapter 4 

4 BENCHMARK CIRCUITS 

Before the channel width reduction tools are presented, this chapter will 

discuss the importance of benchmark circuits to channel width reduction tools and 

present two new synthetic benchmark suites. FPGA researchers need large circuits to 

investigate new FPGA device architectures and CAD algorithms. However, the gap 

between the size of real world circuits and those available to the academic community 

for designing FPGAs continues to grow. Modern, multi-million gate System-on-Chip 

designs are highly proprietary; hence, they are not commonly available for academic 

research. Instead, the only designs available are small MCNC benchmark circuits [36] 

that have been in use since 1993. In an industry where circuit density doubles every 

18-24 months, these circuits are rapidly becoming outdated. 

A viable alternative to real world circuits is the use of synthetic circuits. 

Synthetic circuits can be generated using a variety of different methods. This chapter 

will present two different benchmark suites and discuss the mechanisms used to create 

the circuits. The first benchmark suite, Meta, was used to test the DHPack 

depopulation strategy described in Chapter 5. The second benchmark suite, Stdev, was 

used to test the Un/DoPack depopulation strategy described in Chapter 6.  
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4.1 Meta Benchmark Circuits 

The System-on-Chip (SoC) design philosophy consists of integrating multiple 

components from different sources into a single chip. For FPGA systems, these 

components are normally digital intellectual property (IP) blocks. The IP blocks can 

be widely varied in their function and purpose, and are often developed by different 

designers. During development, each IP block might be individually placed and routed 

on an FPGA several times. As well, these different blocks may have different 

interconnect demands, just like those shown in Figure 1-1. 

To mimic a large SoC design, the Meta circuit benchmarks were created by 

treating the largest 20 MCNC circuits [36] as individual IP blocks of a common SoC 

and randomly stitching them into a single, large Meta circuit. Stitching involves 

connecting compatible inputs and outputs of the blocks together. Each MCNC circuit 

is a unique, self-contained function with an appropriate input/output (I/O) count, just 

like an IP block. Connections between IP blocks are made only at these I/O boundaries 

and not to internal nodes of the block. Also, some of these MCNC circuits (e.g. 

bigkey) have many inputs and outputs, making them similar to “glue logic” that may 

be used to connect multiple IP blocks together. To avoid creating combinational loops, 

the stitching process adds a flip-flop to the primary outputs of each MCNC circuit. 

The IP blocks were stitched together in three different ways to create three different 

circuits in the Meta benchmark suite: 
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• Independent: Each primary input and primary output of each IP block 

remains a primary input and primary output of the Meta circuit. There is no 

interaction between IP blocks. 

• Pipeline: The IP blocks are placed in a random, sequential order, each 

representing stages in a pipeline. Additional (leftover) inputs/outputs between 

pipeline stages become primary inputs/outputs of the Meta circuit. 

• Clique: The outputs of each individual IP block are uniformly distributed to 

the inputs of all other circuits in the Meta circuit. The connections are made to 

encourage as much inter-block communication as possible. 

When stitching, precise output-to-input connections are randomly assigned 

once. From this stitching assignment, multiple versions of each benchmark circuit 

were created by stitching different clustering solutions of each IP block. During 

stitching, only connections with a fan-out of one are formed. Alternatively, synthetic 

circuit generating techniques ([23], [28]) could have been used. These techniques are 

good for cloning existing circuits: they typically work by top-down partitioning or 

bottom-up clustering of modules and adding nets between the modules while 

enforcing stochastic interconnect parameters. Unfortunately, we do not have any 

initial SoC designs to clone. Another synthetic benchmark generator developed by 

Stroobandt [51] is discussed section 4.2. 

When developing the Meta benchmarks, the primary concern was to create 

large circuits with varying interconnect usage among the IP blocks. The names of the 
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3 benchmark circuits are Clique, Pipeline and Independent. These benchmark 

circuits were used to test the DHPack depopulation strategy described in Chapter 5 

which requires strict IP block boundary definitions. 

4.2 Stdev Benchmark Circuits 

The Meta benchmark suite was created by randomly stitching together 

existing, smaller benchmarks (MCNC circuits) and treating the smaller circuits as IP 

blocks. However, the stitching was somewhat unrealistic as a flip-flop was placed at 

every IP block output to prevent combinational loops. Un/DoPack (the depopulation 

technique described in Chapter 6) does not have the requirement that the circuit be 

strictly partitioned into IP blocks. To mimic more realistic benchmark circuits, a 

synthetic benchmark generator, GNL [51] was used to generate a second benchmark 

suite. GNL allows benchmarks to be generated hierarchically and allows control over 

the Rent parameter [30] in each division. GNL is also able to prevent combinational 

loops and can place limits on the maximum depth of a circuit. The key parameter of 

GNL is that it is able to create synthetic benchmarks based on Rent’s rule. Empirical 

evidence has shown that most circuits follow Rent’s rule. Since it is not known how 

much interconnect variation is present in real world circuits, GNL gives provides a 

mechanism to generate circuits that have a controllable amount of interconnect 

variation. 

The GNL synthetic circuits generated consist of two levels of hierarchy. The 

root level defines the overall structure of the circuit. This level includes the total 



 27

number of logic cells in the circuit, as well as a required input and output count. The 

number of primary inputs and outputs were defined as 240 and 120 respectively. The 

root level is defined such that it is made up of twenty leafs that mimic the 20 largest 

MCNC circuits [36]. Each leaf represents an IP block with a specific Rent parameter. 

The Rent parameter and number of logic blocks of each IP block was chosen to match 

the same parameter values as each corresponding MCNC circuit. These Rent numbers 

were extracted from [46]. The number of inputs and outputs for each sub-circuit was 

not defined, thus allowing GNL to randomly stitch each Rent region together to form 

the overall circuit. The standard deviation of the Rent parameter for the 20 MCNC 

circuits was calculated to be 0.08 and the average value was 0.62. Using these Rent 

values, we produced a clone of the Meta circuit and named it Stdev008. To create a 

family of circuits, a linear interpolation scheme was applied to keep the same overall 

mean, but to vary the standard deviation to produce 4 smaller values and 2 larger ones. 

Figure 4-1 shows a graphical representation of our linear interpolation scheme. For 

clarity, only 10 of the 20 MCNC circuits are shown. 
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Figure 4-1: Rent Linear Interpolation for GNL Benchmark Circuits 

Each line in Figure 4-1 represents a benchmark circuit for a specific standard 

deviation of the Rent parameters. Circuit Stdev000 contains 20 IP blocks each having 

the identical Rent parameter of 0.62, producing a flat line. The average Rent parameter 

is a simple average of the sub-circuits and is not weighted by the sub-circuit size. 

Three other circuits with standard deviations 0.02, 0.04, 0.06 were created between the 

flat line and bold clone circuit line. Circuits Stdev010 and Stdev012 were obtained by 

extrapolating the Rent parameter 2 steps farther. The “bar line” in Figure 4-1 shows 

the size of each of the IP blocks in terms of the number of LUTs; the size does not 

depend on the Rent parameter.   

The resulting circuits had standard deviations of 0.0, 0.02, 0.04, 0.06, 0.08, 

0.10 and 0.12 in their Rent value and contained 51,900 to 52,200 6-input BLEs. The 

names of the circuits are Stdev000, Stdev002, Stdev004, Stdev006, 

Stdev008/clone, Stdev010 and Stdev012. The linear interpolation scheme will 
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be used to show that a large amount of depopulation is necessary to reduce the MRCW 

in circuits with a low standard deviation. This is because the circuit is uniform, and 

routing resources demands should be fairly consistent across the entire circuit. In 

contrast, with a high standard deviation, routing resource demands should be non-

uniform, thus allowing the depopulation scheme to reduce the routing demands of high 

Rent regions. Appendix A gives complete information on the size and Rent parameter 

of the IP blocks in the Stdev benchmark circuits.  

It was not possible to use the Stdev circuits to test DHPack (Chapter 5) 

because DHPack requires that the IP block boundaries be strictly defined. Even though 

it is possible to specify the Rent parameter of each IP block, GNL is still random in 

nature. Therefore, there is no method of determining where the boundaries of these IP 

blocks are located. The Stdev benchmarks will be used primarily in Chapter 6 to 

demonstrate the significance of interconnect variation in channel width reduction 

strategies. Experimental results will show that Un/DoPack is effective at reducing 

MRCW for the Stdev circuits and the Meta circuits regardless of their interconnect 

variation. However, the amount of interconnect variation has a direct affect on the 

overall area increase and run time of this tool. 
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Chapter 5 

5 CHANNEL WIDTH REDUCTION USING DESIGN 

HIERARCHY PACKING: DHPACK 

This chapter describes a non-uniform depopulation technique (DHPack) that 

uses the natural design hierarchy of the benchmark circuits to identify depopulation 

regions. DHPack requires that the benchmark circuits have clearly defined IP block 

boundaries. Since the Meta benchmarks (Section 4.1) were created from a strict design 

hierarchy, they were ideal for evaluating DHPack. The Meta circuits were formed by 

stitching together individual clustering solutions of each IP block. This allows 

DHPack to depopulate only the routing-intensive blocks. Clustering individually 

preserves each IP block in a form that more closely resembles how each was 

developed and tested by separate designers prior to integration. 

This chapter begins with an explanation of the DHPack algorithm. An analysis 

of the experimental results will then show that this technique is effective at reducing 

the minimum routable channel width (MRCW) of the benchmark circuits. The chapter 

concludes with a discussion of some of the limitations of this technique. Note that this 

technique is described in [49]. 
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5.1 DHPack - Depopulation Strategy 

Design Hierarchy Pack (DHPack) uses the design hierarchy of the 

benchmark circuit to identify depopulation regions. This approach enforces BLE-

limits during clustering, profiles each IP block's channel width needs for different 

depopulation levels, and chooses the one with the fewest CLBs that meet a given 

channel width constraint. Results will show that a large, flat area region exists where 

CLB count can be safely traded off for channel width.  

For FPGA designs that contain multiple IP blocks, it was hypothesized that the 

channel width needed to route the entire circuit will be similar to the IP block with the 

highest channel width needs. That is, the other IP blocks do not temper the channel 

width needs of the hard-to-route IP block. Although this is just a first-order 

approximation that ignores the effects of inter-block communication, results show that 

it is a good estimate of the final routed channel width. Hence, the first step of DHPack 

is to develop a channel-width profile of each IP block. Then, DHPack selects the 

depopulation level needed by each IP block to meet the overall channel-width 

constraint. DHPack is described in pseudo-code in Figure 5-1. Each of the 4 different 

steps of DHPack is discussed in the following sections. 
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Routed_Circuit DHPack ( circuit, channel_width_constraint,   
       cluster_size ) { 

 
 IP_Blocks[ ] = Decompose_Circuit_into_IP_Blocks( circuit ); 
 
 // Step 1: Generate Channel Width Profile  
 foreach (IP_Block) { 
  for(LimitSize=1; LimitSize<=cluster_size; LimitSize++) { 
   cluster_ip_blk = Cluster( IP_Block, LimitSize ); 
   routed_ip_blk = Place&Route( cluster_ip_blk ); 
   CW[IP_Block][LimitSize] = get_CW( routed_ip_blk ); 
  } 
 } 
 
 // Step 2: Calculate Maximal Cluster Sizes 
 foreach (IP_Block) { 
  Limit = Cluster_Size; 
  while( CW[IP_Block][Limit] > channel_width_constraint && 
    Limit > 0) { 
   Limit--; 
  } 
  if( Limit == 0 ) { 
   return( NO_SOLN ); 
  } else { 
   BLE_Limit[IP_Block] = Limit; 
  } 
 } 
 
 // Step 3: Cluster IP Blocks 
 foreach (IP_Block) { 
  Clustered_Soln[IP_Block] = Cluster( IP_Block,  
        BLE_Limit[IP_Block]); 
 } 
 
 // Step 4: Stitch Circuit back together & P&R 
 Clustered_Circuit = Stitch_Circuit(circuit, Clustered_Soln[ ]); 
 Routed_Circuit = Place&Route( Clustered_Circuit ); 
 
 return ( Routed_Circuit ) 
 
} 

Figure 5-1: Pseudo-code for DHPack Flow 
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5.1.1 Steps 1,2: Channel Width Profiling and BLE-Limits 

The channel width profile of each IP block in the Meta circuits were created by 

placing and routing each IP block independently of each other for all possible BLE-

limit sizes. Figure 5-2 shows the channel width needs of two IP blocks for BLE-limits 

2 to 16. A BLE-limit size of 16 indicates that the clustering tool has no restriction on 

the number of BLEs that can be used in a cluster. Conversely, a BLE-limit size of 2 

indicates that a maximum of 2 BLEs can be used per cluster. 
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Figure 5-2: Channel Width Profile of IP Blocks clma/tseng 

If a channel-width constraint of 60 is imposed using T-VPack, a BLE-limit size 

of 6 is required to route clma. We say 6 is the maximal cluster size for clma at the 

given channel-width constraint. In contrast, the maximal cluster size for tseng is 16 for 

the same constraint. Once a channel width profile is created for each IP block in the 

design, the maximal cluster size for each IP block can be calculated given a channel 

width constraint. 
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For the 3 Meta circuits, 11 different channel-width constraints were set and the 

maximal cluster sizes were determined for each IP block using both T-VPack and the 

iRAC replica. The maximal cluster sizes using T-VPack are shown in Table 5-1. 

Channel-width constraints below 45 were not possible because some circuits could not 

be depopulated enough to route with such a small channel width. Channel-width 

constraints greater than 95 were not interesting because all CLBs were fully populated. 

A table with the maximal cluster sizes using the iRAC replica is also given in Table 

5-2. 

 Channel-Width Constraint 
Circuit    95 90 85 80 75 70 65 60 55 50 45 

alu4 16 16 16 16 16 16 16 16 16 16 16 
apex2 16 16 16 16 16 16 16 16 16 16 12 
apex4 16 16 16 16 16 16 16 14 10 9 8 
bigkey 16 16 16 16 16 16 16 16 16 14 9 
clma 16 15 14 12 11 10 8 6 5 5 3 
des 16 16 16 16 16 16 16 15 4 3 2 

diffeq 16 16 16 16 16 16 16 16 16 16 16 
dsip 16 16 16 16 16 16 16 16 16 13 6 

elliptic 16 16 16 16 16 16 16 14 11 9 7 
ex1010 16 16 16 16 16 15 12 9 7 5 4 
ex5p 16 16 16 16 16 16 16 16 16 16 15 
frisc 16 16 16 15 13 10 9 7 7 5 4 

misex3 16 16 16 16 16 16 16 16 16 16 16 
pdc 16 16 16 16 16 14 12 9 7 6 4 
s298 16 16 16 16 16 16 16 16 16 16 16 

s38417 16 16 16 16 16 16 16 16 16 16 14 
s38584 16 16 16 16 16 16 16 16 13 11 9 

seq 16 16 16 16 16 16 16 16 16 15 11 
spla 16 16 16 16 16 16 13 11 8 6 5 
tseng 16 16 16 16 16 16 16 16 16 16 16 

Table 5-1: Maximal BLE-Limit Sizes from T-VPack 
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 Channel-Width Constraint 
Circuit    80 76 72 68 64 60 56 52 48 44 40 

alu4 16 16 16 16 16 16 16 16 16 16 16 
apex2 16 16 16 16 16 16 16 16 16 14 9 
apex4 16 16 16 16 16 16 16 13 11 8 5 
bigkey 16 16 16 16 16 16 15 15 15 15 12 
clma 16 16 16 16 13 10 8 7 6 5 3 
des 16 16 16 16 16 16 15 15 15 15 15 

diffeq 16 16 16 16 16 16 16 16 14 12 8 
dsip 16 16 16 16 16 16 16 15 15 15 15 

elliptic 16 15 12 11 9 8 6 5 5 4 3 
ex1010 16 16 16 16 15 11 8 8 5 4 3 
ex5p 16 16 16 16 16 16 16 16 16 16 11 
frisc 16 16 16 16 14 10 9 8 8 6 4 

misex3 16 16 16 16 16 16 16 16 16 16 16 
pdc 16 16 16 16 12 10 9 6 5 5 3 
s298 16 16 16 16 16 16 16 16 16 16 16 

s38417 16 16 16 16 16 16 16 16 16 16 16 
s38584 16 16 16 16 16 16 16 16 16 16 15 

seq 16 16 16 16 16 16 16 16 16 12 8 
spla 16 16 16 16 16 14 11 9 7 5 4 
tseng 16 16 16 16 16 16 16 16 16 16 16 

Table 5-2: Maximal BLE-Limit Sizes from iRAC 

5.1.2 Steps 3,4: Cluster IP blocks and Stitch Circuit 

Once the maximal cluster sizes have been determined for a given channel 

width constraint, DHPack selects the individual clustering solutions for each IP block 

and stitches the circuit back together. When clustering the IP blocks, there are two 

choices for the BLE-limit size with a given channel-width constraint: 

• Uniform (Minimum) Cluster Size: Depopulate all of the IP blocks to the 

same BLE-limit size, the minimum of the maximal cluster sizes for all IP 

blocks. This is similar to [48] which uses uniform depopulation of clusters. 
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• Non-uniform (Maximal) Cluster Size: Depopulate the IP blocks by 

different amounts, using the maximal cluster size for each one. 

For each of the 11 channel width constraints in Table 5-1, we generated a 

Uniform and Non-uniform clustered version of Meta using T-VPack. This was also 

repeated for the iRAC replica algorithm. As discussed earlier, the Uniform version 

will contain more CLBs than necessary and results in lower BLE utilization. Figure 

5-3 shows the total CLBs and BLE utilization obtained from the Meta circuits 

produced from T-VPack and iRAC replica clustering.  
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Figure 5-3: DHPack CLB Count and BLE Utilization 

It is evident from Figure 5-3 that Non-uniform clustering of the IP blocks 

significantly improves both BLE utilization and reduces CLB count as the channel 

width constraint is decreased 

5.2 Experimental Results 

In total, 66 Meta netlists were created and placed using VPR (11 channel width 

constraints, 3 Meta circuits, using 2 clustering tools (T-VPack and the iRAC replica) ). 
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Figure 5-4 shows a post place and route screen shot from VPR of the Meta circuit 

Clique with a channel width constraint of 50.  The screen shot has been edited to show 

the location of the IP blocks. 

 

Figure 5-4: VPR Placement of Non-Uniform Clique with T-VPack 

The numbers below each IP block indicate the BLE-limit size of that IP block. 

Analyzing the place and route results from the Meta circuits led to two key 

observations.  
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Observation 1: VPR placer successfully groups IP blocks from a random 

initial placement 

It was expected that large SoC designs will be floor planned prior to the final 

placement process, but VPR does not support floor planning. Instead, it starts with a 

random placement of all CLBs and uses simulated-annealing to find a minimum-cost 

placement. Interestingly, VPR was able to generate solutions that appear to be floor 

planned. This reduced the need to impose an artificial floor plan on the design a priori.  

Observation 2: VPR router confirms the MRCW of a Meta circuit is 

dominated by a few IP blocks 

Figure 5-4 illustrates that only a few IP blocks (i.e. des, clma, frisc, ex1010) 

needed a large amount of depopulation for the given channel width constraint. It is 

these IP blocks that dominate the channel width needs of the entire circuit. 

While routing, the channel width was continuously reduced until the circuit 

became un-routable. This produced the final minimum routable channel width 

(MRCW). It is a minimum because the FPGA architecture must have at least this 

minimum channel width in order for the circuit to be routable. Routing results for the 

6 Meta circuits are shown in Figure 5-5. A comprehensive table of results is given in 

Appendix B. 



 39

 50

 60

 70

 80

 90

 100

 45  50  55  60  65  70  75  80  85  90  95  100  105

C
ha

nn
el

 W
id

th
 (

T
-V

P
ac

k 
C

liq
ue

)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 40

 50

 60

 70

 80

 40  45  50  55  60  65  70  75  80  85

C
ha

nn
el

 W
id

th
 (

iR
A

C
 C

liq
ue

)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 50

 60

 70

 80

 90

 100

 45  50  55  60  65  70  75  80  85  90  95  100  105

C
ha

nn
el

 W
id

th
 (

T
-V

P
ac

k 
P

ip
el

in
e)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 40

 50

 60

 70

 80

 40  45  50  55  60  65  70  75  80  85

C
ha

nn
el

 W
id

th
 (

iR
A

C
 P

ip
el

in
e)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 50

 60

 70

 80

 90

 100

 45  50  55  60  65  70  75  80  85  90  95  100  105

C
ha

nn
el

 W
id

th
 (

T
-V

P
ac

k 
In

de
pe

nd
en

t)

Channel Width Constraint

Non-Uniform MRCW
Non-Uniform Average CW
Uniform MRCW

 40

 50

 60

 70

 80

 40  45  50  55  60  65  70  75  80  85

C
ha

nn
el

 W
id

th
 (

iR
A

C
 In

de
pe

nd
en

t)

Channel Width Constraint

Non-Uniform MRCW 
Non-Uniform Average CW
Uniform MRCW 

Figure 5-5: DHPack MRCW and Average Channel Width 

The results show that the non-uniform MRCW was usually higher than what 

was imposed by the channel-width constraint. In contrast, the uniform MRCW results 

track the channel width constraint more closely. However, this comes at the expense 

of area which is shown in Figure 5-6. The high MRCW values for some Independent 

and Pipeline cases involving iRAC led to further investigation. It was found that on 
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these occasions, the I/O intensive IP blocks were strongly attracted to the I/O 

padframe during placement and stretched into highly rectangular shapes. This caused 

severe localized congestion in the routing channels nearest to the padframe. Figure 5-5 

also shows the average channel width of all routing channels. The average channel 

width tracks the channel-width constraint much more closely, suggesting that the 

approach is viable if the I/O padframe congestion can be reduced.  

Figure 5-6 shows the normalized area results of the 3 Meta circuits for non-

uniform and uniform depopulation cases. For the non-uniform case, the final routed 

area shows a substantially flat area response (small area increases) for channel widths 

of 70-95 for T-VPack and 65-80 for iRAC. Channel width decreases of up to 50% are 

possible with much larger area increases. In comparison, the uniform area curves 

increases much more quickly as the channel width constraint is decreased.  This 

suggests that uniform depopulation unnecessarily depopulates in low-congestion areas. 
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Figure 5-6: DHPack Routed Area Factor 

Table 5-3 shows a summary of the channel width decreases that were obtained 

for each Meta benchmark circuit. Small MRCW decreases of 23%/13% for T-
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VPack/iRAC are possible with 4%/3% increase in area. Larger MRCW decreases of 

39%/29% are possible with 166%/146% increase in area.  

Channel Width Changes 
Circuit Clustering 

Tool CW Avg 
CW Area CW Avg 

CW 
Area 

T-VPack -19% -14% +6% -50% -47% +129% Clique iRAC Rep. -7% -4% -1% -29% -39% +187% 
T-VPack -25% -15% +2% -55% -51% +184% Pipeline iRAC Rep. -17% -11% +1% -30% -30% +69% 
T-VPack -24% -19% +3% -42% -48% +184% Independent iRAC Rep. -15% -11% +6% -27% -44% +183% 
T-VPack -23% -16% +4% -49% -49% +166% Arithmetic 

Mean iRAC Rep. -13% -9% +3% -29% -38% +146% 

Table 5-3: Reductions in Channel Width for DHPack 

In some cases, only small decreases in MRCW were achievable. As explained 

earlier, this is because some IP blocks introduce heavy congestion at the periphery due 

to high I/O padframe needs. Table 5-3 also shows the average channel width required. 

In the cases where I/O congestion occurs, the average channel width tracks the 

channel width constraint more closely. This suggests that if the I/O congestion can be 

somehow eliminated the MRCW will also decrease and track the channel width 

constraint more closely. 

Figure 5-7 shows the critical-path delay results. It was initially expected 

critical-path delay would increase as more depopulation is applied. Critical-path delay 

does seem to follow this trend, but it tends to “jump around”. This delay “noise” 

appears to result from instability in the placement. As depopulation is applied, the 

VPR placement engine keeps IP blocks together, but sometimes their location in the 

floor plan is shifted significantly relative to other IP blocks. This caused the critical 
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path to sometimes relocate from within an IP block (which gradually degrades as 

depopulation is applied) to connections between IP blocks (which introduces large 

delay jumps). Imposing a pre-defined floor plan may help reduce this “noise” in large 

designs. 
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Figure 5-7: DHPack Critical-Path Delay 

Figure 5-7 also shows the average wirelength per net. Average wirelength per 

net increased as more depopulation is applied (e.g. channel width constraint reduced). 

This is expected because an increase in CLB count must also increase the average 

distance a net must traverse. Also, depopulating will cause connections that were 

previously internal to a CLB (hence, ignored) to become external nets with a small 

measurable distance. This slightly tempers the increase in average wirelength. Note 
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that iRAC replica produces a higher average wirelength than T-VPack. However, the 

total wirelength was lower and the critical-path delay results were similar. 

5.3 Experimental Conclusions 

This chapter has proposed a system-level technique for mapping large system-

on-chip (SoC) designs to channel-width constrained FPGAs. In particular, the method 

helps fit hard-to-route circuits into FPGAs that have narrow channel widths at the 

expense of using more CLBs. Since larger devices with more CLBs are usually 

available, this is a practical trade-off. 

Results have shown that depopulating CLBs (e.g. not filling them to capacity) 

is a very effective way to reduce channel width needs of a circuit. It is important to 

apply non-uniform depopulation when clustering. Otherwise, area increases very 

rapidly and limits the usefulness of the approach. It was shown that channel width 

reduction can be achieved by selectively depopulating parts of a large circuit that 

would otherwise have routing congestion. The most routing-intensive IP blocks are 

depopulated until the routing demands of those blocks are comparable to the demands 

of the other blocks. On average, small MRCW decreases of 23%/13% for T-

VPack/iRAC are possible with 4%/3% increases in area. Large MRCW decreases of 

39%/29% are possible with 166%/146% increases in area. Although this is a high area 

cost, it may be the only viable solution in a real FPGA device where hard channel-

width constraints are imposed. By purchasing an FPGA device with higher logic 

capacity, designs which are otherwise un-routable can be made routable. 
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5.4 Technique Limitations and Future Work 

This section will discuss some of the limitations of DHPack and some possible 

directions for future work. 

5.4.1 I/O Padframe Congestion 

The main reason why DHPack was not able to track the channel width 

constraint for large channel width decreases is because some IP blocks stretched into 

highly rectangular shapes along the I/O padframe causing congestion hotspots along 

the channel adjacent to the I/Os. Xilinx FPGAs have added additional routing 

resources to the I/O channel that runs in between the I/O pads and the logic blocks so 

that I/O pad placement does not impact routability and speed [47]. Hallschmid [21] 

also investigated the impact the aspect ratio of a circuit has on the required channel 

width. [21] suggests that a square aspect ratio generates the lowest channel widths and 

that larger aspect ratios increase the required channel width because the majority of 

the signals run along the tracks in the longer dimension. Table 5-3 demonstrated that 

the average channel width tracked the channel width constraint more closely than the 

MRCW. This suggests that if the channels adjacent to the I/O padframe were larger 

relative to the rest of the chip, channel width reductions could be improved. Another 

alternative is to tune the placement algorithms to avoid creating this congestion at all. 

These techniques need further investigation. 
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5.4.2 IP Block Granularity Too Coarse 

DHPack is dependent on the design having a well-defined IP block 

partitioning. Often, SoC designs have multiple levels of hierarchy which makes it 

difficult to choose appropriate boundaries. DHPack does not allow the exploration of 

other design partitions. A more efficient partitioning of the circuit that does not rely on 

the design hierarchy may more accurately identify high congestion regions.  This issue 

is addressed in Chapter 6 which presents a CAD tool (Un/DoPack) that does not rely 

on design hierarchy information. 

5.4.3 Hard Channel Width Constraints 

Even though a channel width constraint is an input parameter, DHPack may 

generate a routed solution that exceeds the constraint. In practice, industrial FPGAs 

have hard channel width constraints and routed solutions that exceed the constraint by 

even 1 track are not routable. Un/DoPack in Chapter 6 addresses this limitation by 

iterating to meet hard channel width constraints. 

5.4.4 Congestion Profile Run Time Long 

The run time to create the congestion profile of each IP block can be very time 

consuming. In our Meta circuit example, each of the 20 IP blocks needed to be placed 

and routed individually for BLE-limit size 2 to 16 (15*20=300 place and route 

executions). It may be argued that since each IP block is assigned to a different 

engineer that this channel width profiling must be done before integration into the 
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overall system. Nonetheless, this profiling step will increase the total CAD time 

significantly. 
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Chapter 6 

6 CHANNEL WIDTH REDUCTION USING 

AUTOMATED CONGESTION IDENTIFICATION: 

UN/DOPACK 

This chapter describes a depopulation technique (Un/DoPack) that iteratively 

applies non-uniform depopulation on a circuit until a given channel width constraint is 

met. The main difference between Un/DoPack and DHPack is that Un/DoPack is a 

multi-pass technique whereas DHPack is single-pass. Un/DoPack does not have the 

requirement that the design hierarchy be known a priori. It can be applied on any 

circuit irrespective of whether the design hierarchy is known or not. 

This chapter begins by describing the Un/DoPack algorithm including a 

detailed discussion of each step of the CAD flow. The experimental results will show 

that Un/DoPack is effective at reducing channel width. The results will also highlight 

the importance of interconnect variation in benchmark circuits for determining the 

device channel width in FPGA architecture design. Finally, a comparison between 

DHPack and Un/DoPack is made followed by some of the limitations of this 

technique. 
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6.1 Un/DoPack - Depopulation Strategy 

Figure 6-1 shows a flowchart of the Un/DoPack algorithm.  

Circuit Description
Architecture Description

Channel Width Constraint
Array Size Constraint

Cluster
(iRAC Replica)

Placement
(VPR)

Routing
(VPR)

Channel Width
Constraint Met?
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4

 

Figure 6-1: Un/DoPack CAD Flow 
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Un/DoPack can be roughly divided into 4 steps. Each of these steps are 

highlighted in Figure 6-1 and discussed below. 

6.1.1 Step 1: Traditional SIS/VPR Flow 

The first step is highlighted in the shaded portion of Figure 6-1. This step is the 

traditional academic FPGA CAD flow which uses SIS / FlowMap [12] and VPR [6] to 

synthesize, cluster, place and route a circuit. If the traditional CAD flow fails to 

produce a routed solution given a fixed channel width constraint, the iterative portion 

of Un/DoPack is invoked to reduce the MRCW. 

There are four inputs to Un/DoPack: the circuit description, the architecture 

description, the channel width constraint and the maximum array size (logic capacity 

constraint). Traditionally, VPR performs a binary search on the device channel width 

until the MRCW is found. Un/DoPack does not perform this binary search but requires 

the user to specify a hard channel width constraint. This has many practical 

applications since industrial FPGAs have hard channel width constraints as well. The 

iterative portion of Un/DoPack is invoked only if the routed solution does not meet the 

given channel width constraint and the logic capacity of the FPGA will not be 

exceeded through depopulation. 

6.1.2 Step 2: UnPack - Congestion Calculator 

The second step (UnPack) determines which portion of the circuit to 

depopulate, calculates the amount of depopulation required as a new cluster size 
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constraint (BLE-limit size), and un-packs the BLEs. A smaller BLE-limit size 

constraint ensures the new CLBs will be “less full” than before. 

Following a failed routing attempt, UnPack creates a congestion map based on 

the final routed solution. The congestion map is created by labeling each CLB with 

the maximum of the required channel width in each of the four channel segments 

adjacent to the CLB. Some wiring tracks may have multiple nets assigned to it from 

the failed routing solution. This is acceptable as the required channel width is 

estimated by counting the total number of nets traveling through the channel 

segment.  

Figure 6-2 shows a sample 3-D congestion map of circuit Stdev008 before 

(top) and after (bottom) Un/DoPack meets a channel width constraint of 100. The x-y 

coordinates indicate the CLB locations and the z coordinate indicates the CLB 

congestion label. The peak / avg / stddev of channel utilization were 120 / 79.4 / 26.9 

tracks before Un/DoPack, and 100 / 79.2 / 19.6 afterwards.  
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Figure 6-2: Congestion Map Before and After Un/DoPack 

From Figure 6-2, it is observed that both the peak and variation of CLB labels were 

both decreased. 

The depopulation region center is determined by finding the largest label in the 

congestion map. In the case of a tie, the CLB that is closest to the center of the map is 

chosen as the depopulation center. Two different methods were considered to 

determine how large the depopulation region is and how much to depopulate the 

region by.  

1. Coarse Grained: A circle is drawn around the depopulation center with a 

radius of 1/4 the logical dimension of the array. For example, in a 19x19 CLB 

grid, the region radius would be floor(1/4*19)=4. All CLBs within the drawn 

circle are inserted into the depopulation region. The new BLE-limit size is 
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determined such that the increase in the total number of CLBs will fill an entire 

new row/column in the entire array. 

2. Fine Grained: A circle is drawn around the depopulation center with a 

possible radius of 1/4, 1/5, 1/6 or 1/8 the logical dimension of the array. The 

new cluster size is determined so that the increase in the total number of CLBs 

will fill an entire row/column in just the depopulation region. 

The coarse grained approach increases the array size by one in the x and y 

direction in every iteration. In comparison, the fine grained approach grows the array 

size much more slowly as there is no guarantee that enough new CLBs will be created 

to fill an entire new row/column in the array after each iteration. 

6.1.3 Step 3: DoPack -  Incremental Re-Cluster 

The third step (DoPack) performs incremental re-clustering of the depopulated 

region with the smaller BLE-limit size constraint. It re-clusters the BLEs from the 

depopulation region identified by UnPack and leaves all other CLBs outside of this 

region untouched. UnPack provides DoPack with the new BLE-limit size limit to use, 

which guarantees the production of more CLBs. This is crucial: by using more CLBs, 

the congested region can span more routing channels to obtain more total routing 

tracks. This tool can use any existing clustering method (e.g. T-VPack [6], T-RPack 

[8], iRAC [46]) as the underlying packing engine since the only changing constraint is 

the BLE-limit size.  
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6.1.4 Step 4: Placement and Routing 

Finally, the fourth step produces a new placed and routed solution. The 

purpose of the place and route steps is to accurately identify regions of routing 

congestion. Ideally, this could be done with a fast congestion estimator that can 

precisely locate the regions of peak routing demand before placement is done. 

Unfortunately, no such tool exists for FPGAs. Meanwhile, Un/DoPack uses actual 

place and route directly; this is slow, but accurate. If the channel width constraint is 

not met, Steps 2-4 are iterated until the given channel width constraint is met. Due to 

iteration in the flow, it is important to speed up both the placement and routing steps 

as much as possible. These options are discussed below. 

6.1.4.1 Faster Placement 

To speed up placement, VPR was modified to perform incremental placement. 

The work is currently being performed by David Leong in the UBC SoC 

research group. The incremental placer was compared to VPR’s builtin “–fast” 

mode. The incremental placer attempts to preserve the placement locations of CLBs 

outside of the depopulation region. It provides placement stability by preserving the 

previous placement solution as much as possible. This should not only decrease run 

time, but also provide consistent and predictable changes as the CAD flow iterates to 

reduce channel width. The incremental placer works in stages. The first stage is an 

“expansion” phase which squeezes the numerous “depopulated” CLBs into the “too 

small” space left behind. This produces illegal solutions when CLBs are pushed 
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outside of the array bounds. The second stage is a “compaction” phase used to legalize 

the solution. The third stage is an optional low-temperature anneal to clean up the 

solution. The output of the incremental algorithm is a solution that is computed using a 

fraction of the time required for a full placement. Development of the incremental 

placer continues to be an on-going process. 

6.1.4.2 Faster Routing 

To speed up routing, we attempted to obtain congestion results from the first 

iterations of the VPR Pathfinder routing algorithm. At this stage, there is significant 

illegal wire sharing. Because wire sharing is not heavily penalized, most nets will take 

the shortest paths from source to sink. These failed routing solutions do not represent 

the final congestion regions so this data was not very useful. Since this data could not 

be used, the VPR router was allowed to run to completion which is the primary reason 

why this approach is slow. No attempts to develop an incremental routing algorithm 

have been made yet. 

6.2 Experimental Results 

This section presents the performance results of running Un/DoPack on the 

two benchmark circuit suites (Meta and GNL). The first set of benchmarks is the Meta 

benchmark suite presented in Section 4.1. The second set of benchmarks is the Stdev 

benchmark suite presented in Section 4.2. The baseline flow of Un/DoPack uses the 

following options:  

• UnPack: Coarse grained congestion calculated (Section 6.1.2). 
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• DoPack: A replica of the iRAC algorithm as the underlying clustering 

algorithm (Section 6.1.3). 

• Fast Placement: Incremental placer described in section 6.1.4.1. 

• Fast Routing: None. Use fully routed solution. 

Because of large run times and limited computing resources, a maximum run 

time of 48 hours is imposed. If the time limit is exceeded, Un/DoPack concludes that 

no solution exists. All computations were performed on a dedicated Intel Xeon, 3GHz 

processor with 1.5GB of RAM. Before Un/DoPack was run on a benchmark circuit, 

VPR was first used to determine the MRCW of a circuit (with no depopulation). This 

was done by invoking the binary search option of the VPR router. This is the 

maximum channel width constraint for each circuit. Then, Un/DoPack was 

run with various channel width constraints up to 45% below the maximum channel 

width constraint. Since these channel width constraints are below the maximum, some 

amount of depopulation must occur to meet the given channel width constraint. The 

next sub-section presents experimental results after running Un/DoPack on the Stdev 

benchmark suite. The subsequent sub-section compares the performance of 

Un/DoPack to DHPack using the Meta benchmark suite. 

6.2.1 Stdev Benchmark Circuit Results 

This section presents the experimental results for the baseline flow of 

Un/DoPack on the Stdev benchmark suite. These results will demonstrate that 

Un/DoPack is effective at reducing MRCW. The results will also show that the 
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effectiveness (amount of area inflation) of Un/DoPack at reducing MRCW is 

dependent on the amount of interconnect variation in the benchmark circuit. The 

choices for the baseline flow is then justified by a series of experiments designed to 

test placement stability and congestion region selection.  

6.2.1.1 Baseline Flow Results 

Table 6-1 shows the maximum achievable channel width reductions 

(normalized to the case where no depopulation was required) Un/DoPack was able to 

generate within CPU time limit and array size constraints. 

Circuit Max. Channel 
Width Change 

Critical Path 
Change Area Change # of iterations 

Stdev000 -34% +12% +91% 30 
Stdev002 -42% +22% +79% 30 
Stdev004 -35% +21% +68% 25 
Stdev006 -32% +17% +86% 28 

Stdev008/clone -33% +17% +60% 26 
Stdev010 -48% +22% +39% 23 
Stdev012 -35% +13% +25% 16 

Arithmetic 
Mean -38% +18% +64% 25 

Table 6-1: Maximum % Change in Channel Width, Critical Path and Area 

On average, channel width decreases of 38% was possible for the set of Stdev 

benchmark circuits with an 18% penalty in critical path delay and a 64% increase in 

total area required. A complete table of results is given in Appendix C. 
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Figure 6-3: Normalized Area vs. % Max Channel Width Constraint 

Figure 6-3 shows the normalized area increase for each Stdev circuit as the 

channel width constraint is decreased (e.g. more depopulation is applied). In general, 

area tends to decrease due to lower channel widths, but increase due to more CLBs. 

Therefore a total area increase indicates that the area added by more CLBs exceeds the 

savings in area due to a shrink in channel width. 

Figure 6-3 also suggests that the amount of interconnect variation in a circuit 

affects the effectiveness of Un/DoPack. For circuits with high interconnect variation 

(Stdev010, Stdev012), significant channel width savings is possible with virtually no 

area inflation. Circuits with low interconnect variation (Stdev004, Stdev002, 

Stdev000) show quick area increases with modest channel width reduction. For 

example, circuit Stdev010 shows a 40% decrease in channel width with only 10% 

increase in area. This occurs because there is a very local high congestion region and 

only a small amount of depopulation is needed to reduce the congestion in this region.  
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In contrast, circuit Stdev000 shows large area increases for small decreases in channel 

width (e.g. 25% channel width decrease, 90% area increase). This suggests that a large 

amount of depopulation is needed to reduce the channel width of a circuit that has a 

uniformly distributed congestion map. Note that the ordering of the curves in Figure 

6-3 does not exactly match the standard deviation of the circuit. For example, 

Stdev006 has higher area increases than Stdev002.  This is likely due to the variation 

in the Stdev benchmark circuits. GNL is random in nature and although a Rent 

parameter can be specified for each IP block, there is no guarantee that Rent parameter 

was achieved. Interconnect variation in a circuit is also not solely defined by the 

standard deviation of the Rent parameters of the IP blocks. Many other factors 

including placement and routing constraints may affect the amount of interconnect 

variation in a circuit. The important result from Figure 6-3 is that the general trend 

indicates that circuits with low interconnect variation require large area increases to 

reduce channel width and circuits with high interconnect variation require smaller area 

increases for channel width reduction. 
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Figure 6-4: Normalized Area vs. Absolute Channel Width Constraint 

Figure 6-4 shows the same data as Figure 6-3 but the x-axis shows the absolute 

channel widths instead of the normalized channel width. Note that circuits with high 

interconnect variation require significantly higher absolute channel widths to route 

(without constraints). This suggests that it is crucial for FPGA architects to know the 

amount of interconnect variation within their benchmark circuits. If the variation 

is too high, it is possible that the routing networks will be designed with excess 

capacity, resulting in undue cost to the consumer. Fortunately, these very circuits are 

the most amenable to channel width reduction using the Un/DoPack flow.  



 60

 70

 80

 90

 100

 110

 120

 130

 140

Stdev000 Stdev002 Stdev004 Stdev006 Stdev008 Stdev010 Stdev012

M
in

im
um

 R
ou

te
d 

C
ha

nn
el

 W
id

th

Circuits

Baseline
10% Area Increase
20% Area Increase
25% Area Increase

 

Figure 6-5: MRCW vs. Stdev Circuit 

Another view of the data from Figure 6-3 and Figure 6-4 is given in Figure 

6-5. Figure 6-5 shows the channel widths that were attainable with the baseline flow 

(with no constraints) and for constraints that produce net area increases of 10%, 20% 

and 25%. FPGA architects typically choose channel widths for their devices to fit the 

most number of circuits possible. If an architect were to choose a channel width for a 

specific device with only the unconstrained baseline results, a channel width greater 

than 140 tracks would be chosen so that all the circuits would have a routable solution. 

However, a more realistic choice for the channel width of the device may be 110 

tracks. This would result in a 21% (= 1–110/140) decrease in channel width which 

translates directly into a significant area savings.  The few circuits that could not be 

mapped to such a device could then be depopulated to meet the given channel width 

constraint. Although this is a simplistic method for an architect to choose a channel 

width for a device, it does highlight that being able to quantify the amount of 

interconnect variation in the circuit is important in FPGA design. 
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Figure 6-6: Critical Path Delay vs. Channel Width Constraint 

The other trade-off for channel width reduction is an increase in critical path 

delay. Figure 6-6 shows the normalized critical path vs. channel width constraint 

expressed as a percentage of the maximum channel width. Since the data points have 

significant noise, trendlines (least squares fit) are shown for each circuit. There is on 

average a 10% penalty in critical path for a 20% decrease in channel width, and a 23% 

increase in critical path for a 45% decrease in channel width. Most likely, designs that 

have very strict timing constraints would likely use high performance FPGAs which 

have high-capacity routing networks (e.g. Altera Stratix II). Channel width reduction 

techniques such as DHPack and Un/DoPack are intended for low-cost FPGA families 

(e.g. Altera Cyclone II) where designs are not as timing critical. 

Figure 6-7 shows the run times of Un/DoPack, which are dominated by the 

slow routing step. Run times quickly increase for channel width reductions of greater 

than 20%, but are relatively small for channel width constraints below 20%. On 
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average, a 20% channel width reduction is possible with approximately 200% increase 

in run time. Figure 6-7 shows that run times increase more quickly for circuits with 

low interconnect variation (eg. Stdev000) than circuits with high variation (Stdev010). 

Also shown are run-times of Stdev010 with fine-grained depopulation. These 

experiments are explained in the next sub-section. 
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Figure 6-7: Run Times vs. Channel Width Constraint 

6.2.1.2 Placement Stability and Congestion Region Experiments 

Three different experiments were performed to determine the suitability of 

some of the choices made in the baseline flow. These experiments are designed to test 

the effects of placement stability and congestion region estimation. The three 

experiments are described below. 

1. PlaceScratch: After Un/DoPack finishes, the final clustered solution for 

each channel width constraint is re-placed and re-routed using the default VPR 

placer. Since the default VPR placer starts with a completely random initial 
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placement, all of the placement stability maintained during the iterative process 

will be lost. This test determines if the critical path is degraded by many calls 

to the incremental placer. 

2. VPR –fast: Un/DoPack was re-run with the VPR –fast option as the fast 

placement engine instead of the incremental placer. The VPR –fast option 

begins with a random initial placement which means no placement stability is 

maintained in the iterative loop of Un/DoPack. This test seeks to find the effect 

of placement stability on run time and whether the congested regions “move 

around” unpredictably. 

3. Fine Grained Congestion Estimation: Un/DoPack was re-run using 

the fine grained technique described in section 6.1.2. This test seeks to 

determine if performing depopulation more slowly can lead to superior area 

results. 

Experiment Description 

Geometric 
Mean of 

Normalized 
Area 

Geometric 
Mean of 

Normalized 
CP 

Geometric 
Mean of 

Total Run 
Time 

# channel 
width 

constr. w/ 
no sol’n 
(74 total) 

0 Baseline 1.00 1.00 1.00 0 
1 PlaceScratch 1.00 0.98 N/A 18 
2 -fast 1.01 0.99 0.93 3 
 cr4 0.98 1.00 1.55 10 
3 cr5 0.96 0.99 1.39 8 
 cr6 0.95 1.01 1.48 6 
 cr8 0.94 0.99 1.65 11 

Table 6-2: Results for PlaceScratch, -fast and Fine Grained 
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Table 6-2 shows the simulation results for each of the 3 experiments. In 

Experiment 3, cr4 to cr8 indicates fine grained congestion estimation was used with a 

congestion radius of 1/4 to 1/8 the logical dimension of the array and the maximum 

run time was increased from 48 hours to 72 hours.  

The data in Table 6-2 is calculated as follows. There are 74 total channel width 

constraints across the 7 different Stdev benchmark circuits. These 74 channel width 

constraints were chosen because the baseline flow was able to find solutions for these 

channel width constraints under the time limit constraints (e.g. 48 hours). These 

constraints ranged from 0% to 45% below the maximum channel width constraint for 

each circuit. However, these channel width constraints could not always be met for a 

given experiment.  For example, experiment 3 (cr6) was not able to generate solutions 

for 6 of the 74 channel width constraints because the time limit of 72 hours was 

exceeded. For experiment 3 (cr6) ,the averages reported in Table 6-2 represents the 

geometric mean of normalized results for all channel width constraints excluding the 6 

constraints that could not be met. This same method is used to calculate all of the data 

in Table 6-2. In most cases, the channel width constraints that are not met are the 

“aggressive” channel width constraints (e.g. more than 30% below maximum 

channel width constraint). Hence, the results may be somewhat conservative 

considering the “aggressive” channel width constraints are often excluded from the 

reported results. 

Table 6-2 shows that performing a placement and route from scratch on the 

final clustered netlist shows a modest 2% decrease in critical path delay. This suggests 
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that the incremental placement engine is generating high quality placements. The last 

column in Table 6-2 is a measure of the stability of the Baseline flow. When placing 

the final clustered netlist from scratch, 18 out of the 72 circuits could no longer meet 

the given channel width constraint. This is because the incremental placement 

provides stability in the channel width reduction process. By re-placing the entire 

circuit from scratch, the circuit is disturbed enough such that the channel width 

constraint an no longer be met. This suggests that the incremental placer is important 

to preserve placement stability during the iterative channel width reduction process. 

Table 6-2 shows that using the “–fast” option in VPR generates similar results 

in terms of area and critical path delay with a 7% decrease in run time. This suggests 

that the “–fast” option is generating good placements and that placement stability 

present in the incremental placer is not as important as originally hypothesized.  

Table 6-2 also shows that using fine grained congestion estimation improves 

area at the expense of increased run time. Area reductions of 2%, 4%, 5% and 6% are 

possible for cr4, cr5, cr6 and cr8 congestion radii respectively with a run time penalty 

of 55%, 39%, 48% and 65%. Once again, the final column shows that although 

superior area results are achievable using fine grained congestion estimation, the 

ability of Un/DoPack to converge to a solution is also affected. For example, 

experiment cr8 could not converge to a solution in 11 out of the 74 channel width 

constraints in the 72 hour time limit. Figure 6-7 also highlights that fine grained 

congestion estimation significantly increases run time since a larger number of 
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iterations needs to be performed to converge to a solution. Future work is needed to 

tune the Un/DoPack congestion region choices and run times. 

6.2.2 Comparison of Un/DoPack and DHPack 

This section will compare the performance of Un/DoPack to DHPack. It was 

not possible to run DHPack using the Stdev circuits because the precise design 

hierarchy of the Stedev benchmarks is unknown. Therefore, the comparison in this 

section is limited to the Meta benchmark circuits. The Meta benchmark suite was 

created stitching IP blocks together post-clustering. Since Un/DoPack has no 

partitioning requirement, the Meta benchmarks were stitched together pre-clustering. 

Functionally, the new Meta benchmarks are identical to the old set. The difference is 

the new set gives Un/DoPack the ability to merge BLEs from different IP blocks 

together. Un/DoPack was run for all 3 Meta benchmark circuits: Clique, Pipeline, and 

Independent. 

DHPack 
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Figure 6-8: MRCW for DHPack vs. Un/DoPack 
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Figure 6-8 shows the MRCW versus the channel width constraint for DHPack 

and Un/DoPack. Figure 6-8 highlights that although DHPack can target a channel 

width constraint, many solutions are generated that exceed the constraint. In contrast, 

Un/DoPack consistently meets the given channel width constraint.  
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Figure 6-9: Comparison of Area between DHPack and Un/DoPack 

Figure 6-9 show an area comparison between DHPack and Un/DoPack for the 

Meta benchmark circuits. In these graphs, the x-axis represents the routed channel 

width expressed as a percentage of the maximum channel width constraint. The 

DHPack curves appear a bit erratic in Figure 6-9 because even if a channel width 

constraint is specified, there is no guarantee that DHPack will meet that given channel 
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width constraint; in many cases, the routed channel width was greater than the channel 

width constraint. Figure 6-9 suggests that DHPack produces similar (but less 

predictable) area results for small channel width reductions whereas Un/DoPack 

generates superior area results for more aggressive channel width reductions. Future 

work includes tuning Un/DoPack to more accurately identify congestion regions for 

modest channel width reductions. 

6.3 Experimental Conclusions 

This chapter has presented an iterative CAD tool (Un/DoPack) for channel 

width reduction. Compared to DHPack, Un/DoPack does not have the requirement 

that the design hierarchy be known a priori. Un/DoPack identifies a congestion region 

and iteratively depopulates this region until a given channel width constraint is met. 

On average, a channel width reduction of 38% was achievable with an 18% penalty in 

critical path delay and a 64% increase in area for the Stdev benchmark circuits. 

Un/DoPack highlighted the importance of the interconnect variation metric for 

channel width reduction. Since large circuits are not available to the academic 

community, it is difficult for researchers to know how much interconnect variation 

exists in real world circuits. The Stdev benchmark circuits address this by providing a 

set of circuits that have a wide range of interconnect variation from virtually no 

interconnect variation (Stdev000) to an extreme amount of variation (Stdev012). The 

experimental results demonstrate that a large amount of depopulation is necessary to 

reduce channel width in circuits with low interconnect variation. Conversely, a small 
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amount of depopulation is needed to reduce channel width in circuits with high 

interconnect variation.   

The amount of interconnect variation also has consequences to FPGA 

architecture design. It was found that circuits with high interconnect variation tend to 

have large absolute channel widths. Being able to quantify the amount of interconnect 

variation is important for FPGA architects who may unnecessarily over design their 

routing networks.   

Finally, a comparison between the single pass technique DHPack and the multi 

pass technique Un/DoPack shows that Un/DoPack is much more effective at meeting 

hard channel width constraints. This is an important property in practice as mapping to 

industrial FPGAs requires hard channel width constraints. Results show that 

Un/DoPack produces superior area results for larger channel width constraints but may 

benefit from more tuning when only small channel width reductions are needed. 

6.4 Technique Limitations and Future Work 

This section will discuss some of the limitations of Un/DoPack and some 

possible directions for future work. 

6.4.1 Fast Placement Improvements 

The biggest disadvantage of Un/DoPack is the long run times associated with 

“aggressive” channel width constraints. The large portion of the run time is consumed 

by the placement and routing portions of the iterative flow. Two possible methods to 
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improve the fast placement process are to improve the incremental placement tool or 

to use a congestion-driven placer.  

6.4.1.1 Incremental Placement 

It was originally hypothesized that the incremental placer would decrease run 

times by decreasing placement time and decreasing the number of iterations required 

to converge to a solution.  Unfortunately, the incremental placer did not perform much 

better than the VPR –fast option in terms of total run time. The advantage of the 

incremental placer is placement stability. Figure 6-2 shows that the congestion peaks 

remain in the same relative locations using the incremental placer. Generating similar 

congestion profiles using the –fast option in VPR does not show this type of stability. 

Future work involves using the placement stability feature of the incremental placer to 

more quickly converge to a solution and improving incremental placement speed. 

6.4.1.2 Congestion Driven Placement 

It should also be noted that VPR placement is wirelength-driven, not 

congestion-driven. Congestion-driven placement tools such as [9] or [44] attempt to 

reduce interconnect variation by finding placements which evenly distribute 

interconnect demand across the circuit. These tools perform this by using congestion 

metrics in the placement cost function rather than enforcing depopulation. The use of 

congestion aware placement tools along with a depopulation strategy should be 

explored in the future. It may reduce the number of iterations needed by Un/DoPack to 

converge to a solution.  
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6.4.2 Benchmark Interconnect Variation Verification 

It is very difficult to predict how much interconnect variation is present in 

current industrial designs. The Stdev benchmark circuits attempt to address this by 

presenting a set of benchmark circuits that have a range of interconnect variation. 

However, the Stdev circuits are still synthetic in nature and may not be entirely 

representative of real circuits. Since the performance of Un/DoPack is dependent on 

the amount of interconnect variation and the size or granularity of different congestion 

regions, it is important to measure the amount of interconnect variation in real circuits. 

Real world designs should be analyzed to determine the extent of interconnect 

variation within each design. Studies have been published on Rent parameter variation 

across different designs [41] but not within a single design. Future work includes 

running Un/DoPack on commercial SoC designs and measuring the amount of 

interconnect variation within these circuits. 
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Chapter 7 

7 CONCLUSION AND FUTURE WORK 

Despite the over-design in the capacity of routing networks in FPGAs, there 

may still be circuits that remain un-routable in a specific FPGA family. The traditional 

solution to this problem was to switch to the next higher performance FPGA family 

(e.g. Altera Cyclone [2] to Altera Stratix[3]) resulting in significantly higher monetary 

costs. This thesis has shown that rather than migrating to the next FPGA family, a 

circuit can be made routable by using a larger FPGA device in the same family. This is 

performed by trading-off logic utilization for channel width. This thesis has presented 

two CAD tools (DHPack and Un/DoPack) capable of performing this trade-off so that 

a circuit can be mapped to a channel width constrained FPGA. In particular, the 

methods help fit hard-to-route circuits into FPGAs with limited interconnect. It does 

this at the expense of using more CLBs. Since larger devices with more CLBs are 

usually available, this is a practical trade-off. Experimental results have demonstrated 

that it is sufficient to selectively depopulate parts of a large circuit that would 

otherwise have routing congestion. Only the routing intensive portions of the circuit 

are depopulated to keep area inflation to a minimum. A summary of the maximum 

channel width reductions for DHPack and Un/DoPack are given in Table 7-1 and 

Table 7-2.  
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Channel Width and Area Changes Circuit Clustering 
Tool CW Area CW Area 

T-VPack -19% +6% -50% +129% Clique iRAC Rep. -7% -1% -29% +187% 
T-VPack -25% +2% -55% +184% Independent iRAC Rep. -17% +1% -30% +69% 
T-VPack -24% +3% -42% +184% Pipeline iRAC Rep. -15% +6% -27% +183% 
T-VPack -23% +4% -49% +166% Arithmetic 

Mean iRAC Rep. -13% +3% -29% +146% 

Table 7-1: Summary of Channel Width Decreases for DHPack 

Circuit Channel Width 
Change 

Critical Path 
Change Area Change 

Stdev000 -34% +12% +91% 
Stdev002 -42% +22% +79% 
Stdev004 -35% +21% +68% 
Stdev006 -32% +17% +86% 

Stdev008/clone -33% +17% +60% 
Stdev010 -48% +22% +39% 
Stdev012 -35% +13% +25% 

Arithmetic Mean -38% +18% +64% 

Table 7-2: Summary of Channel Width Decreases for Un/DoPack 

DHPack results show that non-uniform depopulation is important for keeping 

area inflation to a minimum during channel width reduction. DHPack is able to 

achieve, on average, MRCW decreases of 23% / 13% for T-VPack / iRAC with 4% / 

3% increases in area. On average, larger MRCW decreases of 39% / 29% are possible 

with 166% / 146% increase in area. 

On average, Un/DoPack can target channel width constraints 38% below the 

max channel width constraint with an 18% penalty in critical path delay and 64% 

increase in area. Un/DoPack results have shown that channel width reduction is “easy” 
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for circuits with high interconnect variation whereas channel width reduction is “hard” 

for circuits with low interconnect variation.  

Most importantly, both DHPack and Un/DoPack have demonstrated that un-

routable circuits can be made routable by buying an FPGA with more logic! 

7.1 Future Work 

This section will summarize the future work already presented in Section 5.4 

for DHPack and Section 6.4 for Un/DoPack. Some discussion into other possible 

methods for congestion estimation and improved FPGA modeling is then provided.  

7.1.1 DHPack Future Work 

Section 5.4 discusses the limitations and possible future work for DHPack in 

more detail. This future work is summarized below. 

• I/O Padframe Congestion: The MRCW did not track the channel width 

constraint in some cases because of congestion in the channel adjacent to the 

I/O padframe. Doubling the channel width of the I/O channels relative to the 

rest of the chip may help alleviate this problem. Another possible solution is to 

adjust the placement algorithm to be aware of localized congestion, especially 

at the I/O periphery. 

• IP Block Granularity Too Coarse: DHPack relies on a pre-defined IP 

block partitioning to identify congestion regions. This strict partitioning 

requirement does not allow the exploration of other possible partitioning 
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methods which may more accurately identify congestion regions. A congestion 

method that does not rely on the design hierarchy was presented in Chapter 6 

(Un/DoPack).  

• Hard Channel Width Constraints: DHPack may generate MRCW results 

greater than the channel width constraint. For practical purposes, channel 

width reduction tools must be able to target hard channel width constraints. 

This issue was addressed in Chapter 6 (Un/DoPack).  

• Congestion Profile Run Time Long: Creating the congestion profile for 

each IP block can be a time consuming process. Each possible BLE-limit size 

for each IP block must be individually placed and routed. Faster methods of 

computing congestion were suggested in Chapter 6 (Un/DoPack) and is 

discussed at the end of this chapter. 

7.1.2 Un/DoPack Future Work 

Section 6.4 discusses the limitations and possible future work for Un/DoPack 

in more detail. This future work is summarized below. 

• Fast Placement Improvements: The largest contributor to the long run 

times of Un/DoPack is the iterative placement and routing step. An 

incremental placement tool (developed by David Leong at UBC) attempts to 

preserve placement stability to improve run time. However, experimental 

results showed that VPR “-fast” option runs just as quickly. Work continues in 

the UBC SoC group to use the placement stability of the incremental placer to 
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improve run times. Use of a congestion driven placement tool ([9], [44]) may 

also improve MRCW and area results by more evenly distributing interconnect 

demand and reducing interconnect variation. It may also improve Un/DoPack 

run-time if fewer iterations are required. 

• Benchmark Interconnect Variation: Since it is unknown how much 

interconnect variation exists in real SoC designs, the Stdev benchmarks were 

created to represent a set of circuits with a wide range of interconnect 

variation. However, the Stdv benchmark circuits are still synthetic in nature 

and may not accurately represent commercial SoC designs. It is important to 

quantify how much interconnect variation exists in real world circuit and to 

evaluate Un/DoPack on these circuits. 

7.1.3 System Level Interconnect Prediction 

Because of the orthogonal nature of the different steps of the FPGA CAD flow, 

designers must often go back and forth between synthesis, placement and routing to 

satisfy user specified criteria (e.g. timing constraints). To help alleviate the large effort 

typically used to meet these constraints, the use of a priori interconnect estimation 

methods have been widely studied to help predict which regions of a circuit will be 

difficult to route. This information is then used to help drive the synthesis, placement 

and routing process. These same methods could also be used to help determine 

whether a given hard channel width constraint can be met without having to do a 

complete place and route. Some of these techniques include probabilistic methods 

[35], post-placement methods [25], and a priori (pre-placement) methods [5]. These 
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techniques should be further investigated to determine whether the run time of the 

iterative portion of the Un/DoPack flow can be improved. 

7.1.4 Improved FPGA Modeling 

The FPGA model used in this thesis consisted of programmable logic elements 

and programmable routing elements.  
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Figure 7-1: FPGA Architecture with Macro Blocks 
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However, most commercial FPGAs contain an increasingly larger number of hard 

macro blocks. These macro blocks can include embedded memories, multipliers, or 

high speed I/Os. Figure 7-1 shows an example of FPGA architecture with macro 

blocks. The channel width reduction techniques described in this thesis assumes that 

logic can be spread out uniformly across the FPGA. However, in an FPGA 

architecture with macro blocks, the logic blocks do not have as much freedom to 

migrate to other locations. I/O connections to the macro blocks can also be a source of 

routing congestion. Since depopulation of macro blocks is not possible, other methods 

to reduce congestion around the periphery of these blocks needs to be investigated. 
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Appendix A – Stdev Benchmark Circuit Parameters 

 

IP Block 000 002 004 006 008 010 012 Num BLEs
bigkey.blif 0.62 0.58 0.55 0.51 0.48 0.44 0.40 915
dsip.blif 0.62 0.59 0.56 0.52 0.49 0.46 0.42 912
s38584.1.blif 0.62 0.60 0.57 0.55 0.52 0.50 0.48 5411
tseng.blif 0.62 0.60 0.58 0.56 0.54 0.52 0.50 1182
elliptic.blif 0.62 0.61 0.59 0.58 0.56 0.55 0.53 3255
s38417.blif 0.62 0.61 0.59 0.58 0.56 0.55 0.53 4555
diffeq.blif 0.62 0.61 0.59 0.58 0.57 0.56 0.54 1245
des.blif 0.62 0.61 0.60 0.59 0.58 0.57 0.57 554
s298.blif 0.62 0.61 0.61 0.60 0.60 0.59 0.58 1309
frisc.blif 0.62 0.62 0.62 0.61 0.61 0.61 0.61 3814
alu4.blif 0.62 0.63 0.63 0.64 0.65 0.65 0.66 1173
clma.blif 0.62 0.63 0.63 0.64 0.65 0.66 0.66 6273
misex3.blif 0.62 0.63 0.65 0.66 0.67 0.69 0.70 1158
spla.blif 0.62 0.64 0.65 0.66 0.68 0.69 0.71 3005
pdc.blif 0.62 0.64 0.65 0.67 0.69 0.70 0.72 3629
seq.blif 0.62 0.64 0.66 0.68 0.70 0.71 0.73 1325
ex5p.blif 0.62 0.64 0.66 0.68 0.70 0.72 0.75 740
apex2.blif 0.62 0.64 0.67 0.69 0.72 0.74 0.77 1478
ex1010.blif 0.62 0.65 0.67 0.70 0.73 0.75 0.78 3093
apex4.blif 0.62 0.65 0.67 0.70 0.73 0.75 0.78 969

Rent Parameters (Stdev)
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Appendix B – DHPack Simulation Results 

DHPack Non-Uniform Depopulation (T-VPack)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs average channel 
width

Clique
95 93 1.41E+08 2.35E-08 2550 83.14
90 82 1.35E+08 2.55E-08 2576 79.34
85 85 1.39E+08 3.09E-08 2605 80.21
80 79 1.38E+08 3.55E-08 2692 76.08
75 77 1.41E+08 2.39E-08 2770 73.95
70 75 1.49E+08 2.30E-08 2939 71.44
65 73 1.65E+08 3.46E-08 3268 67.33
60 69 1.90E+08 2.34E-08 3882 62.49
55 57 2.15E+08 2.34E-08 4651 54.14
50 52 2.44E+08 2.37E-08 5404 50.55

Pipeline
95 102 1.53E+08 2.34E-08 2550 88.26
90 90 1.48E+08 2.36E-08 2576 85.21
85 93 1.48E+08 2.92E-08 2605 88.21
80 82 1.46E+08 2.32E-08 2692 78.52
75 82 1.53E+08 2.23E-08 2770 78.57
70 76 1.57E+08 2.27E-08 2939 74.61
65 73 1.66E+08 2.30E-08 3268 70.14
60 64 1.91E+08 2.36E-08 3882 62.37
55 55 2.29E+08 2.38E-08 4651 54.35
50 56 2.62E+08 2.33E-08 5404 53.19

Independent
95 106 1.47E+08 2.40E-08 2550 94.24
90 99 1.40E+08 2.39E-08 2576 92.21
85 92 1.46E+08 2.63E-08 2605 86.27
80 87 1.41E+08 2.31E-08 2692 83.20
75 89 1.45E+08 2.23E-08 2770 83.21
70 81 1.50E+08 2.62E-08 2939 76.68
65 71 1.65E+08 2.26E-08 3268 67.78
60 66 1.87E+08 2.77E-08 3882 63.95
55 67 2.13E+08 2.48E-08 4651 59.41
50 65 2.48E+08 2.35E-08 5404 56.55  
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DHPack Non-Uniform Depopulation (iRAC Replica)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs average channel 
width

Clique
80 76 1.30E+08 2.67E-08 2544 71.41
76 74 1.29E+08 2.73E-08 2553 70.84
72 71 1.28E+08 2.86E-08 2588 68.63
68 76 1.34E+08 2.87E-08 2604 71.41
64 71 1.42E+08 2.67E-08 2853 66.33
60 68 1.60E+08 2.53E-08 3273 63.03
56 67 1.83E+08 2.57E-08 3765 59.22
52 62 2.03E+08 2.59E-08 4273 54.96
48 66 2.35E+08 2.50E-08 4897 55.81
44 58 2.65E+08 2.62E-08 5758 48.56
40 54 3.72E+08 2.67E-08 8219 43.59

Pipeline
80 70 2.13E+08 2.77E-08 2544 60.02
76 72 2.18E+08 2.69E-08 2553 61.05
72 82 2.36E+08 2.87E-08 2588 63.91
68 76 2.26E+08 2.67E-08 2604 63.10
64 67 2.18E+08 2.69E-08 2853 57.98
60 58 2.16E+08 2.58E-08 3273 53.19
56 55 2.26E+08 2.58E-08 3765 51.38
52 59 2.46E+08 2.52E-08 4273 52.78
48 57 2.62E+08 2.52E-08 4897 50.06
44 53 2.81E+08 2.56E-08 5758 47.12
40 49 3.61E+08 2.63E-08 8219 42.16

Independent
80 85 1.38E+08 2.57E-08 2544 78.29
76 81 1.36E+08 2.70E-08 2553 76.97
72 82 1.38E+08 2.80E-08 2588 76.59
68 76 1.37E+08 2.68E-08 2604 72.82
64 72 1.46E+08 2.68E-08 2853 69.78
60 67 1.63E+08 2.52E-08 3273 64.29
56 65 1.84E+08 2.59E-08 3765 60.30
52 65 2.09E+08 2.50E-08 4273 58.62
48 63 2.35E+08 2.56E-08 4897 54.96
44 62 2.75E+08 2.54E-08 5758 50.34
40 62 3.91E+08 2.57E-08 8219 43.75  
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DHPack Uniform Depopulation (T-VPack)

channel width 
constraint

routed channel 
width

area (#min size 
transistors) critical path (s) # of CLBs

Clique
95 106 1.48E+08 2.91E-08 2539
90 105 1.56E+08 3.97E-08 2709
85 97 1.57E+08 4.94E-08 2901
80 91 1.76E+08 4.68E-08 3385
75 86 1.83E+08 4.32E-08 3692
70 83 1.96E+08 5.09E-08 4062
65 74 2.29E+08 3.66E-08 5084
60 62 2.79E+08 5.64E-08 6776
55 51 3.82E+08 6.92E-08 10172
50 44 4.87E+08 1.19E-07 13500
45 40 7.07E+08 6.96E-08 20250

Pipeline
95 101 1.46E+08 2.55E-08 2539
90 99 1.52E+08 2.74E-08 2708
85 95 1.57E+08 4.53E-08 2901
80 87 1.73E+08 2.79E-08 3384
75 85 1.83E+08 4.62E-08 3692
70 78 1.93E+08 5.23E-08 4064
65 74 2.29E+08 3.70E-08 5082
60 63 2.80E+08 5.16E-08 6775
55 51 3.83E+08 4.78E-08 10172
50 43 4.85E+08 6.53E-08 13500
45 time exceeded time exceeded time exceeded time exceeded

Independent
95 104 1.51E+08 3.31E-08 2539
90 99 1.56E+08 3.46E-08 2708
85 100 1.63E+08 2.84E-08 2901
80 87 1.76E+08 2.98E-08 3386
75 87 1.88E+08 4.01E-08 3692
70 79 1.97E+08 5.39E-08 4063
65 67 2.25E+08 5.56E-08 5084
60 65 2.86E+08 2.75E-08 6778
55 64 4.06E+08 2.49E-08 10172
50 60 5.21E+08 2.33E-08 13500
45 57 7.54E+08 3.03E-08 20250
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DHPack Uniform Depopulation (iRAC Replica)

channel width 
constraint

routed channel 
width

area (#min size 
transistors) critical path (s) # of CLBs

Clique
80 79 1.31E+08 7.07E-08 2533
76 77 1.35E+08 4.49E-08 2702
72 69 1.59E+08 5.09E-08 3378
68 73 1.73E+08 6.87E-08 3685
64 61 1.95E+08 5.49E-08 4507
60 62 2.17E+08 4.33E-08 5071
56 51 2.66E+08 4.74E-08 6763
52 45 3.05E+08 1.09E-07 8125
48 45 3.05E+08 1.09E-07 8125
44 43 3.70E+08 7.94E-08 10158
40 39 4.77E+08 1.17E-07 13500

Pipeline
80 81 1.33E+08 2.77E-08 2533
76 80 1.37E+08 3.28E-08 2702
72 70 1.60E+08 3.33E-08 3378
68 69 1.70E+08 3.39E-08 3685
64 62 1.97E+08 4.07E-08 4507
60 60 2.15E+08 4.22E-08 5071
56 51 2.66E+08 4.69E-08 6764
52 47 3.08E+08 3.25E-08 8124
48 47 3.08E+08 3.25E-08 8124
44 45 3.74E+08 6.77E-08 10159
40 42 4.84E+08 6.98E-08 13500

Independent
80 84 1.38E+08 3.90E-08 2533
76 82 1.42E+08 3.40E-08 2702
72 72 1.65E+08 3.45E-08 3378
68 68 1.73E+08 4.38E-08 3685
64 65 2.02E+08 4.17E-08 4507
60 64 2.22E+08 2.72E-08 5071
56 63 2.83E+08 2.66E-08 6764
52 63 3.32E+08 2.66E-08 8125
48 63 3.32E+08 2.66E-08 8125
44 62 4.03E+08 2.74E-08 10160
40 61 5.23E+08 2.64E-08 13500  
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Appendix C – Un/DoPack Simulation Results 

Un/DoPack (Baseline)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7695
95 95 2.03E+08 7.23E-08 3349 10199
90 90 2.31E+08 8.11E-08 3892 14630
85 85 2.19E+08 7.61E-08 3820 13637
80 80 2.84E+08 7.70E-08 5067 32156
75 75 3.28E+08 8.01E-08 6061 47542
70 70 3.79E+08 8.56E-08 7214 132652
65 65 3.78E+08 8.01E-08 7394 172100

Stdev002
105 103 2.04E+08 6.79E-08 3157 6995
100 100 2.08E+08 7.08E-08 3360 9937
95 95 2.09E+08 7.17E-08 3428 11617
90 90 2.03E+08 6.92E-08 3424 11298
85 85 1.99E+08 7.07E-08 3473 11085
80 80 2.40E+08 7.37E-08 4310 17509
75 75 2.57E+08 7.68E-08 4728 25406
70 70 2.78E+08 7.87E-08 5272 36858
65 65 3.11E+08 7.97E-08 6057 83070
60 60 3.64E+08 8.29E-08 7339 117923

Stdev004
100 100 1.98E+08 6.87E-08 3148 8184
95 95 2.03E+08 7.10E-08 3328 9163
90 90 1.97E+08 6.87E-08 3310 8290
85 85 2.12E+08 7.21E-08 3681 13711
80 80 2.49E+08 7.42E-08 4479 21905
75 75 2.95E+08 7.86E-08 5455 36421
70 70 3.35E+08 8.39E-08 6374 60015
65 65 3.33E+08 8.34E-08 6487 97740

Stdev006
95 95 1.94E+08 7.22E-08 3139 8043
90 90 2.11E+08 7.37E-08 3571 11731
85 85 2.33E+08 7.23E-08 4067 15749
80 80 2.63E+08 7.68E-08 4727 22742
75 75 2.62E+08 7.78E-08 4786 28865
70 70 3.33E+08 7.62E-08 6306 63077
65 65 3.59E+08 8.42E-08 7011 116596  
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Un/DoPack (Baseline)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 8278
120 120 2.27E+08 7.27E-08 3333 9147
115 114 2.23E+08 7.60E-08 3357 8767
110 110 2.33E+08 7.41E-08 3593 11125
105 105 2.28E+08 7.57E-08 3575 11482
100 100 2.28E+08 7.40E-08 3644 13311
95 95 2.47E+08 7.54E-08 4086 19057
90 90 2.70E+08 7.88E-08 4578 25888
85 85 2.79E+08 8.16E-08 4891 37240
80 80 2.93E+08 7.89E-08 5248 55563
75 75 3.37E+08 8.06E-08 6225 104358
70 70 3.57E+08 8.37E-08 6738 145958

Stdev010
165 162 2.61E+08 7.08E-08 3152 9013
160 155 2.67E+08 7.29E-08 3335 9740
155 151 2.63E+08 7.64E-08 3341 11463
150 147 2.57E+08 7.42E-08 3326 11033
145 145 2.52E+08 7.66E-08 3312 11153
140 139 2.47E+08 7.70E-08 3333 11255
135 135 2.42E+08 7.61E-08 3325 11972
130 130 2.45E+08 8.07E-08 3451 13388
125 125 2.41E+08 7.41E-08 3459 14454
120 120 2.44E+08 7.73E-08 3595 17004
115 115 2.44E+08 7.78E-08 3638 21693
110 110 2.55E+08 7.96E-08 3915 27715
105 105 2.89E+08 8.18E-08 4516 37099
100 100 2.67E+08 8.30E-08 4281 47924
95 95 3.21E+08 8.29E-08 5307 68951
90 90 3.26E+08 8.29E-08 5500 89670
85 85 3.63E+08 8.63E-08 6360 127204

Stdev012
155 153 2.52E+08 7.50E-08 3163 11323
150 148 2.56E+08 8.30E-08 3320 12837
145 144 2.62E+08 7.62E-08 3480 15609
140 139 2.56E+08 7.77E-08 3461 14954
135 135 2.51E+08 7.94E-08 3451 15965
130 130 2.54E+08 8.10E-08 3579 20082
125 125 2.65E+08 8.16E-08 3813 24351
120 119 2.67E+08 7.94E-08 3917 29451
115 115 2.61E+08 8.12E-08 3909 31113
110 110 2.89E+08 8.20E-08 4473 47925
105 105 2.92E+08 8.52E-08 4597 63338
100 100 3.16E+08 8.44E-08 5060 117460  
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Un/DoPack (PlaceScratch)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 time exceeded time exceeded time exceeded time exceeded N/A
95 95 2.03E+08 7.15E-08 3349 N/A
90 90 2.31E+08 7.14E-08 3892 N/A
85 time exceeded time exceeded time exceeded time exceeded N/A
80 80 2.84E+08 7.59E-08 5067 N/A
75 75 3.28E+08 7.60E-08 6061 N/A
70 70 3.79E+08 8.10E-08 7214 N/A
65 time exceeded time exceeded time exceeded time exceeded N/A

Stdev002
105 103 2.04E+08 6.77E-08 3157 N/A
100 99 2.08E+08 6.89E-08 3360 N/A
95 94 2.09E+08 7.19E-08 3428 N/A
90 90 2.03E+08 6.98E-08 3424 N/A
85 85 1.99E+08 7.15E-08 3473 N/A
80 80 2.40E+08 7.45E-08 4310 N/A
75 75 2.57E+08 7.15E-08 4728 N/A
70 70 2.78E+08 7.37E-08 5272 N/A
65 65 3.11E+08 7.63E-08 6057 N/A
60 time exceeded time exceeded time exceeded time exceeded N/A

Stdev004
100 time exceeded time exceeded time exceeded time exceeded N/A
95 94 2.03E+08 7.13E-08 3328 N/A
90 90 1.97E+08 7.26E-08 3310 N/A
85 85 2.12E+08 7.14E-08 3681 N/A
80 80 2.49E+08 7.28E-08 4479 N/A
75 75 2.95E+08 7.47E-08 5455 N/A
70 70 3.35E+08 7.51E-08 6374 N/A
65 time exceeded time exceeded time exceeded time exceeded N/A

Stdev006
95 time exceeded time exceeded time exceeded time exceeded N/A
90 90 2.11E+08 7.00E-08 3571 N/A
85 85 2.33E+08 7.82E-08 4067 N/A
80 80 2.63E+08 7.30E-08 4727 N/A
75 time exceeded time exceeded time exceeded time exceeded N/A
70 70 3.33E+08 7.75E-08 6306 N/A
65 65 3.59E+08 8.25E-08 7011 N/A  
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Un/DoPack (PlaceScratch)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 123 2.23E+08 7.08E-08 3151 N/A
120 118 2.27E+08 6.93E-08 3333 N/A
115 115 2.23E+08 7.01E-08 3357 N/A
110 109 2.33E+08 6.98E-08 3593 N/A
105 104 2.28E+08 7.05E-08 3575 N/A
100 100 2.28E+08 7.58E-08 3644 N/A
95 95 2.47E+08 7.26E-08 4086 N/A
90 time exceeded time exceeded time exceeded time exceeded N/A
85 time exceeded time exceeded time exceeded time exceeded N/A
80 time exceeded time exceeded time exceeded time exceeded N/A
75 time exceeded time exceeded time exceeded time exceeded N/A
70 70 3.57E+08 7.80E-08 6738 N/A

Stdev010
165 163 2.61E+08 7.20E-08 3152 N/A
160 154 2.67E+08 7.27E-08 3335 N/A
155 147 2.63E+08 7.50E-08 3341 N/A
150 145 2.57E+08 7.87E-08 3326 N/A
145 143 2.52E+08 7.45E-08 3312 N/A
140 139 2.47E+08 7.29E-08 3333 N/A
135 135 2.42E+08 7.51E-08 3325 N/A
130 129 2.45E+08 7.44E-08 3451 N/A
125 124 2.41E+08 7.43E-08 3459 N/A
120 119 2.44E+08 7.50E-08 3595 N/A
115 114 2.44E+08 7.49E-08 3638 N/A
110 110 2.55E+08 7.47E-08 3915 N/A
105 105 2.89E+08 7.69E-08 4516 N/A
100 time exceeded time exceeded time exceeded time exceeded N/A
95 95 3.21E+08 8.33E-08 5307 N/A
90 90 3.26E+08 7.90E-08 5500 N/A
85 time exceeded time exceeded time exceeded time exceeded N/A

Stdev012
155 155 2.52E+08 7.60E-08 3163 N/A
150 148 2.56E+08 8.37E-08 3320 N/A
145 142 2.62E+08 8.44E-08 3480 N/A
140 137 2.56E+08 8.71E-08 3461 N/A
135 135 2.51E+08 7.41E-08 3451 N/A
130 129 2.54E+08 7.54E-08 3579 N/A
125 124 2.65E+08 7.71E-08 3813 N/A
120 time exceeded time exceeded time exceeded time exceeded N/A
115 115 2.61E+08 7.68E-08 3909 N/A
110 time exceeded time exceeded time exceeded time exceeded N/A
105 time exceeded time exceeded time exceeded time exceeded N/A
100 time exceeded time exceeded time exceeded time exceeded N/A  

 
 



 93

Un/DoPack (--fast)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7898
95 95 2.09E+08 7.27E-08 3423 9678
90 90 2.32E+08 7.29E-08 3918 15691
85 85 2.25E+08 7.25E-08 3901 16422
80 80 2.95E+08 7.60E-08 5329 30228
75 75 3.42E+08 7.66E-08 6265 67524
70 70 4.01E+08 7.99E-08 7572 115332
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 7520
100 98 2.08E+08 7.19E-08 3360 8613
95 95 2.04E+08 6.86E-08 3359 7910
90 90 2.18E+08 7.16E-08 3670 11531
85 85 2.12E+08 7.56E-08 3683 11604
80 80 2.34E+08 7.32E-08 4204 16649
75 75 2.47E+08 7.39E-08 4523 26645
70 70 3.26E+08 7.88E-08 6197 54553
65 65 3.52E+08 7.75E-08 6881 92238
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 7856
95 95 2.03E+08 7.28E-08 3328 7805
90 90 2.05E+08 7.06E-08 3467 8616
85 85 2.19E+08 7.33E-08 3796 11303
80 80 2.34E+08 7.22E-08 4189 17412
75 75 2.47E+08 7.56E-08 4520 19596
70 70 3.50E+08 7.64E-08 6624 46381
65 65 3.60E+08 7.65E-08 7038 61765

Stdev006
95 95 1.94E+08 7.22E-08 3139 7113
90 90 1.97E+08 7.12E-08 3318 7442
85 85 2.26E+08 7.34E-08 3932 14061
80 80 2.42E+08 8.03E-08 4350 15446
75 75 2.49E+08 7.67E-08 4576 18592
70 70 3.51E+08 8.26E-08 6665 65325
65 65 3.76E+08 8.07E-08 7337 71711  

 
 



 94

Un/DoPack (--fast)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 8781
120 118 2.27E+08 7.13E-08 3333 9990
115 113 2.23E+08 7.13E-08 3357 8753
110 110 2.16E+08 7.37E-08 3310 8108
105 105 2.13E+08 7.43E-08 3334 8271
100 100 2.30E+08 7.40E-08 3713 12261
95 95 2.45E+08 7.23E-08 4012 16803
90 90 2.84E+08 7.58E-08 4780 25825
85 85 3.11E+08 7.60E-08 5431 49176
80 80 2.92E+08 7.79E-08 5228 52517
75 75 2.88E+08 7.75E-08 5316 68675
70 70 3.61E+08 8.16E-08 6871 119092

Stdev010
165 162 2.61E+08 7.08E-08 3152 8653
160 155 2.67E+08 7.18E-08 3335 8605
155 152 2.63E+08 7.21E-08 3341 9248
150 145 2.57E+08 7.28E-08 3326 9362
145 145 2.52E+08 7.93E-08 3312 10544
140 140 2.47E+08 7.40E-08 3333 11555
135 135 2.42E+08 7.67E-08 3325 12727
130 128 2.45E+08 7.42E-08 3436 12252
125 125 2.33E+08 7.39E-08 3360 11105
120 120 2.60E+08 7.49E-08 3838 19516
115 115 2.46E+08 7.56E-08 3693 19576
110 110 2.46E+08 8.25E-08 3761 25958
105 105 2.92E+08 8.34E-08 4606 38219
100 100 2.76E+08 8.25E-08 4463 42320
95 95 2.86E+08 7.97E-08 4732 55761
90 90 3.38E+08 8.12E-08 5742 99029
85 85 3.55E+08 8.55E-08 6234 113725

Stdev012
155 153 2.52E+08 7.50E-08 3163 9588
150 148 2.56E+08 7.74E-08 3320 10721
145 142 2.70E+08 7.54E-08 3586 16121
140 138 2.56E+08 8.52E-08 3463 13294
135 134 2.51E+08 7.70E-08 3449 14334
130 130 2.54E+08 7.79E-08 3589 17002
125 125 2.56E+08 8.82E-08 3660 20452
120 120 3.01E+08 7.72E-08 4428 38847
115 115 2.62E+08 8.07E-08 3935 38892
110 110 3.05E+08 8.44E-08 4671 69455
105 105 3.17E+08 8.48E-08 5010 77107
100 time exceeded time exceeded time exceeded time exceeded time exceeded  

 



 95

Un/DoPack (Fine Grain cr4)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 8471
95 95 2.02E+08 7.21E-08 3300 12317
90 90 2.38E+08 7.43E-08 3998 26777
85 85 2.38E+08 7.31E-08 4101 36121
80 80 2.68E+08 7.96E-08 4783 62678
75 75 2.84E+08 8.02E-08 5186 105735
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 7978
100 100 2.00E+08 7.25E-08 3198 8270
95 95 2.02E+08 7.02E-08 3313 11501
90 90 2.02E+08 7.17E-08 3389 13099
85 85 2.12E+08 7.17E-08 3678 18578
80 80 2.32E+08 7.25E-08 4140 35017
75 75 2.55E+08 7.68E-08 4682 50968
70 70 2.92E+08 8.34E-08 5489 155298
65 time exceeded time exceeded time exceeded time exceeded time exceeded
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 8234
95 95 2.02E+08 7.28E-08 3294 9309
90 90 1.95E+08 6.99E-08 3261 9283
85 85 1.91E+08 7.21E-08 3318 12600
80 80 2.39E+08 7.38E-08 4249 34324
75 75 2.55E+08 7.37E-08 4652 51740
70 70 3.02E+08 7.73E-08 5710 101079
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 7134
90 90 2.16E+08 7.18E-08 3625 14185
85 85 2.12E+08 7.24E-08 3685 21663
80 80 2.54E+08 9.49E-08 4529 35402
75 75 2.77E+08 7.67E-08 5069 70393
70 70 3.11E+08 7.50E-08 5918 143285
65 time exceeded time exceeded time exceeded time exceeded time exceeded  

 
 



 96

Un/DoPack (Fine Grain cr4)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7509
120 120 2.25E+08 7.26E-08 3257 10320
115 115 2.21E+08 7.87E-08 3278 10641
110 110 2.25E+08 7.73E-08 3479 16077
105 105 2.20E+08 7.55E-08 3470 15926
100 100 2.36E+08 7.44E-08 3792 25533
95 95 2.32E+08 7.46E-08 3820 29578
90 90 2.32E+08 7.83E-08 3902 33066
85 85 2.79E+08 7.92E-08 4866 74683
80 80 3.01E+08 7.85E-08 5381 131647
75 75 3.35E+08 7.93E-08 6157 228512
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 8183
160 159 2.57E+08 7.31E-08 3189 9400
155 154 2.53E+08 7.73E-08 3190 9244
150 149 2.48E+08 7.78E-08 3223 10372
145 143 2.51E+08 7.40E-08 3289 11724
140 140 2.46E+08 7.76E-08 3295 14032
135 135 2.43E+08 8.10E-08 3361 16368
130 130 2.44E+08 7.99E-08 3404 17554
125 125 2.48E+08 7.57E-08 3549 26880
120 120 2.42E+08 8.16E-08 3550 24782
115 115 2.45E+08 7.66E-08 3641 32658
110 110 2.40E+08 8.42E-08 3705 44565
105 105 2.67E+08 7.97E-08 4225 74664
100 100 2.85E+08 8.19E-08 4622 127301
95 time exceeded time exceeded time exceeded time exceeded time exceeded
90 time exceeded time exceeded time exceeded time exceeded time exceeded
85 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev012
155 153 2.52E+08 7.50E-08 3163 11326
150 148 2.47E+08 8.08E-08 3195 11960
145 144 2.50E+08 7.59E-08 3269 14902
140 140 2.53E+08 7.92E-08 3369 19045
135 135 2.42E+08 7.72E-08 3336 18308
130 130 2.54E+08 7.69E-08 3579 29567
125 125 2.63E+08 8.58E-08 3728 43890
120 120 2.60E+08 8.03E-08 3842 61118
115 115 2.78E+08 8.17E-08 4171 89943
110 110 3.07E+08 8.63E-08 4743 158373
105 105 3.01E+08 8.25E-08 4754 188420
100 100 2.99E+08 8.01E-08 4786 198160  

 
 



 97

Un/DoPack (Fine Grain cr5)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7308
95 95 2.02E+08 7.30E-08 3291 9844
90 90 2.16E+08 7.48E-08 3604 20066
85 85 2.26E+08 7.35E-08 3943 27829
80 80 2.79E+08 7.54E-08 5035 59611
75 75 3.11E+08 8.05E-08 5726 153841
70 70 3.32E+08 7.94E-08 6250 210952
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 8614
100 100 2.00E+08 6.95E-08 3211 7978
95 95 2.01E+08 7.28E-08 3257 8735
90 90 2.03E+08 7.21E-08 3405 14688
85 85 2.10E+08 7.05E-08 3615 18542
80 80 2.27E+08 7.59E-08 4078 36797
75 75 2.40E+08 8.05E-08 4366 51391
70 70 2.70E+08 7.33E-08 5094 112252
65 65 2.99E+08 7.86E-08 5782 183348
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 6747
95 95 2.01E+08 6.97E-08 3282 10872
90 90 1.97E+08 6.97E-08 3332 9901
85 85 1.97E+08 7.27E-08 3415 11875
80 80 2.24E+08 7.33E-08 3984 30918
75 75 2.63E+08 7.57E-08 4829 81675
70 70 2.86E+08 7.62E-08 5423 88617
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 6560
90 90 2.11E+08 7.62E-08 3568 17801
85 85 2.10E+08 7.16E-08 3615 17388
80 80 2.46E+08 7.20E-08 4374 36987
75 75 2.63E+08 7.41E-08 4820 72897
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 65 3.02E+08 7.86E-08 5868 191051  

 
 



 98

Un/DoPack (Fine Grain cr5)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7151
120 120 2.19E+08 7.40E-08 3203 8066
115 115 2.16E+08 7.29E-08 3238 11009
110 110 2.15E+08 7.33E-08 3261 12225
105 105 2.11E+08 7.64E-08 3276 10467
100 100 2.28E+08 7.55E-08 3664 26911
95 95 2.18E+08 7.56E-08 3588 26431
90 90 2.48E+08 7.78E-08 4193 49063
85 85 2.63E+08 7.89E-08 4578 82963
80 time exceeded time exceeded time exceeded time exceeded time exceeded
75 75 3.09E+08 7.75E-08 5670 222197
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 7852
160 159 2.57E+08 7.41E-08 3204 8832
155 152 2.53E+08 7.36E-08 3206 8858
150 150 2.48E+08 7.72E-08 3203 9002
145 144 2.44E+08 7.74E-08 3243 12513
140 140 2.46E+08 7.52E-08 3297 12264
135 135 2.42E+08 7.63E-08 3317 13467
130 130 2.36E+08 7.99E-08 3299 16727
125 125 2.41E+08 7.48E-08 3459 23626
120 120 2.41E+08 7.49E-08 3490 28776
115 115 2.44E+08 7.79E-08 3614 31842
110 110 2.47E+08 8.19E-08 3770 46464
105 105 2.59E+08 7.77E-08 4077 62333
100 100 2.58E+08 8.13E-08 4141 83755
95 95 2.92E+08 8.27E-08 4790 165006
90 time exceeded time exceeded time exceeded time exceeded time exceeded
85 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev012
155 153 2.52E+08 7.50E-08 3163 9160
150 148 2.48E+08 8.23E-08 3209 12823
145 144 2.50E+08 7.70E-08 3265 12630
140 140 2.39E+08 8.27E-08 3244 13346
135 135 2.41E+08 7.98E-08 3283 17650
130 130 2.44E+08 7.77E-08 3392 21991
125 125 2.50E+08 8.17E-08 3598 40364
120 120 2.49E+08 8.07E-08 3634 60756
115 115 2.63E+08 8.20E-08 3966 76521
110 110 2.78E+08 8.35E-08 4243 132110
105 105 3.09E+08 8.73E-08 4890 200707
100 100 3.16E+08 8.56E-08 5068 210189  

 



 99

Un/DoPack (Fine Grain cr6)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 8465
95 95 1.95E+08 7.38E-08 3192 9961
90 90 2.04E+08 7.52E-08 3450 15171
85 85 2.24E+08 7.37E-08 3855 33693
80 80 2.47E+08 7.21E-08 4427 57179
75 75 2.80E+08 7.59E-08 5153 93545
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 7052
100 100 2.00E+08 6.97E-08 3201 9611
95 95 2.01E+08 6.94E-08 3276 11680
90 90 2.10E+08 7.69E-08 3516 17716
85 85 2.11E+08 7.28E-08 3647 23903
80 80 2.12E+08 7.22E-08 3778 29967
75 75 2.64E+08 8.53E-08 4851 90594
70 70 2.69E+08 7.52E-08 5063 95327
65 time exceeded time exceeded time exceeded time exceeded time exceeded
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 6650
95 95 1.95E+08 6.92E-08 3192 7396
90 90 1.97E+08 7.09E-08 3335 10676
85 85 2.17E+08 7.46E-08 3760 22456
80 80 2.26E+08 7.45E-08 4048 32613
75 75 2.25E+08 7.41E-08 4102 44358
70 70 2.84E+08 7.75E-08 5336 114758
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 6836
90 90 2.02E+08 7.07E-08 3367 11580
85 85 2.18E+08 8.32E-08 3790 27344
80 80 2.45E+08 7.88E-08 4362 55837
75 75 2.41E+08 7.40E-08 4422 51874
70 70 3.08E+08 8.10E-08 5804 176043
65 65 3.25E+08 8.11E-08 6306 236774  

 
 



 100

Un/DoPack (Fine Grain cr6)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7515
120 119 2.19E+08 7.68E-08 3195 8111
115 115 2.15E+08 7.11E-08 3208 8971
110 110 2.25E+08 7.35E-08 3462 17234
105 105 2.20E+08 7.30E-08 3458 15662
100 100 2.19E+08 7.72E-08 3488 19644
95 95 2.24E+08 7.38E-08 3698 27897
90 90 2.45E+08 8.46E-08 4112 50205
85 85 2.53E+08 7.81E-08 4380 80109
80 80 2.70E+08 7.68E-08 4836 139538
75 75 3.00E+08 8.58E-08 5494 212419
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 8185
160 157 2.57E+08 7.93E-08 3196 9297
155 153 2.53E+08 7.46E-08 3196 9347
150 148 2.47E+08 7.58E-08 3195 10095
145 144 2.44E+08 7.65E-08 3225 10892
140 140 2.45E+08 7.79E-08 3263 11996
135 134 2.40E+08 7.62E-08 3266 14322
130 130 2.36E+08 7.81E-08 3292 16738
125 125 2.41E+08 7.75E-08 3462 22348
120 120 2.41E+08 7.96E-08 3503 28773
115 115 2.36E+08 8.13E-08 3498 28329
110 110 2.41E+08 8.19E-08 3717 48848
105 105 2.41E+08 7.76E-08 3773 53242
100 100 2.60E+08 8.38E-08 4200 104875
95 95 2.62E+08 8.20E-08 4321 113149
90 90 2.70E+08 8.54E-08 4570 163037
85 85 2.79E+08 8.05E-08 4890 212494

Stdev012
155 153 2.52E+08 7.50E-08 3163 9603
150 149 2.48E+08 8.20E-08 3202 11319
145 144 2.51E+08 7.74E-08 3277 15534
140 138 2.47E+08 7.96E-08 3325 16067
135 135 2.43E+08 8.18E-08 3349 21361
130 130 2.45E+08 7.84E-08 3452 25725
125 125 2.41E+08 7.97E-08 3470 35349
120 120 2.66E+08 8.41E-08 3871 69080
115 115 2.69E+08 8.56E-08 4026 99555
110 110 2.71E+08 8.47E-08 4150 147757
105 105 2.98E+08 8.72E-08 4656 192552
100 100 3.11E+08 8.64E-08 5034 252139  

 



 101

Un/DoPack (Fine Grain cr8)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev000
100 98 1.98E+08 7.14E-08 3148 7235
95 95 1.95E+08 7.26E-08 3169 8122
90 90 2.18E+08 7.38E-08 3674 26926
85 85 2.40E+08 7.32E-08 4176 53565
80 80 2.53E+08 7.53E-08 4501 94278
75 75 2.64E+08 7.85E-08 4863 94580
70 time exceeded time exceeded time exceeded time exceeded time exceeded
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev002
105 103 2.04E+08 6.79E-08 3157 8224
100 100 1.99E+08 7.32E-08 3178 8908
95 95 1.95E+08 7.02E-08 3178 9700
90 90 1.98E+08 7.02E-08 3336 15622
85 85 2.04E+08 7.17E-08 3532 25189
80 80 2.34E+08 7.77E-08 4213 51456
75 75 2.33E+08 7.86E-08 4270 66071
70 70 2.54E+08 7.60E-08 4762 107035
65 time exceeded time exceeded time exceeded time exceeded time exceeded
60 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev004
100 100 1.98E+08 6.87E-08 3148 6723
95 95 1.95E+08 7.12E-08 3169 9072
90 90 1.91E+08 6.98E-08 3216 10913
85 85 1.91E+08 6.97E-08 3298 12060
80 80 2.17E+08 7.59E-08 3847 37634
75 75 2.13E+08 7.24E-08 3903 39072
70 70 2.72E+08 7.85E-08 5151 119123
65 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev006
95 95 1.94E+08 7.22E-08 3139 8037
90 90 2.09E+08 7.29E-08 3489 21762
85 85 2.10E+08 7.45E-08 3614 26789
80 80 2.34E+08 7.26E-08 4196 62392
75 75 2.47E+08 7.48E-08 4515 77992
70 70 2.55E+08 7.50E-08 4817 101670
65 time exceeded time exceeded time exceeded time exceeded time exceeded  

 
 



 102

Un/DoPack (Fine Grain cr8)
channel width 

constraint
routed channel 

width
area (#min size 

transistors) critical path (s) # of CLBs run time (s)

Stdev008 / clone
125 122 2.23E+08 7.15E-08 3151 7172
120 120 2.19E+08 7.11E-08 3199 10904
115 115 2.15E+08 7.33E-08 3223 11154
110 110 2.17E+08 7.29E-08 3320 13852
105 105 2.12E+08 7.30E-08 3314 14911
100 100 2.27E+08 7.33E-08 3611 32670
95 95 2.25E+08 7.37E-08 3715 36062
90 90 2.31E+08 7.68E-08 3899 51642
85 85 2.53E+08 7.62E-08 4387 83331
80 80 2.84E+08 8.01E-08 5056 164058
75 time exceeded time exceeded time exceeded time exceeded time exceeded
70 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev010
165 162 2.61E+08 7.08E-08 3152 9631
160 159 2.56E+08 7.35E-08 3173 8929
155 153 2.53E+08 7.50E-08 3194 9774
150 149 2.47E+08 7.83E-08 3173 9019
145 144 2.43E+08 7.44E-08 3202 10361
140 139 2.44E+08 7.49E-08 3252 13412
135 134 2.41E+08 7.67E-08 3283 14400
130 130 2.37E+08 7.78E-08 3328 23259
125 124 2.39E+08 7.76E-08 3412 27820
120 120 2.35E+08 7.90E-08 3457 35342
115 115 2.31E+08 7.86E-08 3460 39320
110 110 2.47E+08 7.62E-08 3770 65816
105 105 2.43E+08 8.12E-08 3828 90177
100 100 2.51E+08 8.05E-08 4011 108768
95 95 2.69E+08 7.77E-08 4407 147167
90 90 2.84E+08 8.19E-08 4773 210930
85 time exceeded time exceeded time exceeded time exceeded time exceeded

Stdev012
155 153 2.52E+08 7.50E-08 3163 10208
150 148 2.47E+08 8.15E-08 3184 10735
145 144 2.44E+08 7.69E-08 3243 20352
140 140 2.45E+08 8.19E-08 3259 16878
135 134 2.49E+08 7.74E-08 3395 26331
130 129 2.53E+08 7.89E-08 3558 40240
125 125 2.47E+08 7.95E-08 3499 41796
120 120 2.50E+08 7.99E-08 3672 68370
115 115 2.54E+08 8.30E-08 3814 112121
110 110 2.80E+08 8.33E-08 4317 172236
105 time exceeded time exceeded time exceeded time exceeded time exceeded
100 time exceeded time exceeded time exceeded time exceeded time exceeded  

 


