
Broadening the Applicability of FPGA-based
Soft Vector Processors

by

Aaron Severance

Bachelor of Science in Computer Engineering, Boston University, 2004

Master of Science in Electrical Engineering, University of Washington, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

March 2015

c© Aaron Severance, 2015

Abstract

A soft vector processor (SVP) is an overlay on top of FPGAs that allows data-

parallel algorithms to be written in software rather than hardware, and yet still

achieve hardware-like performance. This ease of use comes at an area and speed

penalty, however. Also, since the internal design of SVPs are based largely on

custom CMOS vector processors, there is additional opportunity for FPGA-specific

optimizations and enhancements.

This thesis investigates and measures the effects of FPGA-specific changes

to SVPs that improve performance, reduce area, and improve ease-of-use; thereby

expanding their useful range of applications. First, we address applications needing

only moderate performance such as audio filtering where SVPs need only a small

number (one to four) of parallel ALUs. We make implementation and ISA design

decisions around the goals of producing a compact SVP that effectively utilizes

existing BRAMs and DSP Blocks. The resulting VENICE SVP has 2× better

performance per logic block than previous designs.

Next, we address performance issues with algorithms where some vector ele-

ments ‘exit early’ while others need additional processing. Simple vector predica-

tion causes all elements to exhibit ‘worst case’ performance. Density time masking

(DTM) improves performance of such algorithms by skipping the completed ele-

ments when possible, but traditional implementations of DTM are coarse-grained

and do not map well to the FPGA fabric. We introduce a BRAM-based implemen-

tation that achieves 3.2× higher performance over the base SVP with less than 5%

area overhead.

Finally, we identify a way to exploit the raw performance of the underlying

FPGA fabric by attaching wide, deeply pipelined computational units to SVPs

ii

through a custom instruction interface. We support multiple inputs and outputs,

arbitrary-length pipelines, and heterogeneous lanes to allow streaming of data

through large operator graphs. As an example, on an n-body simulation problem,

we show that custom instructions achieve 120× better performance per area than

the base SVP.

iii

Preface

The following publications have been adapted for inclusion in this dissertation:

• VENICE: A Compact Vector Processor for FPGA Applications [57]

Published in the 2012 International Conference on Field-Programmable

Technology (FPT 2012). Authored by Aaron Severance and Guy Lemieux.

Appears in Chapter 3.

I performed all of the design and implementation and did the primary bench-

marking and analysis presented in this paper. Guy Lemieux served in an

advisory fashion. A separate work [46] detailing a compiler for VENICE

was published earlier; the included paper is a distinct contribution detailing

the design and architecture of the VENICE SVP.

• Wavefront Skipping using BRAMs for Conditional Algorithms on Vec-
tor Processors [61]

Published in the 2015 ACM/SIGDA International Symposium on Field-

programmable Gate Arrays (FPGA 2015). Authored by Aaron Severance,

Joe Edwards, and Guy G.F. Lemieux. Appears in Chapter 4.

I performed the design, implementation, and benchmarking in this paper

with the following exceptions:

– Joe Edwards developed the scalar and basic vector (without density-

time masking) code for Viola-Jones face detection and FAST9 feature

detection.

– Guy Lemieux developed the scalar and basic vector (without density-

time masking) code for Mandelbrot set generation.

iv

Guy Lemieux also served in an advisory fashion.

• Soft Vector Processors with Streaming Pipelines [60]

Published in the 2014 ACM/SIGDA International Symposium on Field-

programmable Gate Arrays (FPGA 2014). Authored by Aaron Severance,

Joe Edwards, Hossein Omidian, Guy Lemieux. Appears in Chapter 5.

I performed the design, implementation, and benchmarking done in this pa-

per with the following exceptions:

– Guy Lemieux and Joe Edwards developed the scalar and basic vector

(without custom instructions) code for the N-Body problem.

– Hossein Omidian designed and implemented the high-level synthesis

approach for creating custom instructions. His contribution to the paper

was removed from the body of this dissertation.

Guy Lemieux also served in an advisory fashion.

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . ix

List of Figures . x

Glossary . xii

Acknowledgments . xvi

1 Introduction . 1
1.1 Motivation . 1

1.2 Soft Vector Processors . 4

1.3 SVP Weaknesses . 5

1.4 Goals . 6

1.5 Approach . 6

1.6 Contributions . 7

1.7 Dissertation Organization . 9

2 Background . 10
2.1 FPGAs . 10

2.1.1 Architecture and Design Flow 11

vi

2.2 Overlays . 14

2.3 Vector Processing and SIMD Overview 15

2.4 Soft Vector Processors (SVPs) 19

2.5 Divergent Control Flow . 23

2.5.1 Execution Pipeline Customization 27

3 VENICE: Optimizing for Small but Capable 29
3.1 Introduction . 29

3.2 Design and Architecture . 31

3.3 VENICE Implementation . 32

3.3.1 Removal of Vector Address Register File 32

3.3.2 2D and 3D Vector Instructions 34

3.3.3 Operations on Unaligned Vectors 35

3.3.4 New Vector Conditional Operations 36

3.3.5 Streamlined Instruction Set 37

3.3.6 FPGA Architecture-Specific Optimizations 37

3.4 Native Programming Interface 39

3.5 Evalution Results . 42

3.5.1 Area and Clock Frequency 42

3.5.2 Benchmark Performance 44

3.5.3 Speedup versus Area . 46

3.5.4 Case Study: DCT . 48

3.6 Summary . 50

4 Wavefront Skipping on Soft Vector Processors 51
4.1 Introduction . 51

4.2 BRAM Based Wavefront Skipping 53

4.2.1 Full Wavefront Skipping 54

4.2.2 Wavefront Partitioning 58

4.2.3 Application Example: Viola-Jones Face Detection 59

4.2.4 Comparison with Vector Compress 62

4.3 Results . 63

4.3.1 Area Results . 63

vii

4.3.2 BRAM Usage . 64

4.3.3 Mandelbrot Benchmark 66

4.3.4 FAST9 Feature Detection 67

4.3.5 Viola-Jones Face Detection 68

4.3.6 MMVL Tradeoffs . 69

4.3.7 Results Summary . 72

4.4 Summary . 73

5 Attaching Streaming Pipelines to Soft Vector Processors 75
5.1 Introduction . 75

5.2 Custom Vector Instructions (CVIs) 78

5.2.1 CVI Design Approach 78

5.2.2 CVI Interface . 79

5.2.3 Large Operator Support 81

5.2.4 CVIs with Deep Pipelines 83

5.3 Multi-Operand CVI . 84

5.3.1 N-Body Problem . 84

5.3.2 Multi-Operand CVI Dispatch 86

5.3.3 Face Detection CVI Example 90

5.4 CVI Limitations . 91

5.5 CVI Design Methodologies . 92

5.6 Results . 93

5.7 Summary . 96

6 Conclusions . 98
6.1 Contributions . 99

6.2 Future Work . 100

6.2.1 Initial Work . 100

6.2.2 Long Term Directions 101

6.3 Summary . 103

Bibliography . 104

viii

List of Tables

Table 3.1 Resource Usage Comparison 42

Table 3.2 Area Breakdown (ALMs) . 43

Table 3.3 Benchmark Properties . 45

Table 3.4 Benchmark Performance . 45

Table 4.1 Resource Usage . 63

Table 5.1 Results with MXP Compared to Nios II/f, Intel, and ARM Pro-

cessors . 94

ix

List of Figures

Figure 1.1 An FPGA System with a Soft Processor 2

Figure 1.2 Design Flow using a Soft Processor 3

Figure 2.1 Example FPGA Architecture 12

Figure 2.2 Data Parallel Execution on Different Architectures 16

Figure 2.3 Psuedocode for Different Parallel Paradigms 17

Figure 2.4 The VEGAS Soft Vector Architecture [15] 20

Figure 2.5 Psuedocode for Divergent Control Flow 23

Figure 2.6 Compress and Gather Operations 24

Figure 3.1 VENICE Architecture . 31

Figure 3.2 VEGAS Code (Requiring Vector Address Register Setting) vs

VENICE Code . 33

Figure 3.3 Example of Misaligned Operation 35

Figure 3.4 Fracturable Multiplier Styles 38

Figure 3.5 VENICE Code to Add 3 Vectors 39

Figure 3.6 FIR Kernel Using 2D Vector Instructions 41

Figure 3.7 Area Breakdown (ALMs) 44

Figure 3.8 Speedup (Geometric Mean of 9 Benchmarks) vs Area Scaling 46

Figure 3.9 Computational Density with V1 SVPs 47

Figure 3.10 16-bit 4x4 DCT Varying 2D/3D Dispatch, SVP Width, and #

of SVPs . 49

Figure 4.1 Wavefront Skipping on a 4 Lane SVP 52

Figure 4.2 VectorBlox MXP with Four 32-bit Lanes 54

x

Figure 4.3 Code Example: Double Every Fifth Element of a Vector . . . 55

Figure 4.4 Data Written to Mask BRAM (Every Fifth Element Valid) . . 57

Figure 4.5 Pseudocode for Viola-Jones Face Detection 59

Figure 4.6 Haar Features Calculated at Each Candidate Face Location

for Different Groupings (Percentage Work Done is Calculated

Relative to Minimum) . 60

Figure 4.7 Vector Compress Operations Needed for 5x1 Stencil Filter . . 62

Figure 4.8 BRAM Usage vs Wavefront Partitions (MMVL = 1024) . . . 65

Figure 4.9 Mandelbrot Benchmark . 66

Figure 4.10 FAST9 Feature Detection . 67

Figure 4.11 Viola-Jones Face Detection Speedup 69

Figure 4.12 Viola-Jones Face Detection Speedup Vs Area 70

Figure 4.13 BRAM Usage for Masks When Varying MMVL for 1 (top)

and 4 (bottom) Partitions . 71

Figure 4.14 Effect of Changing MMVL on Viola-Jones Face Detection . . 72

Figure 4.15 Speedup from Wavefront Skipping 73

Figure 4.16 Speedup per Area (eALMs) from Wavefront Skipping 74

Figure 5.1 Internal View of VectorBlox MXP 77

Figure 5.2 Examples of Custom Vector Instructions 80

Figure 5.3 Custom Vector Instructions With Fewer Lanes Than the SVP 82

Figure 5.4 Force Summation Pipeline 85

Figure 5.5 Multi-Operand Custom Vector Instructions 87

Figure 5.6 Using 3D Vector Operations for Multi-Operand Dispatch . . 88

Figure 5.7 Multi-Operand Custom Vector Instruction Funnel Adapters . 89

Figure 5.8 Face Detection Pipeline . 90

Figure 5.9 FLOAT Custom Vector Pipeline in Altera’s DSP Builder . . . 93

Figure 5.10 Area of Gravity Pipeline Systems 94

Figure 5.11 Performance and Performance-per-Area of Gravity Pipeline . 95

xi

Glossary

The following acronyms are used in this dissertation:

ALM adaptive logic module

ALU arithmetic logic unit

AoS array of structures

API application programming interface

ASIC application specific integrated circuit

BRAM block RAM

CAD computer aided design

CAM content addressable memory

CGRA coarse-grained reconfigurable array

CMOS complementary metal-oxide semiconductor

CMOV conditional move

CPU central processing unit

CVI custom vector instruction

DCT discrete cosine transform

DMA direct memory access

xii

DLP data level parallelism

DSP digitial signal processing

DFG data flow graph

DRAM dynamic random-access memory

DSPBA Altera’s DSP Builder Advanced Blockset for Simulink

DTM density-time masking

eALM equivalent ALM

ESL electronic system level

FF flip-flop

FFT fast Fourier transform

FIFO first-in first-out

FIR finite impulse response

fmax maximum operating frequency

FPGA field-programmable gate array

FU functional unit

GDB the GNU debugger

GUI graphical user interface

GPU graphics processing unit

HDL hardware description language

HLS high level synthesis

IDE integrated development environment

IC integrated circuit

xiii

ILP instruction level parallelism

IP intellectual property

ISA instruction set architecture

LAB logic array block

LUT look-up table

MAC multiply accumulate

MMVL maximum masked vector length

MSB most significant bit

MVL maximum vector length

MXP A SVP from VectorBlox Computing, Inc. used in this dissertation

NOP no operation

OoOE out-of-order execution

PC program counter

PE processing element

PVFB pending vector fragment buffer

RTL register transfer level

SAD sum of absolute differences

SIMD single-instruction multiple-data

SIMT single-instruction multiple-thread

SoA structure of arrays

SoC system on chip

SRAM static RAM

xiv

SVP soft vector processor

VARF vector address register file

VEGAS A second generation SVP from The University of British Columbia

VENICE A new SVP that is part of this dissertation

VESPA A first generation SVP from University of Toronto

VIRAM The VIRAM project; a hard vector processor from Berkeley

VIPERS A first generation SVP from The University of British Columbia

VL vector length

VLIW very-long instruction word

VRF vector register file

xv

Acknowledgments

Papa, thanks for the support (moral and otherwise) and advice. Mama, thanks for

helping me through the tough times. Sister, thanks for being a tiny potato. Sean,

you are a great sounding board and full of useful advice. Thanks for helping me

find reasons to try.

Thanks Guy; you were the impetus for this whole thing and were there the

whole way for me. Steve, thanks for taking over; you’re a nice guy to a fault. Joe,

you showed me it was good to be excited (and your work on the benchmarks was

great). Hossein, thanks for your small part in this; you’ll go on to great things

I’m sure. Alex, Ameer, Chris, Chris, Dave, Doug, Keith, Mike, Tom, Usman, and

Zhiduo, it was great working with you.

Thanks to NSERC, MITACS, and VectorBlox Computing for funding, and to

Altera for donating hardware and software licenses.

xvi

To whom it may concern.

xvii

Chapter 1

Introduction

What we call the beginning is often the end. And to make an end is to
make a beginning. The end is where we start from. — T. S. Eliot

1.1 Motivation
A field-programmable gate array (FPGA) is a configurable logic device that can

be programmed at bit-level granularity. Instead of running a sequential or parallel

software program like a central processing unit (CPU) or graphics processing unit

(GPU), it is programmed with a bitstream that tells its logic and interconnect how to

behave. This extremely fine granularity allows FPGAs to expose massive amounts

of parallelism to the designer and provide better performance and efficiency than

CPUs and GPUs on certain applications [13]. At the same time, this flexibility

also makes it difficult for applications programmers to implement algorithms on

FPGAs.

Since FPGAs can be used to emulate digital circuits, they are commonly pro-

grammed the same way: using a register transfer level (RTL) description. RTL

is a textual description of a circuit in which behavioral and structural statements

describe elements which execute in parallel and communicate through signals. For

programmers familiar with the sequential computing model used for software (on

top of which parallelism can be added, but at a much coarser granularity) RTL de-

sign can be difficult to learn and understand. Even for programmers accustomed

1

FPGA

Soft Vector
Processor

Other Logic
Memory Controllers,
 Custom RTL, Etc.

Synthesis
Parameters
Memory Size,
ALUs, Etc.

Memory
Bus/NoC

Custom
Instructions

Vectorized
Software Program

Figure 1.1: An FPGA System with a Soft Processor

to writing RTL, the design process is time-consuming. An RTL design will take

from several minutes to many hours to synthesize for an FPGA depending on its

size and complexity, versus seconds to compile software. Additionally debug is

more difficult for RTL designs; there is limited visibility when they are imple-

mented on an FPGA, and simulations run at several orders of magnitude slower

than the actual design. An additional complexity is that modern FPGAs are not

homogenous; in addition to configurable logic there are hardened memories (block

RAMs (BRAMs)) and arithmetic units (digitial signal processing (DSP) blocks)

that the programmer must utilize to take full advantage of the FPGA.

A goal for researchers and industry has thus become to achieve close to soft-

ware levels of productivity for FPGA design. There are many approaches to this,

with some trying to improve productivity by improving synthesis speed [47, 69]

or debug visibility [26], some trying to make RTL more software-like [7, 51], and

some using a software program as input to generate RTL [11, 19]. This work

concentrates on soft processors: processor-style intellectual property (IP) blocks

instantiated on FPGAs that offer a more software-like design flow.

Figure 1.1 shows a conceptual view of a soft processor. It has three levels:

the FPGA hardware, the soft processor (which is implemented on the FPGA hard-

ware), and the user program (which runs on the soft processor). Soft processors

bring the afforementioned benefits of software programmability and debugability

2

Synthesize

FPGA Design

(Hours)

Configure

Soft

Processor

Design

Software

Algorithm

and Tests

Compile

Software

(Seconds)

Passes

Tests?

Debug

Software

(GDB)

Yes

No

Done!

Figure 1.2: Design Flow using a Soft Processor

to FPGAs. In Figure 1.2 the soft processor design flow is shown. First, the de-

signer has to instantiate a soft processor into their FPGA design and synthesize

the design (taking minutes to hours). Next, changes to the algorithm running on

the soft processor can happen in seconds; the designer simply has to recompile

the software and update the program memory. Debugging can proceed with tools

familiar to software programmers such as the GNU debugger (GDB). By contrast,

in an RTL design each time the design is changed FPGA resynthesis must occur.

This means the designer must wait hours to see the results of their changes. Ad-

ditionally, if there is not enough information visible to diagnose a bug, inserting

additional debug capability requires another run of FPGA synthesis.

Another benefit of implementing a design using a soft processor is the ability

to easily reuse the same hardware for multiple functions or applications. To reuse

FPGA hardware that is not programmable (such as fixed RTL IP blocks) on the

same hardware, some FPGAs provide the ability to reconfigure parts of the device

at runtime. However, even the fastest partial reconfiguration times are on the order

of a millisecond [54]. By contrast, a soft processor need only switch instruction

streams, which can be done orders of magnitude faster.

Soft processors are already familiar to FPGA programmers; each major FPGA

vendor offers a soft CPU [4, 43, 72]. Soft CPUs are useful for controlling data-

path logic and interfacing with low speed I/O interfaces. However, emulating a

scalar CPU on an FPGA has certain challenges [71]; techniques that provide tradi-

tional CPUs with high performance (e.g., superscalar, out-of-order execution) are

expensive to implement in FPGA fabric. Because of this, different approaches to

3

organizing processors (or extremely simple processors known as processing ele-

ments (PEs)) have been proposed for FPGAs. Multithreaded [42] and very-long

instruction word (VLIW) [52] processors can provide additional performance, and

multiple PEs can be put together into 2D-grids as coarse-grained reconfigurable

arrays (CGRAs) [12]. In contrast, this dissertation is concerned with another ar-

rangement of PEs into a 1D single-instruction multiple-data (SIMD) array with

vector processor-style control, the soft vector processor (SVP).

1.2 Soft Vector Processors
SVPs draw from both SIMD processors and traditional vector processing models.

SIMD processors execute the same instruction on multiple data elements at the

same time; for example, Intel’s latest SIMD extention to the x86 instruction set

architecture (ISA) can perform an operation on sixteen single-precision or eight

double-precision floating-point operands with one instruction [27]. Multiple copies

of each functional unit (FU) are needed to process the data in parallel, and if the

amount of data to be processed is larger than the number of FUs the processing

must be broken up into multiple instructions (a process known as strip mining [70]).

Traditional vector processors also operate on multiple data elements with a single

instruction, using a single FU and streaming the data through sequentially over

multiple clock cycles. The number of elements is configurable through a vector

length (VL) register; strip mining is not needed unless data is larger than some

maximum vector length (MVL) threshold.

Vector-SIMD hybrids are an extension of traditional vector processors to use

multiple parallel FUs to speed up computation. The vector-SIMD paradigm has

been shown to map well to embedded media processing applications [37]. Exist-

ing vector-SIMD hybrids were the basis for initial SVP implementations [74, 78].

While these initial implementations were closely modeled on ‘hard’ vector pro-

cessors, they had the benefit of being ‘soft’; i.e., programmer-configurable. The

programmer has the option of setting multiple parameters when instantiating an

SVP such as the number of parallel arithmetic logic units (ALUs) and the size

of the local memory/register file. This configurability allows the programmer to

customize the processor for their application, only using the resources required to

4

meet their performance target.

1.3 SVP Weaknesses
However, SVPs face many challenges before being viable as a mainstream option

for implementing algorithms on FPGAs. First, there is a large penalty in speed

and/or area compared to an RTL design. This penalty can vary greatly depending

on the application; a comparison of an RTL implementation of a motion estimation

kernel (used in video encoding) ran 21× faster than a SVP implementation given

similar resource usage [78], while a study across several embedded benchmarks

found that an SVP with 16 FUs was 17× slower than hardware but used 64×more

area than a hardware implementation [77]. Reducing this penalty is essential if

SVPs are to be a viable choice for many applications. To do this, the design of

SVPs must be rethought with FPGAs in mind; some initial work has been done

in this area [15] but there are still many performance and area optimizations that

can be made. FPGAs have a very different cost model than application specific

integrated circuits (ASICs) for memories and multipliers due to the hardened on-

chip BRAMs and DSP blocks. SVPs should be designed such that they can make

as much use of these hardened blocks as possible.

Also, the performance penalty can be reduced by better targetting likely user

applications. Targetting large designs that can fill up multi-thousand dollar FPGAs

makes for impressive benchmark numbers but is an unlikely use-case for SVPs.

Rather, targetting smaller applications where the goal is to get ‘good-enough’ per-

formance quickly is more realistic. An example is accelerating the audio decoding

portion of video playback; the video decoding core(s) may be need preconfigured

IP or custom RTL to achieve the necessary performance. However, an SVP can

easily support a multitude of audio codecs, switching between them at runtime in

microseconds. Though the area of the SVP may be larger than a single audio codec

designed in RTL, one SVP replaces several codecs and will not be large compared

to the video codec(s).

Another challenge is expanding the number of different types of applications

that SVPs can handle. An algorithm with a simple data flow graph (DFG) can al-

ready be implemented via RTL or other methods; an SVP should allow a program-

5

mer to implement algorithms with that would be difficult to implement otherwise.

One example is algorithms with data-dependent behavior. Current SVPs allow a

limited form of data-dependent behavior. Data dependent branches can be skipped

only if every element on the vector has not taken that branch. By allowing skip-

ping within vectors, rarely taken branches can be accelerated. This is important for

algorithms that do most of their useful computation on only a small subset of their

data.

Finally, to truly take advantage of the FPGA, the programmer needs to be able

to interface with external logic. Current SVPs only share data through main mem-

ory, which has limited bandwidth and is cumbersome to synchronize. Current

FPGA programmers may therefore be wary of an SVP implementation; if it is un-

able to meet their performance goals there is no graceful way to implement logic

to increase performance, so the SVP design may have to be abandoned completely.

Giving users a tightly coupled interface to external logic allows for a smoother

transition between software and RTL.

1.4 Goals
The goal of this dissertation is to broaden the overall capabilities of SVPs by mak-

ing them more area-efficient, achieve higher performance on many applications,

remain general enough for general computations, and provide a low-level inter-

face which allows advanced users a way to access the underlying FPGA fabric.

By harnessing these gains in efficiency, it will become more feasible to implement

applications in the SVP framework instead of the conventional approach of using

custom RTL. At the same time, we wish to ensure the SVP becomes easier to

use from a programmer’s perspective. The overall improved ease-of-use should

make SVP a much more compelling framework for solving the types of processing

problems encountered by FPGA users.

1.5 Approach
Our approach is threefold. First, we address the area/performance penalty of SVPs

by developing VENICE, an SVP specifically targetted for moderate performance

applications. Scalar soft processors are not adequate for such applications, but a

6

small SVP (with one to four lanes) can meet the desired peformance levels. We

provide a direct comparison of VENICE to previous SVPs to show the impact of

these design choices.

Second, we investigate accelerating data-dependent algorithms as a way to

further differentiate SVPs from RTL. We investigate density-time masking

(DTM) [63] (also known as wavefront skipping), a technique from traditional vec-

tor processors, but implemented in an FPGA-specific way. This allows us to have

much more efficient FU usage, which we demonstrate on applications including

Viola-Jones face detection [68].

Third, we add a new interface for sharing data between the SVP and external

logic. Our custom vector instructions (CVIs) have an external channel for data

to flow to and from logic the programmer has created using either RTL or visu-

ally with Altera’s DSP Builder Advanced Blockset for Simulink (DSPBA). By

implementing an N-body simulation application using these CVIs, we show how

the main kernel of an application can be greatly accelerated with a small amount

of RTL programming. The programmer does not have to manage data movement

and synchronization, and non-critical pre-processing/post-processing can be done

using normal SVP instructions.

1.6 Contributions
The contributions of this dissertation are:

1. A demonstration of the benefits of designing SVPs for performance density

rather than scalability and emulation of traditional vector processors. The

VENICE SVP is able to achieve 2× better performance per logic block than

previous SVPs. The main contributions that combine to achieve this are:

(a) The vector address register file was removed to save area; addresses are

stored in scalar registers and transferred with each instruction.

(b) 2D and 3D vector addressing modes were added to increase perfor-

mance on code that contains loops with fixed increments.

(c) Alignment networks were added in the pipeline, removing the need for

separate vector align/rotate instructions. This is especially important

7

for sliding window/stencil filter algorithms.

Several other minor contributions were made and will be discussed within

the body of this dissertation.

2. A demonstration of a method for run-time skipping of masked-off vector el-

ements in SVPs. A novel implementation called wavefront skipping takes

advantage of FPGA BRAMs. On early exit algorithms, such as Viola-Jones

face detection, this gives up to an 3× increase in performance with a max-

imum of 5% area overhead. Additionally, partitioned wavefront skipping

showed additional performance benefits for an extra cost in area.

3. A demonstration of a method for adding streaming pipelines to SVPs as

custom vector instructions (CVIs). An end user can create a CVI with

minimal effort compared to a full hardware algorithm implementation, and

achieve performance similar to custom RTL while still having software pro-

grammable control. Specific contributions are:

(a) Expansion of the custom instruction to variable width vector units.

(b) Allowing an arbitrary number of CVI lanes to be used (from one to

the number of SVP lanes) without adding additional multiplexing or

buffering. This allows the user to more finely tune the area/perfor-

mance tradeoff of using CVIs.

(c) Creation of a method for time multiplexing inputs and outputs for com-

plex CVIs. Instead of simple two-input, one-output instructions, com-

plex CVIs can have 2*N inputs and N outputs where N ranges from 1 to

the number of CVI lanes. This allows instructions to replace large data

flow graphs (DFGs) that would otherwise take multiple instructions to

be implemented.

(d) Demonstration of alternate design menthods that do not require RTL

design skills. Users can design a CVI within MATLAB’s Simulink

graphical programming environment using DSPBA.

8

1.7 Dissertation Organization
Chapter 2 presents the background of SVPs, including traditional vector proces-

sors. Chapter 3 details the design of VENICE, our SVP targetting narrow, FPGA-

centric design. Chapter 4 details our implementation of wavefront skipping for

conditionally divergent data-parallel algorithms. Chapter 5 details our CVI imple-

mentation method and results. Finally, Chapter 6 provides some conclusions about

what has been done and what has yet to be done.

9

Chapter 2

Background

Those who cannot remember the past are condemned to repeat it.
— George Santayana

This chapter provides the necessary background information for this disser-

tation. First, it presents an overview of FPGAs architecture and design flow to

introduce the problem. Next, it provides is a discussion of overlays on FPGAs

and why they are a useful tool for designers. To give the necessary background to

understand soft vector processors (SVPs), vector processing and SIMD execution

are then introduced. This leads to a discussion of existing SVPs. Finally, some

more specific detail into alternatives to and predecessors of the contributions of

this dissertation is given.

2.1 FPGAs
FPGAs are integrated circuits (ICs) that are used to implement digital logic func-

tions. The difference between an FPGA and an application specific integrated cir-

cuit (ASIC) is that the FPGA is field-programmable; that is, the logic functions

must be programmed after the device has been manufactured. An ASIC imple-

ments digital logic functions via the placement and connections of transistors,

which cannot change once the chip has been fabricated. An FPGA implements

digital logic functions with configurable basic logic elements (typically look-up

tables (LUTs)) and configurable interconnection between them. Most modern

10

FPGAs are programmed by loading data into static RAM (SRAM) cells, which

can be reconfigured practically an unlimited number of times [41]. These SRAM

cells, as well as the logic elements and routing are created with normal IC technol-

ogy, so it is reasonable to consider an FPGA a type of ASIC that can emulate other

ASICs. FPGAs have traditionally found use in applications such as ASIC prototyp-

ing, telecommunications equipment (where low volumes and changing standards

make ASICs less attractive), and as interfaces between other ICs (“glue-logic”).

The cost of programmability is that an FPGA implementation of a circuit performs

approximately 4× slower than an ASIC implementation, and requires 14× as much

dynamic power and 35× as much area [40].

A note on terminology: in relation to FPGAs the adjective soft refers to a logic

function or digital circuit implemented by configuring the FPGA, while hard refers

to something implemented at the transistor level. For instance, an FPGA configured

with a CPU circuit would be said to have a soft CPU; implementing the same CPU

circuit on an ASIC (hardening it) would make it a hard CPU.

2.1.1 Architecture and Design Flow

A simple model of an FPGA is a two-dimensional grid of blocks connected by

a mesh routing network. The blocks may consist of programmable logic or hard

blocks. The hard blocks are functions that are frequently used and would be much

more expensive to implement in soft logic than as hardened structures. The most

common of these are memories (block RAMs (BRAMs)) and multipliers or other

expensive arithmetic functions (digitial signal processing (DSP) blocks). Fig-

ure 2.1 shows an example architecture with columns of logic blocks, memory

blocks, and DSP blocks. Signals between blocks are carried by a configurable

routing network; a common configuration is to have horizontal and vertical rout-

ing channels with programmable switch blocks where they meet. Additionally,

the wire within a routing channel to which a block input or output connects is

configurable. The input/output blocks with pins that connect the FPGA to the out-

side world are also configurable, supporting multiple voltage levels and signalling

styles.

The architecture is therefore relatively generic; user logic can be implemented

11

Logic
Column

Memory
Column

DSP
Column

Configurable
Routing

I
/
O

B
l
o
c
k

Figure 2.1: Example FPGA Architecture

in any programmable logic block and if hardened blocks are specified there are

multiple locations they could be placed. It is not a straightforward problem to

automatically map a large design to a large FPGAs; to appreciate the problem

size consider that the largest Altera Stratix V FPGA has 359,200 adaptive logic

modules (ALMs) (its basic programmble logic element), 2,640 BRAMs, and 352

DSP blocks [5].

The computer aided design (CAD) flow for translating a design to an FPGA

configuration bitstream varies for different vendors’ CAD tools; a survey can be

12

found in [14]. The differences are not important for the purposes of this disserta-

tion, but it is necessary to understand a CAD flow to understand the reasons the

traditional FPGA design cycle is long compared to the design cycle for software.

Basic CAD steps include RTL synthesis, technology mapping, placement, rout-

ing, and assembly. RTL synthesis is the process of translating the input circuit

as specified by the user to a netlist of boolean functions and macros such as hard

blocks. The boolean functions get technology-mapped to FPGA programmable

logic blocks. Placement then selects locations for each of these units, and routing

determines how to configure the communication network to connect logic block

inputs and outputs. Finally, assembly creates the bitstream that is used to program

the FPGA. Note the term synthesis is often used to refer to the entire processes;

saying it takes hours to synthesize a design includes the time taken by all of the

steps.

Each of these steps is time consuming, but placement is particularly so. For

instance, the Stratix V FPGA mentioned has 359,200 ALMs, which are grouped

into logic array blocks (LABs) of 10 ALMs before placement. Any LAB that can

be placed can therefore go into one of 35,920 locations. LABs that communicate

with each other should be placed close together, as longer distance between them

results in longer circuit delays (reducing the maximum operating frequency (fmax)

of the circuit) and higher routing resource usage. For an arbitrary circuit, finding

the optimal placement (according to a metric such as fmax) is not computationally

feasible. In practice, methods such as simulated annealing [35] are used to try to

find a high quality placement.

Simulated annealing is a stochastic method which works by swapping the

placement of LABs if they meet some threshold of a cost function. Initially the

threshold is set to allow swaps even if the cost function worsens somewhat; as the

algorithm progresses the threshold is slowly lowered until eventually only swaps

that improve the cost function are allowed. This slow convergence prevents the

placement from being stuck in local optima (as a greedy algorithm would be) but

requires a huge number of potential swaps. In turn this means that placement on

large FPGAs can run for many hours. There are techniques to reduce the CAD

time, such as incremental compilation [3] and parallel placement [47, 69], but they

still do not provide software-like design cycles.

13

2.2 Overlays
FPGA overlays are an intermediate layer between the programmable FPGA logic

and the programmer’s input, designed to simplify design and improve productivity.

The overlay itself is a premade IP block and may be distributed as configurable

RTL or a pre-synthesized netlist. What separates overlays from other IP blocks is

that an overlay provides an additional level of programmability; the overlay can be

configured for different applications without having to resynthesize the IP block.

Instead, the overlay is programmed by changing some configuration state, typically

the contents of one or more BRAMs. An overlay can be added to a design with

external logic via some communication channels, or in special cases it may be

the majority or entirety of the design. These special cases include designs with

significant time-to-market constraints and those for which only low volumes are

needed; given enough time and volume it would make more sense to make a design

that was only an overlay into an ASIC.

Overlays improve user productivity by allowing programming and debug at a

higher level, shortening design cycle times, and speeding up reconfiguration. An

overlay that implements a CPU, for instance, can reuse tools that have been de-

signed for CPUs, such as compilers, integrated development environments (IDEs),

and debuggers. Not only is the level of abstraction in programming and debugging

raised, but compiling for a CPU is orders of magnitude faster than synthesizing an

FPGA design. By making a coarser layer which is less flexible than the underlay-

ing FPGA fabric, CAD tools have less design space to explore, shortening compile

time. Also, in general, an overlay is only suited to a particular class of applications,

and so the mapping from application to overlay is more straightforward.

Overlays can implement many functions, such as networks [32], simula-

tors [31], or even a different reconfigurable logic fabric (a meta-FPGA) [8].

The overlays dealt with in this work are SVPs; before discussing them directly

it is useful to know how other soft processors are designed and why they are de-

signed that way. A canonical example of a scalar soft processor is Altera’s Nios II

processor [4]. Nios II is actually a family of processors, from a multicycle econ-

omy variant (Nios II/e) to a six-stage pipelined high performance variant (Nios

II/f). The ability to drop in a different ISA-compatible variant allows the designer

14

to allocate more or less resources in exchange for more or less performance without

having to rewrite the application software running on top of the soft processor. Ad-

ditionally, each variant has a multitude of configuration options such as cache sizes

and whether to use hardware for certain instructions or trap to software emulation.

Implementing a soft processor does not involve the same tradeoffs as creat-

ing a custom CMOS CPU or even a processor embedded within an ASIC. A

summary of the differences in FPGA and custom CMOS with respect to proces-

sor design can be found in [71]. They find that designs that simply map custom

CMOS CPUs to FPGAs have a delay 18 to 26× greater and use 17 to 27× more

area. Key to the differences are the relatively higher costs of multipexors and

content addressable memorys (CAMs), which are necessary to implement data for-

warding nextworks and reordering structures such as those used in out-of-order

execution (OoOE). Multiported register files are also relatively more expensive in

FPGAs, which makes it more difficult to implement superscalar or VLIW tech-

niques where multiple operands are read and written each cycle.

We are therefore motivated to look at other processor organizations that can

offer increased peformance without requiring structures that are difficult or costly

to implement on an FPGA. Particularly well-suited organizations include vector

processing and SIMD processing, which use deep pipelines and replicated PEs

respectively.

2.3 Vector Processing and SIMD Overview
There are many different parallel processor organizations; a good overview can be

found in [20]. SVPs take core concepts from both the vector and SIMD paradigms.

Vector processing has been applied in supercomputers on scientific and engi-

neering workloads for decades [21]. It exploits the data-level parallelism readily

available in scientific and engineering applications by performing the same opera-

tion over all elements in a vector or matrix. It is also well-suited for image process-

ing. The first commercially succesful (and certainly most iconic) vector processor

was the Cray-1 [56]. The Cray-1 improved on prior vector processors in several

ways, most notably by having a vector register file (VRF) instead of streaming vec-

tor data from memory. Each vector register could hold up to 64 elements of data

15

Time

a0 a1 a2 a3 a4 a5 a6 a7

b) Vector

* * * * * * * *

b0 b1 b2 b3 b4 b5 b6 b7

c0 c1 c2 c3 c4 c5 c6 c7

+ + + + + + + +

t0 t1 t2 t3 t4 t5 t6 t7

c) Vector-SIMD

a0 a1 a2 a3

a4 a5 a6 a7

*

*

*

*

*

*

*

*

b0 b1 b2 b3

b4 b5 b6 b7

c0 c1 c2 c3

c4 c5 c6 c7

+

+

+

+

+

+

+

+

t0 t1 t2 t3

t4 t5 t6 t7

a0

a1

a) SIMD

b0

b1

t0

t1

*

*

c0

c1

+

+

a2

a3

b2

b3

t2

t3

*

*

c2

c3

+

+

a4

a5

b4

b5

t4

t5

*

*

c4

c5

+

+

a6

a7

b6

b7

t6

t7

*

*

c6

c7

+

+

Figure 2.2: Data Parallel Execution on Different Architectures

which could be streamed through a FU at the rate of one element per cycle. The

number of elements actually processed by any given instruction was controlled by

the vector length (VL) register. Only one instruction could issue per clock cycle,

but because each vector instruction would take multiple clock cycles, more than

one instruction could be executing at the same time. In the case of dependent vec-

tor operations, the output of one FU could feed into the input of another FU; this is

a process called chaining. Multiple FUs could be chained together this way, with

each FU operating at the same time to provide parallel execution.

SIMD processing, by contrast, utilizes multiple parallel FUs executing the

same instruction at the same time. Modern microprocessors are augmented with

SIMD processing instructions to accelerate data-parallel workloads. These operate

on short, fixed-length vectors (e.g., only 128b, or four 32b words). Significant over-

head comes from instructions to load/pack/unpack these short vectors and looping

(incrementing, comparisons, and branches are still necessary). Intel’s Haswell pro-

cessors implement AVX2, the latest version of their mainstream SIMD extensions,

with a maximum vector length of 256b (8x32b words) [27]. In contrast, the In-

tel Many Integrated Core (MIC) microarchitecture Xeon Phi supports 512b vector

lengths (16x32b words) [28].

Figure 2.2 shows data being processed in a vector processor (with instruction

16

//a) Scalar
for i in 0..7

temp = a[i] * b[i]
d[i] = temp + c[i]

//b) 2-wide SIMD
for i in 0..3 //2 elements per instruction, so only 4 iterations

temp[0:1] = a[2*i:(2*i)+1] * b[2*i:(2*i)+1]
d[2*i:(2*i)+1] = temp[0:1] + c[2*i:(2*i)+1]

//c) Vector and Vector-SIMD
set_vector_length(8) //Subsequent instructions process 8 elements
temp[] = a[] * b[] //Elementwise vector multiply
d[] = temp[] + c[] //Elementwise vector add

Figure 2.3: Psuedocode for Different Parallel Paradigms

chaining), a SIMD processor, and a hybrid vector-SIMD processor. Pseudocode

for this example is shown in Figure 2.3. The code multiplies two eight-element ar-

rays together and adds them to a third eight-element array. In the code for a scalar

processor (Figure 2.3a), this requires eight iterations through a loop; in each iter-

ation a multiply and add instruction are executed. Additionally, the data elements

are read from and stored back to memory in eight separate memory operations per

array. If data is not available in the processor’s cache or there are hazards then there

will be additional cycles in which no work is being done. Thus, even though there

are 16 cycles of computation (eight multiplies and eight adds) a scalar processor

may take several times that many cycles to execute the whole loop.

Figure 2.3b shows the code for a 2-wide SIMD implementation. The code

closely matches scalar code except that every operation works on two elements,

so only four loop iterations are needed. Most SIMD architectures also have SIMD

load and store instructions, so the overhead of issuing memory instructions is sim-

ilarly reduced. Figure 2.2a shows how the data moves through a SIMD processor

for this code; there are eight SIMD instructions which will take at least eight cycles

to execute. The total execution time for SIMD code rarely scales perfectly with the

number of parallel ALUs; hazards and stalls are not reduced by increasing SIMD

width and so they quickly dominate runtime.

Figure 2.3c shows the vector code. Instead of having a preset amount of data

processed by each instruction, there is a VL register that controls the amount of

17

data processed. After it is set to eight, the subsequent instructions will process

eight data elements each. Figure 2.2b shows the data movement in a classic vector

processor; there are only two vector instructions to execute. Because the control for

looping and addressing is in the vector processor’s hardware, once the instruction

has started, executing the computation can proceed at one cycle per operation until

the entire array has been processed. Vector processors have vector-load and vector-

store instructions to address memory in large chunks, which can allow for better

memory bandwidth utilization.

Figure 2.2c shows the code running on a vector-SIMD hybrid; it combines

the efficiency of vector execution and the parallelism of SIMD. While there are the

same number of execution cycles as a SIMD implementation, only two instructions

need to be issued and there is no control flow or address manipulation in software.

Note that the same code runs on a classic vector processor or vector-SIMD regard-

less of SIMD width; the vector hardware executes for as many cycles as is needed

depending on the current VL and the number of ALUs.

The vector-SIMD model allows parallelism in a more scalable manner than

chaining. Chaining and SIMD are not orthogonal; for instance, the T0 vector pro-

cessor could chain together three instructions on eight vector pipelines to achieve

24 operations per cycle [6]. Chaining takes advantage of instruction level paral-

lelism (ILP), while SIMD takes advantage of data level parallelism (DLP). While

measuring the amount of ILP present in a program is non-trivial [55], in practice

vector processors have been limited to chaining three instructions, and wide su-

perscalar CPUs such as Intel’s latest Haswell architecture can only commit four

operations per cycle [30]. Not only is there a limit to how much ILP can be ex-

tracted, exploiting it requires reading and writing multiple operands per cycle from

a flat register file. In SIMD execution, by contrast, each ALU writes back to its

own independent bank of the vector register file, so parallelism is achieved without

needing multiple read and write ports [36].

The case for embedded vector processors was made by the VIRAM [36]

project. It showed that vector processing was more efficient than VLIW or su-

perscalar techniques for embedded media applications. VIRAM used an existing

MIPS CPU to handle control flow, and dispatched vector instructions to a copro-

cessor vector core. The vector core consisted of four 64-bit lanes, which could

18

alternately process eight 32-bit or sixteen 16-bit elements per cycle. This ability

to split lanes and process more elements of narrow widths is common in SIMD ar-

chitectures and is referred to as intra-lane SIMD or sub-word SIMD. VIRAM was

a load/store architecture and connected to memory through a crossbar connected

to eight DRAM banks. VIRAM was the architecture the first SVPs were modeled

upon.

2.4 Soft Vector Processors (SVPs)
The first SVPs were developed in parallel, VIPERS [78] from The University of

British Columbia and VESPA [74, 76] from the University of Toronto.

VIPERS demonstrated that programmers can explore the area-performance

tradeoffs of data-parallel workloads without any hardware design expertise. The re-

sults of three benchmark kernels demonstrate a scalable speedup of 3–30× over the

scalar Nios II processor. Additionally, a speedup factor of 3–5× can be achieved

by unrolling the vector assembly code. VIPERS uses a Nios II-compatible multi-

threaded processor called UT-IIe [22], but control flow execution is hindered by the

multithreaded pipeline. The UT-IIe is also cacheless; it contains a small on-chip in-

struction memory and accesses all data through vector read/write crossbars to fast

on-chip memory. VIPERS instructions are largely based on VIRAM. VIPERS also

offered a comparison to high level synthesis (HLS) (Altera’s C2H compiler [1])

and custom RTL circuits. The HLS comparison showed VIPERS to be larger in

area but faster; they were roughly even in terms of performance per area. The RTL

comparison only used one (motion estimation) benchmark, for which VIPERS was

82× slower at the same amount of area, though that could be reduced to 21× with

minor ISA enhancements.

VESPA is a MIPS-compatible scalar core with a VIRAM compatible vector

coprocessor. The original VESPA at 16 lanes can acheive an average speedup of

6.3× the scalar core over six EEMBC benchmarks. Furthermore, an improved

VESPA achieves higher performance by adding support for vector chaining with a

banked register file and heterogeneous vector lanes [75]. Over the 9 benchmarks

tested, the improved VESPA averages a speedup of 10× at 16 lanes and 14× at 32

lanes. The MIPS core uses a 4kB instruction cache, and shares a data cache with

19

Figure 2.4: The VEGAS Soft Vector Architecture [15]

the vector coprocessor. Smaller (1- or 2-lane) vector coprocessors use an 8kB data

cache, while larger ones use 32kB.

Both VIPERS and VESPA offer a wide range of configurability. For example,

the parallel vector lanes can be specified at FPGA compile-time to be 8, 16 or 32

bits wide. However, when mixed-width data is required, the vector engine must be

built to the widest data. Therefore, when processing smaller data, load instructions

will zero-extend or sign-extend to the full width, and store instructions will truncate

the upper bits. Since the vector register file must store all data (even byte-sized

data) at the widest width, VIPERS and VESPA can be very inefficient: byte-wide

data is stored in the on-chip main memory or data cache, then expanded to word-

wide inside the register file. On top of that, to implement dual read ports, VIPERS

and VESPA duplicate the vector register file. Hence, a single byte of data may

occupy up to 9 bytes of on-chip storage (including the copy in the data cache).

The VEGAS soft vector architecture [15] uses a Nios II/f with a soft vector

accelerator. Figure 2.4 shows the architecture of VEGAS. Each vector instruction

20

is encoded into the free bits of a Nios custom instruction. Instead of vector data

registers, VEGAS uses an 8-entry vector address register file (VARF) that points

into a large, banked scratchpad memory. The scratchpad can be partitioned into

any number of vectors of any length. During execution, the ALUs in VEGAS

can be fractured to support subword arithmetic. This means a fixed-width vector

engine can operate on more elements if they are halfword or byte sizes. Also, it

makes more effective use of the scratchpad memory, since smaller operands are

not expanded to fill an entire word as done with prior architectures. The execution

pipeline is followed by a data alignment network that is used when operands start

in different banks of the scratchpad. If the source operands are aligned to each

other but the destination has a different alignment, this occurs in a pipelined fash-

ion. However, if the source operands are not aligned to each other the vector core

must stall the current instruction and insert a vector move operation to correct the

alignment mismatch.

Both VIPERS and VESPA also share a similar memory-system design. They

use vector load and vector store instructions to transfer blocks of data, with optional

strides, from main memory to the vector data register file. Separate read and write

crossbars shuffle data during loads and stores.

In contrast, VEGAS does not support vector load and store instructions. In-

stead, it uses direct memory access (DMA) block-read and block-write commands

to copy between the scratchpad and main memory. All vector alignment / byte

shuffling is done at runtime in the writeback pipeline stages by passing vector re-

sults through a shuffle network. Except for lengthening the pipeline, there is no

run-time penalty if the destination vector is misaligned. However, if vector source

operands are misaligned, VEGAS must first copy one operand to a temporary lo-

cation in the scratchpad. This extra copy operation cuts performance roughly in

half.

The vector register file is connected to an on-chip memory (VIPERS) or on-

chip data cache (VESPA) through separate read and write crossbars. These cross-

bars are used when striding through memory during vector load and store instruc-

tions; they must shuffle bytes/halfwords/words from their byte-offset in memory

into word size at a new word-offset in the vector register file. The size of the cross-

bars are constrained on one end by the overall width of the vector register file, and

21

on the other end by the overall width of the on-chip memory/cache. As the vector

processor is scaled to contain more lanes, one end of the crossbars increases in size

while the other end is fixed by the memory width. To quickly load a large register

file, the on-chip memory/cache width must be similarly increased to match. The

area to implement these crossbars is significant, and grows as the product of the

two widths.

While VEGAS serves as the starting point for our work, there have been other

SVPs or SVP-like processors implemented as well. The FPVC, or floating point

vector coprocessor, was developed by Kathiara and Leeser [33]. It adds a floating-

point vector unit to the hard Xilinx PowerPC cores which can exploit SIMD par-

allelism as well as pipeline parallelism. The FPVC fetches its own VIRAM-like

instructions and has its own private register file. Unlike most other vector architec-

tures, it can also execute its own scalar operations separate from the host PowerPC.

Convey’s HC-2 [18] is a vector computer built using several FPGAs. It is tar-

getted at high performance applications such as geological exploration and utilizes

the entirety of the FPGA rather than being a building block in an embedded system

like the other SVPs mentioned.

Bluevec [50] was developed to perform neural-network simulations on FPGAs.

The authors created a custom SVP in Bluespec [51]. They compared a custom

pipeline (also written in Bluespec) to the SVP implementation and found that per-

formance was within a factor of two given similar resource usage, and that fur-

ther performance improvement was not possible with either design due to memory

bandwidth limitations.

Bluevec also has a C++ compiler designed to allow programming at a higher

level than vector assembly or C macros [49]. Their compiler is a run-time system

that compiles and downloads a kernel to the SVP; the first time a kernel is en-

countered it is compiled, and then that compiled kernel can be reused if the kernel

is executed again. This contrasts to a compiler for the VENICE processor (to be

presented in Chapter 3) which does a source-to-source translation of Microsoft’s

Accelerator object-based langauge [65] to VENICE C code [46].

Additionally, the work on VENICE lead to a commercial SVP, the VectorBlox

MXP [59]. MXP is used for the experiments performed in Chapter 4 and Chapter 5.

MXP is similar to VENICE in design, but with added features such as fixed-point

22

//a) Scalar
for i in 0..7

if mask[i] /= 0 //Skip computation if mask element is not zero
a[i] = (b[i] * c[i]) + (d[i] * e[i])

//b) Vector and Vector-SIMD
set_vector_length(8) //Subsequent instructions process 8 elements
temp[] = (b[] * c[]) + (d[] * e[]) //Compute result for all elements

//select elements of temp[] if the corresponding mask is not zero
//otherwise keep the same value in a[]

a[] = merge_nonzero(mask[], temp[], a[])

Figure 2.5: Psuedocode for Divergent Control Flow

arithmetic, 2D-DMA support, and a C++ object based application programming

interface (API) for higher level programming.

2.5 Divergent Control Flow
Chapter 4 deals with a method of speeding up execution of algorithms with diver-

gent control flow. Figure 2.5 gives an example of code that has control flow di-

vergence. The scalar version has a branch within the inner loop (the if statement).

For each iteration i of the loop, if the mask[i] element is nonzero a calculation is

performed and the result stored into a[i]. If the mask[i] element is zero, nothing

happens and the scalar processor can jump to the next iteration of the loop. Fig-

ure 2.5b gives the code example for a vector processor. Instead of performing the

calculation only for the elements where mask[i] is nonzero, the calculation is per-

formed for all elements and stored in temp[i]. Then a merge instruction is used

to select whether to write temp[i] to a[i] or leave the value unchanged (by writing

back the current value of a[i]). Predicated instructions can also be used. Predicated

instructions use a writeback enable signal to prevent the update of the result vector

depending on the value of a flag vector that was previously set.

Support for divergent control flow in vector processors is well researched; a

good summary is [63]. For short conditionals, implementations that use merge or

predicated operations can give good performance. These operations are performed

on all data elements, with only the elements that pass some conditional test written

back; the rest of the results are discarded. For longer conditional branches, how-

23

1 0 0 1 0 1 1 0

D7 D6 D5 D4 D3 D2 D1 D0

D7 D4 D2 D1

a) Compress Operation

b) Gather Operation

Mask Vector

Data Vector

7 4 2 1

Offset Vector

Base Address (Scalar)

&D

External Memory

Pipelined
Load
Unit

D7 D4 D2 D1

Result Vector

Result Vector

Figure 2.6: Compress and Gather Operations

ever, this can lead to a large percentage of execution time spent on unused results.

In these instances, it is desirable to skip elements that are not on the current branch.

Three strategies can be employed (separately or together): compress/expand, scat-

ter/gather, and wavefront skipping (also referred to as density-time masking).

Compress vector operations are a way to take a source vector and a mask and

produce a new vector that only contains the valid (unmasked) elements without

gaps, while expand vector operations take a compressed source vector and a mask

and fill in the unmasked slots in the destination vector with the source data [39].

Figure 2.6a shows an example of a compress operation. The compress operation

takes in a mask vector and a data vector, and outputs a vector with only the data

elements that correspond to locations in the mask vector that are set. Locations

that are masked off (mask vector equal to zero) are discarded. VIRAM imple-

mented VCOMPRESS and VEXPAND operators. During a long branch, the source

24

operands can be compressed, followed by processing only the shorter (compressed)

vector operations, and finally the result expanded. Since execution time is propor-

tional to vector length, operations on compressed vectors are potentially faster than

predicated operations on the uncompressed vectors. The main drawback to this ap-

proach is that all source operands must be compressed, and all destination operands

must be expanded. In a MxN conditional stencil filter computation, for instance,

the MxN input pixels would all have to be separately compressed.

Scatter/gather is a method of performing indexed memory accesses (indexed

store is a scatter, indexed load is a gather), either to the local memory store or

external memory [29]. Along with a compress operation or special index calcu-

lating instructions, scatter/gather can be used to speed up conditional execution.

Figure 2.6b shows an example of using a gather operation. A scalar base address

along with a vector of offsets is used to calculate the addresses of each data vec-

tor element in external memory. The resulting addresses pass through a memory

unit and are loadied into the desired result vector. For the conditional stencil filter

example, the indices of pixels to be processed could be compressed, and then the

pixel data needed for each location could be loaded using gather operations. The

main drawback of this approach is that parallelizing scatter and gather operations

requires parallel memory acceses, which are nontrivial. VESPA could perform

parallel scatter gather accesses within a single cache line. A special throughput

cache [58] was developed for MXP to support scatter/gather operations, but even

in the best case where all data could fit in a statically allocated multiple-bank on-

chip memory, speedups were modest.

Wavefront skipping, by contrast, uses knowledge of the mask register to skip

elements that do not need to be processed. Early implementations scanned the

mask register during instruction execution to determine if subsequent wavefronts

could be skipped. This introduces enough latency that a way to reduce the over-

head by only skipping powers of 2 elements was patented [62]. Though this re-

duces latency, some extra work is done because the skipping is not exact. Given

that an FPGA implementation is already slower than a hard processor and we are

double-clocking our scratchpad to provide additional ports, we wished to avoid the

additional latency in our design. Our implementation uses a special mask setup

instruction to store the offsets of valid wavefronts in one or more BRAMs within

25

the FPGA. Prior work [63] suggested the idea that each lane can skip forward

individually rather than lockstep as entire wavefronts, but no implementation was

created.

A similar concept exists in GPUs based computing [53]. GPUs divide up a

kernel (consisting of hundreds of threads) into warps, which are analogous to our

wavefronts, usually 16 or 32 threads. Each warp maintains a program counter

(PC) and a mask of active elements. Inside a kernel, branch instructions allow

different threads to diverge. If threads within a warp take different paths because

of a branch instruction, then a separate PC and active mask must be maintained for

both branches. However, if all threads take the same path, the PC for the not-taken

path can be discarded. This is somewhat analagous to unpartitioned wavefront

skipping in vector processors, where a wavefront that is completely masked-off

does not need to be executed.

There has been some work published about, but to our knowledge no actual

implementations of, GPUs skipping at a finer grain than the warp level. Warp

compaction for single-instruction multiple-thread (SIMT) processors and thread

block compaction were simulated [23, 24]. This approach works within blocks of

warps and moves threads between warps to reduce the amount of unnecessary work

done. A similar approach uses ‘large warps’ which are much larger than the SIMD

width of the actual FUs and then executes elements from different subwarps that

are all active [48].

Similarly, an architectural study involving the vector-thread architectural

paradigm looked at divergence, including density-time execution [45]. Vector-

thread architectures can be thought of as a hybrid between vector processors and

GPUs. A single control thread executes per core, and this control thread can issue

a vector-fetch instruction that starts parallel execution. This vector-fetch is not a

single instruction, but the start of a kernel of microthreads that can include control

flow and diverge. When diverged, an active mask is used similar to a GPU, with

pending PCs placed in a pending vector fragment buffer (PVFB). Microthreads do

not reconverge in the baseline, but keep executing until all encounter a stop instruc-

tion and the microkernel finishes. With a simple first-in first-out (FIFO) PVFB,

adding density-time execution reduced energy use by more than 2×. Adding a dy-

namic reconverge scheme lessens the impact of density-time execution. This work

26

only considered single lane implementations of density-time execution.

2.5.1 Execution Pipeline Customization

Chapter 5 explores our method for customizing the SVP pipeline with custom op-

erators created in FPGA logic. There has been some related work in data parallel

processors with configurable or extensible pipelines.

Some scalar processors have support for extensible pipelines. The Tensilica

Xtensa [25] is a synthesizable CPU for system on chip (SoC) designs which re-

serves certain opcodes for custom instructions. Some soft processors, such as Al-

tera’s Nios II [4], support custom instructions directly in their execution pipeline.

Others, such as Xilinx’s MicroBlaze [72] implement tightly coupled queues to in-

terface to custom logic in a similar manner.

VESPA included support for heterogeneous vector lanes [75]; e.g., having

fewer multipliers than general-purpose ALUs. Due to the mismatch between the

vector register file width and execution unit width, a parallel load queue was used

to buffer a vector for heterogeneous operations, and a separate output queue was

used to buffer results before writeback. The amount of customization was limited

to subsetting the existing ISA.

Work by Cong et al. [16] created composable vector units. At compilation

time, the DFG of a vector program was examined for clusters of operations that

can be composed together to create a new streaming instruction that uses multiple

operators and operands. This was done by chaining together existing functional

units using an interconnection network and multi-ported register file. This is sim-

ilar to traditional vector chaining, but it was resolved statically by the compiler

(not dynamically in the architecture) and encoded into the instruction stream. This

provided pipeline parallelism, but was limited by the number of available operators

and available register file ports. The reported speedups were less than a factor of

two.

The Convey HC-2 [18] can adopt one of several ‘personalities’, each of which

provides a domain-specific vector instruction set. User-developed personalities are

also possible. Designed for high-performance computing, the machine includes

a high bandwidth, highly interleaved, multi-bank DRAM array to reduce strided

27

access latency. Since the personalities come preconfigured it may be more useful to

think of the HC-2 as a family of processors rather than a processor with a extensible

execution units.

28

Chapter 3

VENICE: Optimizing for Small
but Capable

It takes a tough man to make a tender chicken. — Frank Perdue

Our first approach to broadening the applicability of SVPs was to reduce the

area/performance penalty of using SVPs to make them more competitive with

hand-crafted RTL designs. In modest performance applications where only a small

SVP is needed, the area overhead incurred (compared to RTL) will be small rela-

tive to the area used in the rest of the system. This contrasts to high performance

applications, where the area penalty will dominate the area of the whole system,

and therefore there is more incentive to spend time developing a custom RTL so-

lution. This lead us to investigate an SVP design that targetted a small number of

lanes; we envision that such a solution that could be a building block in a larger

system rather than a stand-alone processor that takes up the entire FPGA.

3.1 Introduction
This chapter presents VENICE, an SVP designed for maximum throughput with a

small number (one to four) of ALUs. VENICE demonstrates that applications that

need somewhat higher performance than a scalar soft processor can provide can

be implemented while using only modestly more resources. VENICE can achieve

over 2x better performance-per-logic block than VEGAS, the previous best SVP as

29

of the time of its development (2011-2012). It achieves this through a combination

of increasing clockspeed, eliminating bottlenecks in ALU utilization, and reducing

area through FPGA-specific design. While VENICE can scale to a large number of

ALUs, a multiprocessor system of smaller VENICE SVPs is shown to scale better

for benchmarks with limited inner-loop parallelism. VENICE is also simpler to

program than previous SVPs, since its instructions are C macros using pointers into

a scratchpad memory rather than requiring assembly and/or manually allocating

vector registers.

VENICE is smaller and faster than all SVPs published before it. Not only is

it roughly 2× better performance per logic block (speedup per ALM) than VE-

GAS [15], but it is also 5.2× better than Altera’s fastest Nios II/f processor. As a

result, less area is needed to achieve a fixed level of performance, reducing device

cost or saving room for other application logic. Alternatively, it enables larger mul-

tiprocessors to be built using VENICE, resulting in greater computational through-

put for the fixed area of a specific device.

The key contributions that lead to this are:

• Removal of vector address register file (area)

• Use of 2D and 3D vectors (performance)

• Operations on unaligned vectors (performance)

• New vector conditional implementation (area)

• FPGA optimized fracturable multiplier (area)

Programming VENICE requires little specialized knowledge, utilizing the

C programming langauge with simple extensions for data parallel computation.

Changes to algorithms require a simple recompile taking a few seconds rather than

several minutes or hours for FPGA synthesis. In particular, the removal of the

vector address register file makes VENICE easier to program than VEGAS. In

addition, VENICE does not suffer a performance penalty when using unaligned

operands, freeing programmers from worrying about the placement of data in

memory. Finally, as described in a separate publication, Zhiduo Liu developed

30

D
D

R
2

D$

I$ Nios
II/f

CPU

ABS

Accum.

MUL

SHIFT

ROTATE

Align 1

Align 2

ALU

EXTEND

CMOV

Align 3

VENICE Vector EngineInstruction Queue

Scratchpad

Memory

2kB - 2MB

2x clk

Address Logic

Altera Avalon

Fabric

(2nd

pipe

stage)

DMA

Custom Instruction Port

Figure 3.1: VENICE Architecture

a compiler for VENICE based on Microsoft Accelerator [46], demonstrating that

high level code can be translated to VENICE’s programming model.

3.2 Design and Architecture
A block diagram of the VENICE (Vector Extensions to NIOS Implemented Com-

pactly and Elegantly) architecture is shown in Figure 3.1. Similar to previous

SVPs, VENICE requires a scalar core as the control processor; in this case, a Nios

II/f executes all control flow instructions. In our work, Nios is configured to use

a 4kB instruction cache and a 4kB data cache. Unfortunately, Nios lacks support

for hardware cache coherence, so the programmer must sometimes explicitly flush

data from the cache to ensure correctness.

VENICE vector instructions are encoded into one or two tandem Nios custom

instructions and placed inline with regular instructions. These custom instructions

are written into a 4-entry vector instruction queue. Typically, after writing the

vector instruction to the queue, the Nios core can continue executing its next in-

struction. However, the Nios core will stall if the instruction queue is full, or if the

custom instruction synchronizes by explicitly waiting for a result.

The VENICE vector engine implements a wide, double-clocked scratchpad

31

memory which holds all vector data. Operating concurrently with the vector ALUs

and the Nios core, a DMA engine transfers data between the scratchpad and main

memory. The DMA engine also has a 1-entry control queue, allowing the next

transfer to be queued.

It is very important for the DMA engine to operate concurrently with the vec-

tor ALUs, because this hides the memory latency of prefetching the next set of

data elements. All of our benchmarks implement some form of double-buffering,

allowing us to hide most of the memory latency.

All vector ALU operations are performed memory-to-memory on data stored

in the scratchpad. A configurable number of vector lanes (32-bit vector ALUs)

provides additional parallelism. Each 32-bit ALU supports subword-SIMD oper-

ations on halfwords or bytes, thus doubling or quadrupling the parallelism with

these smaller data types, respectively.

3.3 VENICE Implementation
Below, we will describe each of the key improvements made to VENICE. As a

result of these and other optimizations, the design was pipelined to reach 200MHz+

(roughly 50–100% higher than previous SVPs). This also allows the SVP to run

synchronously at the same full clock rate as the Nios II/f, simplifies control, adds

the predictablity of a fully synchronous design, and reduces resource usage.

3.3.1 Removal of Vector Address Register File

One major difference from VEGAS is removal of the vector address register file

(VARF). In VEGAS, the vector instructions emitted from the scalar core include

two source register numbers and one destination register number. They are indices

into the VEGAS 8-entry VARF, which produces addresses that index into the VE-

GAS scratchpad memory. Three VARF entries need to be read for every VEGAS

instruction, and possibly modified due to instructions that automatically increment

address registers. To support three reads and three writes concurently the VARF

was not implemented in BRAM , but rather using LUTs and flip-flops (FFs). The

result was that the VARF used 377 ALMs in a V1 VEGAS implementation, which

is 10% of its total ALM usage.

32

// VEGAS code to add two vectors already in scratchpad
// Clobbers VARF registers V1, V2, V3
void vegas_add(int length, int *v_a, int *v_b, int *v_dest){

//Set the vector length
vegas_set(VCTRL, VL, length);

//Copy the pointer values from the scalar register file to the VARF
vegas_set(VADDR, V1, v_a);
vegas_set(VADDR, V2, v_b);
vegas_set(VADDR, V3, v_dest);

//Perform the operation (VARF values index into scratchpad)
vegas_vvw(VADD, V3, V1, V2);

}

// VENICE code to add two vectors already in scratchpad
void venice_add(int length, int *v_a, int *v_b, int *v_dest){

//Set the vector length
vector_set_vl(length);

//Perform the operation (pointers index directly into scratchpad)
vector(VVW, VADD, v_dest, v_a, v_b);

}

Figure 3.2: VEGAS Code (Requiring Vector Address Register Setting) vs
VENICE Code

Instead, VENICE relies upon the Nios register file to contain the vector ad-

dresses. Instead of emitting register numbers, the vector instruction is emitted with

two source addresses and one destination address; these addresses directly index

the scratchpad memory. Nios instructions can run concurrently with vector oper-

ations, calculating addresses for the next vector instruction while the current one

executes. Additionally, the 2D and 3D vector instructions (which will be explained

in Section 3.3.2) replace the functionality of automatically incrementing address

registers.

In VEGAS, copying values into the VARF and spilling/filling them is a cum-

bersome task for a programmer. Code demonstrating how the VARF is used in

VEGAS along with the corresponding code for VENICE is shown in Figure 3.2 (a

more complete explanation of the VENICE programming model will be given in

Section 3.4). Both VEGAS and VENICE work with pointers into the scratchpad

memory, but programming VEGAS requires copying pointers into local vector ad-

33

dress registers (V1, V2, and V3 in this example). Vector operations then use the

vector address register number rather than the pointer, making code less readable

and harder to maintain. Additionally, if more than eight vectors are needed the

VARF values will have to be spilled and filled between vector operations, hurting

performance. In VENICE there is no need to do this extra work. The lack of VARF

also makes the task of writing a compiler for VENICE easier.

One drawback of this approach is that increased instruction issue bandwidth is

required between the Nios and VENICE vector engine. VEGAS only has to trans-

mit three constant 3-bit VARF indices along with its opcode and modifier bits for

each instruction, allowing a VEGAS instruction to be encoded as a single Nios II/f

custom instruction. VENICE instructions, by contrast, need to read three operand

addresses from the Nios II/f register file. Since a Nios II/f custom instruction can

only access two register values per cycle, two Nios II/f custom instructions are

needed to issue each VENICE instruction.

3.3.2 2D and 3D Vector Instructions

The execution of some programs is limited by the instruction dispatch rate, espe-

cially when short vectors are used. This makes it difficult to achieve high vector

ALU utilization.

To get around this limitation, VENICE implements 2D and 3D vector instruc-

tions. A 1D vector is an instruction applied to a configurable number of elements,

which can be thought of as columns in a matrix. The 2D vector extends this to

repeat the 1D vector operation across a certain number of rows. In between each

row, the operand address will be incremented by a configurable stride value, allow-

ing for selection of arbitrary submatrices. Each operand uses its own unique stride

value. When executing, the vector core dispatches a separate vector instruction for

each row, and in parallel adds the strides for each operand to determine the address

of the next row. As a result, VENICE can issue up to 1 row per cycle. This has

a direct extension to 3D instructions for operations on 3D data, which can process

multiple 2D matrices with a single instruction.

An example of programming using 2D vector instructions will be given in Sec-

tion 3.4.

34

Figure 3.3: Example of Misaligned Operation

3.3.3 Operations on Unaligned Vectors

When input and/or output vectors are not aligned, data needs to be shuffled between

lanes. For example, Figure 3.3 shows how VENICE uses three alignment networks

to shuffle unaligned data. A four bank scratchpad memory is shown, with Bank 0

at the top of the figure. The three operand vectors are striped across the scratchpad

memory, with the first input starting in Bank 1, the second input starting in Bank

3, and the destination vector starting in Bank 2. When an instruction is issued

using these operands, the two source operands are first aligned into a canonical

position such that Element 0 is moved to the top ALU. Next, the vector data is

processed by the ALUs. Finally, the result is re-aligned, moving Element 0 of

the result vector into the scratchpad memory bank that corresponds to the start of

the destination operand target position. Doing vector alignment in the processors

pipeline is especially useful when doing convolution, as one operand’s starting

address is continuously changing and seldom aligned.

Note that only two alignment networks are required to align the two input

operands and one output operand; the extra alignment network was put in place

to allow for future work when operand data sizes mismatch. The ability to do

operand resizing in the pipeline was not implemented in VENICE (though it was

35

in the commercial MXP processor [59]), so the third alignment network could be

removed from VENICE to save area without affecting performance.

The older VEGAS processor uses a single alignment network because this is

the only component that grows super-linearly with the number of vector lanes. This

is a concern as the number of lanes increases, but not for the small number of lanes

that VENICE is designed for, as we will show in Section 3.5.1. The drawback

of VEGAS’s single alignment network is that it introduces a performance penalty

when input operands are not aligned. In VEGAS, when the two input operands

were not aligned, a copy operation is automatically inserted to align them. These

extra copies can potentially halve performance on code where inputs are mostly

unaligned, such as sliding window algorithms. Additionally, space is reserved at

the end of the scratchpad memory for these temporary copies, meaning that the

full scratchpad can not be used by the program unless all operations are provably

aligned.

3.3.4 New Vector Conditional Operations

Previous SVPs based on the VIRAM architecture used eight vector mask registers

to store flags which could be used to perform conditional operations. VEGAS used

a similar approach, storing flags in separate BRAMs from the scratchpad.

VENICE takes a novel approach to data-conditional operations. Vector flags

for compare instructions and arithmetic overflow are written alongside each byte,

using the 9th bit in BRAMs that have an extra data bit for parity or optional storage

(such as the M9K in Altera Stratix devices). This reduces BRAM usage, but does

not allow for a VIRAM-style register file of flags. Instead, conditional move op-

erations that read the flag bits as one of the input operands are used to implement

simple predication.

The stored flag value depends upon the operation: unsigned addition/subtrac-

tion stores the carry-out/borrow, while signed addition/subtraction stores the over-

flow. The flag and most significant bit (MSB) result bits can thus be used to check

out-of-range results, less-than/greater-than (using the negative-result flag), or ex-

tended precision (64-bit) arithmetic.

36

3.3.5 Streamlined Instruction Set

VENICE implements a simple instruction set, consisting of 24 basic operations

versus over 50 instructions in VEGAS. VENICE also has several mode bits to

indicate more complex operations. Because two Nios custom instructions are re-

quired to dispatch a VENICE instruction, there are enough usable bits to encode

the ISA while allowing any combination of mode bits, making the ISA fully or-

thogonal. Absolute value, 2D/3D instructions, and accumulation reduction can all

be combined with any instruction and each other. This allows for complex instruc-

tions to be built that perform multiple operations between reading and writing to

the scratchpad. All operations can take a scalar operand as one input, and the scalar

always replaces operand A, in contrast to VEGAS where the scalar would replace

operand A or B depending on the operation.

3.3.6 FPGA Architecture-Specific Optimizations

Figure 3.4 shows VENICE’s method of implementing fracturable multipliers ver-

sus the partial products method used in VEGAS. The previous method used four

18-bit multipliers. Byte and halfword operations could be performed directly using

the 18-bit multipliers, while word operations used the four multipliers to compute

partial products which were then added together. Since this addition was not per-

formed for all operations, the adder could not be implemented using one of the DSP

Block’s internal adders. The VENICE method, by contrast, uses a simpler parallel

implementation where there is one 36-bit multiplier that can perform a word/half-

word/byte multiply, one 18-bit multiplier that can perform a halfword/byte mul-

tiply, and two 9-bit multipliers that can perform byte multiplies. The VENICE

method uses the same number of DSP Blocks as the partial products method, but

does not require additional adders or multiplexers on the inputs. This leads to both

lower ALM usage and lower delay in Stratix IV FPGAs. The lower ALM usage of

the multiplier is the primary reason for the size difference of the ALUs of VEGAS

and VENICE that will be shown in Section 3.5.1.

The only drawback of the new multiplier organization is that a single lane’s

multipliers cannot be packed into a single Stratix IV DSP Block due to configura-

tion limitations. However, two lanes worth of multipliers may be packed into two

37

36x36

18x18

9x9

9x9

64

16

byte 0 / halfword 0 / word

byte 3

byte 2 / halfword 1

byte 1

32

16

b) VENICE Fracturable Multiplier
2 lanes pack into 2 DSP blocks and use fewer ALMs

<<16

<<32

18x18

18x18

18x18

18x18

64

32

32

word

byte 0 /
halfword 0

byte 3 /
halfword 1

byte 2

byte 1
16

16

a) VEGAS Fracturable Multiplier
1 lane packs into 1 DSP block

36x36

9x9

9x9

36x36

9x9

9x9

One DSP Block
contains two

36b Multipliers

Each 36b Multiplier
can be divided into

two 18b Multipliers or
four 9b Multipliers

18x18

18x18

18x18

18x18

18x18

18x18

Figure 3.4: Fracturable Multiplier Styles

DSP Blocks. Hence, V1 may use an additional half DSP Block, but larger designs

use the same amount as VEGAS.

Despite its lower latency compared to previous multiplier implementations, it

is necessary to pipeline the multiplier over two stages to achieve high freqency

operation. This leaves an extra cycle for processing simple (non-multiplier) ALU

operations which can complete in a single cycle. A general absolute value stage

was added after the integer ALU, allowing operations such as absolute difference

in a single instruction. When followed by VENICE’s reduction accumulators,

operations such as sum-of-absolute-differences (used for motion estimation) and

multiply-accumulate instructions (for matrix multiply) can be implemented in a

single instruction.

38

#include "vector.h"

int main()
{

const int length = 8;
int A[length] = {1,2,3,4,5,6,7,8};
int B[length] = {10,20,30,40,50,60,70,80};
int C[length] = {100,200,300,400,500,600,700,800};
int D[length];

// if A,B,C are dynamically modified,
// then flush them from the data cache here

const int num_bytes = length * sizeof(int);

// alloc space in scratchpad, DMA from A to va
int *va = (int *) vector_malloc(num_bytes);
vector_dma_to_vector(va, A, num_bytes);

// alloc and DMA transfer, in one simple call
int *vb = (int *) vector_malloc_and_dmacpy(B, num_bytes);
int *vc = (int *) vector_malloc_and_dmacpy(C, num_bytes);

// setup vector length, wait for DMA
vector_set_vl(length);
vector_wait_for_dma(); // ensure DMA done

vector(VVW, VADD, vb, va, vb);
vector(VVW, VADD, vc, vb, vc);

// transfer results from vc to D
vector_instr_sync(); // ensure instructions done
vector_dma_to_host(D, vc, num_bytes);
vector_wait_for_dma();

vector_free();
}

Figure 3.5: VENICE Code to Add 3 Vectors

3.4 Native Programming Interface
The native VENICE API is similar to inline assembly in C, using C preprocessor

macros. The use of macros for instruction encoding was introduced in VEGAS,

and makes vector instructions look like C functions without any run time over-

head. Previous SVPs had required the programmer to write assembly directly.

VENICE further improves on the VEGAS programming model by not having a

vector address register file (VARF) (as explained in Section 3.3.1), so no register

managment is needed in VENICE code. An example of VENICE code to add three

39

vectors together is shown in Figure 3.5.

Each macro dispatches one or more vector assembly instructions to the vector

engine. Depending upon the operation, these may be placed in the vector instruc-

tion queue, or the DMA transfer queue, or executed immediately. A macro that

emits a queued operation will finish as soon as the operation is enqueued, and sub-

sequent macros may run before the enqueued operation is executed. Some macros

are used to restore synchrony and explicitly wait until the vector engine or DMA

engine is finished.

Programs using the VENICE programming model follow seven steps:

1. Allocation of memory in scratchpad

2. Optionally flush data in data cache

3. DMA transfer data from main memory to scratchpad

4. Setup for vector instructions (e.g., the vector length)

5. Perform vector operations

6. DMA transfer resulting data back to main memory

7. Deallocate memory from scratchpad

The basic instruction format is vector(MODE, FUNC, VD, VA, VB),

where the values of MODE and FUNC must be predefined symbols, while the val-

ues of VD and VB must be scratchpad pointers and VA can be a scalar value or

scratchpad pointer.

For example, to add two unsigned byte vectors located in the scratchpad by

address pointers va and vb, increment the pointer va, and then store the result at

address pointer vc, the required macro would be:

vector(VVBU, VADD, vc, va++, vb);

In the example, the MODE specifier of VVBU refers to a ‘vector-vector’ op-

eration (VV) on byte-size data (B) that is unsigned (U). The vector-vector part can

40

void vector_fir(int num_taps, int num_samples,
int16_t *v_output, *v_coeffs, *v_input){

// Set up 2D vector parameters:
vector_set_vl(num_taps); // inner loop count
vector_set_2D(num_samples, // outer loop count

1*sizeof(int16_t), // dest gap
(-num_taps)*sizeof(int16_t), // srcA gap
(-num_taps+1)*sizeof(int16_t)); // srcB gap

// The instruction below repeats a 1D dot-product (ie,
// 1D accumulate) operation once for every output sample.
// After each 1D dot product, it adds the gap values (set
// by vector_set_2D) to each of the three pointers.
vector_acc_2D(VVH, VMULLO, v_output, v_coeffs, v_input);

}

Figure 3.6: FIR Kernel Using 2D Vector Instructions

instead be scalar-vector (SV), where the first source operand is a scalar value pro-

vided by Nios instead of an address. These may be combined with data sizes of

bytes (B), halfwords (H) and words (W). A signed operation is designated by (S)

or by simply omitting the unsigned specifier (U). For example, computing a vec-

tor of signed halfwords in vresult by subtracting a vector vinput from the

scalar variable k would be written as vector(SVH, VSUB, vresult, k,

vinput).

Space can be allocated in vector scratchpad memory using vector malloc(

num bytes) which returns an aligned pointer. As it is common to allocate

space and immediately DMA a vector from main memory to scratchpad memory,

the vector malloc and dmacpy() function combines both operations into a

single function call. The vector free() call frees all previous scratchpad al-

locations; a single macro which frees all allocated memory was provided since the

common case is to utilize the scratchpad for one kernel/function after which it can

be reused for the next kernel/function. DMA transfers and instruction synchroniza-

tion are handled by macros as well.

Figure 3.6 gives an example of using 2D vector instructions: a kernel that per-

forms a finite impulse response (FIR) filter with 16-bit input and output data. This

function can be performed in a single VENICE instruction using the reduction ac-

cumulators. Without 2D instructions, the scalar processor must repeat a 1D vector

41

Table 3.1: Resource Usage Comparison

VEGAS VENICE
Device or CPU ALMs DSPs M9Ks Fmax ALMs DSPs M9Ks Fmax

Stratix IV EP4SGX530 212,480 128 1,280 – 212,480 128 1,280 –
Nios II/f 1,223 1 14 283 1,223 1 14 283

Nios II/f + V1 (8kB) 3,831 2 35 131 2,529 2.5 27 206
Nios II/f + V2 (16kB) 4,881 3 49 131 3,387 3 40 203
Nios II/f + V4 (32kB) 6,976 5 77 130 5,096 5 66 190

instruction (of num taps length) using a for() loop of length num samples.

This requires the scalar processor to increment the source and destination addresses

and count the number of iterations.

With 2D instructions, the loop counting and operand address incrementing is

performed in hardware. The vector set 2D() call specifies the number of iter-

ations (first parameter), and three gaps for the destination and two source operands,

respectively. Each gap is a distance, measured in bytes, between the end of the row

and the start of the next row. Hence, a gap of 0 implies a packed 2D matrix, while

a negative gap produces a sliding window effect as required by the FIR filter. The

gap for operand A, the FIR coefficients, produces a stationary window. The desti-

nation gap is 2 bytes because each 1D operation is accumulated, producing a result

row which contains just 1 element (i.e., the dot product).

3.5 Evalution Results
All soft processor results in this paper are measured on an Altera DE4-530 de-

velopment system using Quartus II version 11.0. All software self-verifies itself

against a sequential C solution.

3.5.1 Area and Clock Frequency

The overall resource usage and clock frequency for VENICE compared with VE-

GAS is in Table 3.1. In this table, the overall Stratix IV-530 device capacity is

shown in terms of ALMs, DSP Blocks, and M9K BRAMs. It is important to note

that an Altera DSP Block is a compound element consisting of two 36b multipliers.

Alternatively, each 36b multiplier can be statically configured as two 18b multipli-

42

Table 3.2: Area Breakdown (ALMs)

VEGAS VENICE Savings
Fracturable ALU 771 471 300
Control/Pipeline 1200 538 662
DMA 501 181 320
Alignment (V1) 136 116 20
Alignment (V4) 448 855 -407

ers or four 9b multipliers. Altera literature usually quotes device capacity as the

number of internal 18b multipliers; there are eight 18b multipliers internally in a

DSP Block, but only four can be used indepedently.

Table 3.1 also gives area and clock frequency results for several VEGAS and

VENICE configurations, each of which includes a Nios II/f base processor. The

V1, V2, and V4 notation indicates one, two and four 32b vector lanes, respectively.

The (8kb), (16kB), and (32kB) notation indicates the scratchpad sizes used in each

configuration. VENICE uses fewer ALMs and fewer M9Ks than VEGAS in all

configurations. Except for the smallest V1 configuration, VEGAS and VENICE

use the same number of DSP Blocks. In the V1 configuration, VENICE is using

2.5 DSP Blocks, but these are not filled to capacity; in addition to the 0.5 DSP

block being available, there is also room for one 18b and two 9b multipliers. The

clock frequency achieved with VENICE is also 50% higher than VEGAS. Except

for the V1 DSP block anomaly, VENICE completely dominates VEGAS in area

and clock frequency.

Figure 3.7 gives a more detailed area breakdown of VEGAS and VENICE.

VENICE has consistently lower area for everything but the alignment network

(when using multiple lanes). Precise area values for the V1 configuration are shown

in Table 3.2. The savings in each area is primarily due to:

• Fracturable ALU savings is primarily due to the new parallel multiplier,

which uses fewer adders and requires less input and output multiplexing.

Additional savings were obtained by streamlining the ISA. Note that this

savings is per lane.

• Control/Pipeline savings is primarily due to removal of the 8-entry vector

address register file. Since each operand must support an auto-increment

43

Figure 3.7: Area Breakdown (ALMs)

mode, VEGAS implemented these in ALMs and FFs.

• The VEGAS DMA engine includes an alignment network, which allows data

to be loaded into an aligned position to help avoid the misalignment perfor-

mance penalty. This is not necessary in VENICE, since it runs full-speed on

unaligned data. Instead, VENICE performs DMA alignment in software, so

unaligned DMA operations may exhibit a slowdown.

• The VEGAS alignment network was designed to scale to a large number of

lanes, while the VENICE alignment network was optimized for only a few

lanes.

3.5.2 Benchmark Performance

The characteristics of nine application kernels are reported in Table 3.3. The input

and output data types for each kernel are shown in the Data Type column, including

whether a higher precision is used during intermediate calculations. The overall

input data set size is also shown, along with the size of a filter window in the Taps

column. Some of these kernels come from EEMBC [17], others are from VIRAM,

44

Table 3.3: Benchmark Properties

Data Type Benchmark Properties
Benchmark In/Out Intermed. Data Set Size Taps Origin

autocor halfword word 1024 16 EEMBC
rgbcmyk byte - 896×606 EEMBC
rgbyiq byte word 896×606 EEMBC

imgblend halfword - 320×240 VIRAM
filt3x3 byte halfword 320×240 3×3 VIRAM
median byte - 128×21 5×5 custom
motest byte - 32×32 16×16 custom

fir halfword - 4096 16 custom
matmul word - 1024×1024 custom

Table 3.4: Benchmark Performance

Performance (Million elements per sec) Speedup
Benchmark Nios II/f V1 V2 V4 V1 V2 V4

autocor 0.46 5.94 11.11 18.94 12.9 24.2 41.2
rgbcmyk 4.56 17.68 21.41 22.72 3.9 4.7 5.0
rgbyiq 5.20 6.74 11.09 15.61 1.3 2.1 3.0

imgblend 4.83 77.63 145.57 251.18 16.1 30.1 52.0
filt3x3 2.11 16.82 26.95 36.42 8.0 12.7 17.2
median 0.10 0.74 1.45 2.69 7.3 14.4 26.6
motest 0.09 2.37 4.18 6.29 27.4 48.2 72.4

fir 3.32 20.11 34.95 41.67 6.1 10.5 12.5
matmul 11.7 148.20 322.22 593.75 12.6 27.4 50.6

Geomean 7.95 13.8 20.6

and others are written by the authors. The ‘median’ benchmark performs a 5x5

median filter on a greyscale input image. The ‘motest’ benchmark performs (luma

only) motion estimation of a 16x16 reference block across a 32x32 search range.

Note that ‘motest’ only computes the set of sum of absolute differences (SAD)

values, it does not include the time to scan and find the lowest SAD location. The

‘fir’ benchmark is a 16-tap, 16-bit FIR filter. The ‘matmul’ benchmark performs

32-bit integer dense matrix multiplication.

The Nios II/f processor was run at 283MHz with a 200MHz Avalon intercon-

nect and 200MHz DDR2 controller (i.e., at the limit of the DDR2-800 SODIMM).

The VENICE V1 and V2 configurations were run synchronously at 200MHz for

everything, including the Nios II/f, VENICE engine, Avalon interconnect, and

DDR2 controller, while the V4 configuration was run with everything at 190MHz.

45

Figure 3.8: Speedup (Geometric Mean of 9 Benchmarks) vs Area Scaling

The performance of these kernels is shown in Table 3.4. The results are in units

of millions of elements computed per second. For the first eight kernels, an ele-

ment is in units of the output data type. This is meaningful because the amount of

compute work is linear to the number of output bytes. For example, the motest ker-

nel computes 0.09 million SAD calculations per second, where each calculation

results in one byte of output. In matrix multiply, however, the amount of com-

putation is not a linear factor of the number of output elements. For that kernel

only, we report performance as millions of multiply accumulates (MACs) per sec-

ond (MAC/s). The peak performance of VENICE V4 at 190MHz is 760 million

MAC/s, so our matrix multiply code is running at 78% of peak performance.

3.5.3 Speedup versus Area

The VENICE processor is designed to offer higher performance and use less area

than VEGAS. Figure 3.8 demonstrates this with a speedup versus area plot. The

speedup and area results are normalized to the Nios II/f results, and these are used

to compute a geometric mean across nine benchmark programs. Area results ac-

46

0.1	

1	

10	

100	

au
tco
r	

rgb
cm
yk
	

rgb
yiq
	

im
gb
len
d	

filt
3x
3	

me
dia
n	

mo
tes
t	 fir	

int
	 m
atm

ul	

ge
om
ea
n	

Sp
ee
du

p	
pe

r	 A
LM

	
(r
el
a.

ve
	 to

	 N
io
s	 I
I/
f)	

	
VEGAS-‐V1	 VENICE-‐V1	

Figure 3.9: Computational Density with V1 SVPs

count for ALMs only; VENICE uses fewer M9K’s but a similar number of DSP

Blocks.

Results for a single Nios II/f processor are presented at the <1.0,1.0> position

on the graph. Diamond-shaped data points extrapolate the performance and area if

multiple Nios processor instances are created (with no interconnect overhead) and

run perfectly in parallel. Triangular-shaped data points for V1, V2, and V4 config-

urations of VEGAS clearly outperform Nios II/f, achieving a maximum speedup of

17.2× at an area overhead of 5.7×. Circular-shaped data points for similar config-

urations of VENICE show it dominates VEGAS in both area and speed, achieving

a maximum speedup of 20.6× at an area overhead of 4.0×.

Speedup divided by area produces a metric of performance per unit area. This

can also be considered a measure of the computational density of an FPGA. Fig-

ure 3.9 compares the computational density for VEGAS and VENICE using a small

V1 configuration.

Since the configuration (and therefore area) used is the same across all nine

47

benchmarks, computational density differences between them correspend only

to performance differences. Simple benchmarks such as rgbcmyk, rgbyiq,

imgblend and median achieve the smallest performance increase over VEGAS.

These benchmarks have large vector lengths and no misaligned vectors, and so the

speedup comes mostly from the clock speed increase. Convolution benchmarks

like fir and autocor benefit from the lack of misalignment penalty on VENICE.

The 2D vectors accelerate autocor, motest, and fir. On matmul, using 3D vectors

and the accumulators allow VENICE to achieve 3.2× the performance of VEGAS.

For one application, rgbyiq, the computational density falls below 1.0 on

VENICE, meaning Nios II/f is better. This is because the area overhead of 1.8×
exceeds the speedup of 1.3×. The limited speedup is due to a combination of

memory access patterns (r,g,b triplets) and wide intermediate data (32b) to prevent

overflows. However, on average, VENICE-V1 offers 3.8× greater computational

density than Nios II/f, and 2.3× greater density than VEGAS-V1.

Comparing V4 configuration results (not shown), the computational density of

VENICE is 5.2×, while VEGAS is 2.7× that of Nios.

3.5.4 Case Study: DCT

VENICE was designed to exploit vector parallelism, even when vectors are short.

By remaining small, VENICE can be efficiently deployed in multiprocessor sys-

tems to efficiently exploit other forms of parallelism (eg, thread-level) on top of the

vector-level parallelism.

In this section, we use VENICE to perform a 4x4 discrete cosine transform

(DCT) with 16-bit elements on a total of 8192 different matrices. Each DCT is im-

plemented using two matrix multiplies followed by shifts for normalization. Vec-

tors are short, limited to four halfwords for the matrix multiply.

In Figure 3.10, the first set of bars shows the benefit of using 2D and 3D vector

operations with a V2 VENICE configuration. In the 1D case, VENICE is issue-rate

limited and gets poor speedup. To compute one element in the output matrix (i.e.,

compute the dot product of one row with a transposed row), the Nios processor

must compute the addresses and issue two custom instructions. Still, it manages

to get a speedup of 4.6× over the Nios II/f. With 2D instructions, an entire row

48

0	

10	

20	

30	

40	

50	

60	

1D	 (V2)	 2D	 (V2)	 3D	 (V2)	 V1	 V2	 V4	 1xV2	
(3.4k	
ALMs)	

2xV2	
(8.8k	
ALMs)	

4xV2	
(19k	
ALMs)	

Speedup	 vs	 Nios	 II/f	 Speedup	 per	 ALM	

Figure 3.10: 16-bit 4x4 DCT Varying 2D/3D Dispatch, SVP Width, and # of
SVPs

in the output matrix can be computed with a single VENICE instruction, giving a

speedup of 3.6× over the 1D case. With 3D instructions, it can compute the entire

output matrix with one instruction, running 1.4× faster than the 2D case. With 3D

instructions, one DCT takes 43.9 cycles on average. The theoretical minimum is

40 cycles, giving 91% ALU utilization.

The second set of bars shows performance scaling from one to four vector

lanes. A V1 VENICE can achieve a speedup of 10.8×Nios II/f, and the benchmark

scales well to V2 (1.87× faster than V1). However, V4 is only 1.05× faster than

V2. During the matrix multiply step, the maximum vector length is 4 halfwords,

so it does not benefit from more than 2 lanes; only the normalization step benefits.

The final set of bars shows the results of a simple multiprocessor VENICE sys-

tem, consisting of one, two, and four V2 VENICE processors. This system was

constructed by connecting together several Nios II/f processors, with VENICE ac-

celerators, using the default Altera Avalon fabric. Scaling from one to two pro-

49

cessors leads to a system that is 1.98× faster. Scaling from two to four processors

achieves a speedup of only 1.31×. This is lower than expected, because we are

not yet bandwidth-limited (the memory bandwidth limit is 8 cycles per DCT, but

we are achieving only 17.0 cycles per DCT at this point). Further investigation is

required.

The set of red bars in the figure indicates speedup per ALM. The multipro-

cessors use a large number of additional ALMs in the Avalon fabric. This greatly

deteriorates the speedup-per-ALM advantage, and suggests that Avalon is not the

most efficient way to build a VENICE multiprocessor.

3.6 Summary
This chapter investigates ways to reduce SVP area and increase SVP performance

by targetting modest performance applications and using FPGA-specific optimiza-

tions. VENICE is designed to accelerate applications that require higher perfor-

mance than a scalar soft processor can provide, but do not need to scale to a large,

expensive FPGA.

Speedups over 70× a Nios II/f were demonstrated, with 3.8× to 5.2× bet-

ter performance per logic block from V1 to V4. VENICE is also both smaller

and faster than the VEGAS, the previous best SVP at the time of development.

VENICE offers over 2× the performance per logic block of VEGAS while using

fewer BRAMs and the same number of DSP blocks. The use of 2D and 3D in-

structions allows for high ALU utilization (91% in DCT) even with small vector

lengths.

VENICE can be used on its own to implement applications with modest per-

formance needs, giving FPGA designers a tool that is quick to iterate designs with.

Additionally, VENICE could be conceived as a building block in a heterogeneous

systems such as a vector/thread hybrid solution [38].

50

Chapter 4

Wavefront Skipping on Soft
Vector Processors

Let us redefine progress to mean that just because we can do a thing,
it does not necessarily mean we must do that thing. — Federation

President, Star Trek VI

In the previous chapter, we discussed how VENICE can replace RTL for

modest-performance data-parallel applications with much lower overhead than pre-

vious SVPs. This gives designers a tool for quickly developing applications that

have straightforward and regular data parallelism. To enable more applications

on SVPs, we investigated broader classes of algorithms. This chapter presents a

method for accelerating certain irregular data parallel applications, such as face

detection. We utilize the cheap and abundant FPGA BRAMs to avoid wasted com-

putational cycles.

4.1 Introduction
SVPs process multiple data elements in parallel; the data processed in a single

cycle is called a wavefront. If the vector length is longer than the number of lanes,

the instruction will sequentially process one wavefront per cycle until the whole

vector instruction has completed. For algorithms that use conditional execution,

i.e., branching, the vector processor must execute both paths of the branch and

51

Figure 4.1: Wavefront Skipping on a 4 Lane SVP

mask off writes for elements not on the active branch. This can result in a large

portion of execution unit results that are not used, especially for algorithms that

can stop processing some data elements early depending on a conditional check.

In order to speed up these conditional algorithms, masked-off elements must

not utilize execution slots. It is possible to compress vectors in order to remove

masked-off elements [63], but we will show later that this is costly for algorithms

such as stencil filters. Rather, we would like to skip over elements without rearrang-

ing data, which led us to implement wavefront skipping. In wavefront skipping, a

wavefront where all the elements are masked off is skipped. We also implemented

partial wavefront skipping, by which the wavefront is divided into partitions that

can skip independently. This fine-grained skipping can lead to performance in-

creases, at the cost of requiring more resources.

Figure 4.1 helps illustrate how wavefront skipping works. The values shown

are the mask bits corresponding to each data element; a zero indicates that element

is masked off. In Figure 4.1a one of the eight wavefronts can be skipped since all

52

of its elements are masked off. Normally this instruction would take eight cycles to

process, but with wavefront skipping it can complete in seven. Figure 4.1b shows

two wavefront partitions; the finer granularity means more partial wavefronts can

be skipped, and so the instruction can run in only four cycles (the partition with

only three sub-wavefronts of active data ends up being idle during the last cycle).

Figure 4.1c shows four wavefront partitions, at which point the partition size is a

single element, and the instruction can execute in two cycles.

This chapter gives the first implementation of wavefront skipping on SVPs. It

uses a different approach than is used on fixed vector processors, where the mask

register is read out in parallel and the number of leading masked-off elements is

computed each cycle. Instead, we take advantage of the relative abundance of

BRAMs on FPGAs by computing wavefront offsets beforehand in a setup instruc-

tion and storing them. Additionally, we implement partitioned wavefront skipping,

where instead of entire wavefronts skipping together, partial wavefronts (down to

individual bytes) can skip by different amounts. To our knowledge this is the first

implementation of this idea in any vector processor. The full wavefront skipping

implementation requires no more than 5% increase in area and a single BRAM and

achieves speedups of up to 3.2× for the early exit algorithms we have tested. The

addition of partial wavefront skipping provides additional gains of up to 5.3× but

requires up to 27% additonal area. While this might not be a good tradeoff in a

hard vector processor, it may make sense as a configuration option for an SVP.

Because the SVP can be configured differently for each design, partial wavefront

skipping may make sense if the design has some unused BRAMs within the device

or the algorithm is particularly sensitive to wavefront partitioning.

4.2 BRAM Based Wavefront Skipping
This work builds on the VectorBlox MXP [59], a VENICE-like commercial SVP.

An architectural diagram of MXP can be seen in Figure 4.2. Prior to this work

MXP supported predicated execution through conditional move (CMOV) instruc-

tions only. This differs from wavefront skipping in that the CMOV operation does

both a condition check and move in the same instruction, and it operates on the

entire vector instead of just the valid wavefronts. The CMOV instruction checks

53

Align B

Align A

Align C

Scratchpad

Address Generation

DMA and Vector

Instruction Queues

System

Bus or

NoC

ALUs

Σ

DMA

M

S
Rd

SrcA

Rd

SrcB

Wr

DstC

R/W

DMA

A B C D

From Scalar Core

Masked Unit

Figure 4.2: VectorBlox MXP with Four 32-bit Lanes

conditions using a flag bit associated with each element; each 9-bit wide scratch-

pad BRAM stores 8-bits of data and one flag bit. The flag bit is set by earlier

vector instructions; for instance an add instruction stores overflow while a shift

right stores the bit shifted out. The flag bit is used along with whether the element

is zero or negative to perform several different CMOV operations. The most com-

mon CMOV operations first perform a subtraction-based comparison; the result is

predicated based on whether the result is less than zero (LTZ), less than or equal to

zero (LTE), etc. The CMOV hardware is part of the ALUs.

4.2.1 Full Wavefront Skipping

Figure 4.3 gives an example of how to use wavefront skipping to perform strided

operations, such as operating on every fifth element as in Figure 4.1. The first loop

sets every fifth element of v temp to be 0 (this could be done with vector divide

or modulo instructions if the SVP supports them, but is shown in scalar code for

54

#define STRIDE 5

//Toy functition to double every fifth element
//in the vector v_a
void double_every_fifth_element(int *v_a,

int *v_dest,
int *v_temp
int vector_length)

{
int i;

//Initialize every fifth element of v_temp to zero
for(i = 0; i < vector_length; i++) {

v_temp[i] = i % STRIDE;
}

//Set the vector length which will be processed
vbx_set_vl(vector_length);

//Set mask for every element equal to zero
vbx_setup_mask(CMOV_Z, v_temp);

//Perform the wavefront skipping operation:
//multiply all non-masked off elements of v_a by 2
//and store the result in v_dest
vbx_masked(SVW, MUL, v_dest, 2, v_a);

}

Figure 4.3: Code Example: Double Every Fifth Element of a Vector

clarity). The vbx setup mask instruction takes as input a comparison operation

(CMOV Z, or use the CMOV hardware to test for equal to zero) and a pointer to

the vector operand (v temp, which is a pointer to a vector of 32-bit data).

After the mask is set, the vbx masked instruction is executed. The ‘SVW’

type specifier indicates that it operates on scalar (2) and vector (v a) inputs and

that the values are words (32-bit). The elements in the destination vector (v dest)

that are masked-off will not be written, while the valid elements will be set to the

corresponding element of v a multiplied by 2. Although this is a trivial example

and is not faster than using a conditional move, complex algorithms that reuse the

mask several times and/or have sparse valid elements can give significant speedup.

In order to support wavefront skipping, we need to alter the scratchpad address

generation logic of MXP. For normal vectors, the addresses of the operands are

incremented by one wavefront every cycle. So, with a V2 MXP (meaning it has

two 32-bit vector lanes), each address is incremented by 8 bytes (the width of one

55

wavefront) each cycle. To support wavefront skipping, we want to add a variable

number of wavefronts to the operand addresses depending on the value of a mask

that was observed earlier. We accomplish this by storing the offsets of wavefronts

that have valid elements in a BRAM inside the ‘masked unit’. Because a wavefront

contains multiple elements, we also have to store a valid bits for each element.

These are stored per byte, and during subsequent execution become byte enables

upon writeback. Finally, the length of a wavefront skipped vector may be shorter

than the length of the full vector, so we have to mark the last wavefront. We use

an extra bit to mark the wavefront that is the end of the skipped vector. This is an

implementation detail that was convenient in our design and could be replaced by

storing the number of wavefronts in a register.

BRAMs are limited in depth, however, and MXP’s scratchpad can hold vectors

of any length. To allow for wavefront skipping of vectors of the whole scratchpad

length, the masked unit would need a BRAM as deep as the scratchpad itself. This

would be wasteful for many applications, so we allow the user to configure a

maximum masked vector length (MMVL) as an SVP build option. The minimum

depth of BRAMs in the Stratix IV FPGAs we tested on is 256 words, so setting

MMVL to be less than 256 will result in underutilized BRAMs. The fact that

wavefront skipping instructions have a length restriction must be known by the

programmer. In real applications data does not fit entirely in scratchpad memory

and so is operated on in chunks (also known as strip-mining [70]) even without an

MMVL; the MMVL only affects the size of the chunks.

To generate the wavefront offsets, we added the mask setup instruction. This

mask setup instruction uses the conditional move logic already in MXP to generate

the valid bits set in the mask BRAM. Figure 4.4a shows the data written the mask

BRAM during the mask setup instruction. For each wavefront processed, the offset

and valid bits are sent to the masked unit. If no valid bits are set, as in wavefront

4 (data elements 16-19), the masked unit does not write into its BRAM. If any of

the valid bits are set, the masked unit writes the current offset and the valid bits

to its current BRAM write address and increments the write address. The final

wavefront causes the end bit to be written to the mask BRAM along with its offset

and byte enables, provided there are any byte enables set. In this example the final

wavefront has valid byte enables, but in instances where the final wavefront has no

56

Figure 4.4: Data Written to Mask BRAM (Every Fifth Element Valid)

byte enables set we redo the write of the last valid wavefront with the end bit set.

In the case of algorithms with multiple early exit tests, the set of elements being

masked off grows with each test. In this case, we wish to generate a new mask that

is based on the previous mask, except that a superset of elements will be masked

off. In this situation, it is desirable to have a masked ‘setup mask’ instruction. This

is a trivial extension of the normal mask setup instruction; instead of the wavefront

numbers progressing linearly, they are taken from the output of the masked unit.

In this way the number of valid elements can decrease until either the algorithm

finishes or no more valid elements are left. When no valid elements are left, any

wavefront skipping instructions will execute as no operations (NOPs), taking only

a single cycle in the vector engine to execute. However, dispatching the vector

instructions and calculating vector addresses still takes time in the scalar engine,

so it is desirable to exit the algorithm completely if no elements are valid. For this

case, we have a mask status register that the scalar core can query to determine if

57

any valid elements are left.

4.2.2 Wavefront Partitioning

So far we have only discussed skipping whole wavefronts. When dealing with wide

SVPs, it may be of little value to skip whole wavefronts, since it will be rare that

the entire wavefront can be skipped. As a trivial example, the code from Figure 4.3

will skip 4/5 of wavefronts on a V1, 1/5 of wavefronts on a V4, and no wavefronts

on wider MXP’s (every wavefront will contain at least one valid word). To speedup

this code on a wide MXP, we need to support skipping at a narrower granularity

than the wavefront. We support this by partitioning the wavefront into narrower

units which each have separately controllable BRAMs; for instance, a V4’s masked

unit can have 1 BRAM (whole wavefront skipping), 2 BRAMs (pairs of lanes can

skip together), or 4 BRAMs (each lane can skip individually). If halfword or byte

operations are frequently done, the masked unit can even have 8 or 16 BRAMs,

respectively. Each BRAM requires the same number of bits to store offsets and the

end-of-masked-vector bit, but the byte-enable bits are specific to each partition.

Figure 4.4b shows the data written to the 2 mask partition BRAMs for the

code from Figure 4.3. This mask will take 4 cycles to execute (the maximum of

the depth written to all of the partitions), compared to the 7 cycles needed for the

single partition shown in Figure 4.4a.

One complication with wavefront partitioning in our architecture is the map-

ping from partitions to scratchpad BRAMs. In an architecture with a simple regis-

ter file or a scratchpad that did not allow unaligned accesses, each BRAM would

get its offset from a fixed partition; in a V2 with two partitions, Lane 1 would get

its offset from Partition 1 and Lane 2 from Partition 2. However, our scratchpad

supports unaligned addresses. This means that partitions are not directly associ-

ated with a scratchpad BRAM; instead, depending on the alignment of the vector

operands a scratchpad BRAM address may come from any of the partitions. This

means we had to implement an offset mapping network to map wavefront offsets

to scratchpad BRAMs. Note that there is no such overhead with full wavefront

skipping (single partition) because the same offset goes to all BRAMs, which is

just a broadcast of the offset which requires no additional logic.

58

for stage in classifier:
for row in image:

vector::init-mask

for feat in stage:
for rect in feat:

vector::feat.sum += vector::image[rect]

if vector::feat.sum > feat.threshold:
vector::stage.sum += feat.pass

else:
vector::stage.sum += feat.fail

if vector::stage.sum < stage.threshold:
vector::update-mask

if all elements masked:
exit

Figure 4.5: Pseudocode for Viola-Jones Face Detection

4.2.3 Application Example: Viola-Jones Face Detection

Figure 4.5 gives high level pseudocode for one of the benchmarks we have im-

plemented, Viola-Jones face detection. Face detection attempts to detect a face at

every (x,y) pixel location in an input image. To vectorize this, we will test several

possible starting locations in parallel: a 2D vector of starting locations character-

ized by (x+i,y+j). In this way, we will be testing for i∗ j face locations in the vector

simultaneously.

Viola-Jones face detection must compute several thousand values, called Haar

features, for each pixel location. Features are grouped into stages. The features

in a stage must pass a threshold test if a face is to be detected at that location. If

any stage fails this threshold test, there is no point in testing further features at that

location. Hence, each stage is an ‘early exit’ test for each pixel starting location.

Features are calculated in-order across this vector of locations. When utilizing

predicated instructions, the algorithm must continue processing each feature for all

locations, even though some locations may have already failed an earlier threshold

test and do not need to participate in further calculations. If even a single location

in the 2D vector may still have a face, the algorithm must continue to compute for

all locations. Here, long vector lengths work less efficiently. In this model, paral-

lelism due to vectorization runs against the ability to exit early; longer vectors are

59

Figure 4.6: Haar Features Calculated at Each Candidate Face Location for
Different Groupings (Percentage Work Done is Calculated Relative to
Minimum)

more likely to contain locations requiring computation of many features, leading to

extensive processing for all elements in the vector. By using wavefront skipping,

we can avoid processing elements that are already known not to contain a face.

Further features are computed only for those locations still in question, effectively

shortening the vector length to the relevant elements.

The only differences between the predicated/CMOV version (without wave-

front skipping) and the wavefront skipping version are the init-mask and update-

mask instructions and the low level details of the test checking whether all ele-

ments are masked. Porting an existing predicated algorithm to wavefront skipping

is therefore straightforward and requires minimal effort.

Figure 4.6 compares the amount of work done for different strategies. Each

plot shows the number of Haar features calculated at each candidate face location,

60

from the minimum of three (in black) to a maximum of 2135 (in white). Different

strategies result in doing different amounts of work at each location; the less work

that is done (less white and more black in each heatmap) the faster execution can

be. The total work is also calculated for each strategy and shown as a percent

relative to the minimum. The fact that the difference between the minimum and

maximum number of features that must be calculated is three orders of magnitude

shows the need for some smarter form of predication than simply computing the

worst case on all pixels.

In order to run the application on an SVP, groups of pixels must be operated

on as parallel vectors. Larger groupings provide more parallelism, but without

wavefront skipping (only using CMOV instructions) every pixel in a group must

pass the maximum number of Haar feature tests of any pixels within the group.

It can be difficult to balance the CMOV implementation; it is tempting to use the

minimum vector length possible to reduce the amount of work done, but below a

certain level the lack of parallelism means runtime actually increases. The results

in Figure 4.6 are from a 4 lane MXP implementation, and we found the runtime

optimal vector length for CMOV implementations empirically.

A naive vector layout would be to have every row be a vector (Figure 4.6a),

which does almost 8× as much work as the optimal. A slightly better method

uses rectangular blocks to get better spatial locality (Figure 4.6b); getting suffi-

cient parallelism still requires vectors long enough that almost 6× as much work

as the minimum is done. In contrast, simply by changing the implementation to

use wavefront skipping, the effective grouping is the wavefront partition width

(Figure 4.6c). Wavefront skipping removes the need to profile an application to de-

termine the best vector length to use; the wavefront skipping implementation can

use the longest vector length possible and will always achieve at least the perfor-

mance of the CMOV implementation. Finally, a fully partitioned design performs

the minimal number of feature tests (Figure 4.6d), which is the same number of

features that a scalar implementation would require.

61

Figure 4.7: Vector Compress Operations Needed for 5x1 Stencil Filter

4.2.4 Comparison with Vector Compress

An alternative method mentioned in Section 2.5 is a vector compress operation.

The compress operation removes masked-off elements from a vector, creating a

shorter vector as a result. Figure 4.7 demonstrates how this would work for a

simple 5x1 stencil filter. The stencil filter takes as inputs shifted versions of the

input data, from an offset of -2 to +2. Before running the stencil filter, each of

the shifted versions must be separately compressed. The five versions of the data

with different offsets must be compressed into five scratchpad locations, each of

which uses as much storage as the original in the worst case. After compressing

the inputs, subsequent vector operations can operate on the shorter vectors at full

speed.

The drawbacks of requiring a compress instruction and additional storage space

for each input make it impractical in many stencil filter algorithms. For instance,

on the Viola-Jones face detection application the amount of work and extra space

needed would be prohibitive. The Haar feature tests operate on a sliding 20x20

window; each feature selects a subset of the window. Compressing the inputs

would require compressing each location, or 400 compress operations and 400

62

Table 4.1: Resource Usage

MXP Vector Lanes - Logic Memory DSP Blocks Total Area Area Increase fmax
Wavefront Partitions ALMs M9Ks eALMs % Over CMOV MHz

(CMOV) V1-P0 4,697 96 2 7,502 206
V1-P1 5,034 97 2 7,877 5.0% 200

(CMOV) V4-P0 9,732 152 5 14,243 173
V4-P1 10,210 153 5 14,750 3.6% 176
V4-P4 13,276 156 5 17,902 25.7% 183

(CMOV) V32-P0 63,334 414 33 76,198 144
V32-P1 63,027 418 33 76,005 -0.3% 144
V32-P4 78,698 422 33 91,791 20.5% 149

V32-P32 83,220 446 33 97,002 27.3% 146
Nios II/f 1,370 19 1 1,945 283

DE4-230 Maximum 91,200 1,235 161 131,434 –

temporary vectors. The wavefront skipping method does not need to manipulate

the input data, meaning MXP only needs one copy of the chunk of the image being

scanned.

Compress operations also need the inverse vector expand operation to restore

the output. This is less critical for algorithms like stencil filters where the number

of outputs is smaller than the number of inputs. Note that the compress operation

is only of use when the vector being compressed is used multiple times, because

compressing the vector takes an extra instruction. Setting up a mask for wavefront

skipping also takes an extra instruction, but the same mask can be used for multiple

offsets in a stencil filter.

4.3 Results
Our results were obtained using Altera Stratix IV GX230 FPGAs on the Terasic

DE4-230 development board. FPGA builds were done using Quartus II 13.0sp1.

We used one 64-bit DDR2 channel as our external memory.

4.3.1 Area Results

Table 4.1 shows the resources used and maximum frequency achieved for var-

ious configurations of MXP. In addition to the actual FPGA resources used

(ALMs, M9Ks, and DSP blocks), we also report the area in equivalent ALMs

63

(eALMs) [71]. By factoring the approximate silicon area of all of the resources

used, eALMs are a convenient way to compare architectures that use different mix-

tures of logic, memory, and multipliers. For the Stratix IV family of FPGAs each

M9K memory block counts as 28.7 eALMs and each DSP Block counts as 29.75

eALMs (in addition to each ALM, which counts as one eALM).

All MXP configurations shown have a maximum masked vector length (MMVL)

of 256 wavefronts (the effect of changing MMVL will be investigated later). MXP

configurations are listed as VX PY where X is the number of 32-bit vector lanes and

Y is the number of mask partitions. P0 means that masked instructions are disabled

and only CMOV instructions can be used for conditionals. V1s are configured with

64kB of scratchpad memory, V4s are configured with 128kB of scratchpad mem-

ory, and V32s are configured with 256kB of scratchpad memory. The area numbers

for MXP include the Nios scalar core used for control flow and vector instruction

dispatch, as well as prefix sum and square root custom vector instructions that are

used in the face detection benchmark.

The eALM area penalty is 5.0% from no wavefront skipping to wavefront skip-

ping with full wavefront skipping on a V1. Most of this area penalty is in ALMs, as

only a single extra BRAM is used and no extra DSP Blocks. Since the number of

ALMs for full wavefront skipping is roughly constant with respect to the number

of lanes, the overhead drops to 3.6% on a V4 and less than 1% on a V32. For mul-

tiple partitions, the area overhead is much higher (up to 27.3% more eALMs in the

V32-P32 case), because of the partition to scratchpad BRAM mapping needed (as

explained in Section 4.2.2). We implemented this mapping using both a switching

network and multiplexers; the area results were similar but the multiplexer imple-

mentation had lower latency and so was used for our results.

4.3.2 BRAM Usage

BRAM usage is minimal for the V1 and V4 as each mask partition uses just 1

BRAM. For the V32, a single partition uses 4 BRAMs since it has to store 128-

bits worth of byte enables, eight bits of offset, and one end bit, which fits in four

36-bit wide M9Ks. With more partitions, the number of byte enables per par-

tition is reduced, so that the V32-P32 only uses one BRAM per partition. The

64

Figure 4.8: BRAM Usage vs Wavefront Partitions (MMVL = 1024)

masked unit has no critical timing paths; increasing the number of BRAMs used

does make the placement job harder for the CAD tools, but the critical path always

remains outside the masked unit. Since the contribution of this work is not affect-

ing fmax directly, we decided to remove this variability from our results by running

all benchmarks shown here at 125MHz.

Figure 4.8 shows how many BRAMs are used in our partitioned wavefront

skipping with a maximum masked vector length (MMVL) of 1024 wavefronts.

With a small number of partitions, as the vector processor gets wider, multiple

BRAMs per partition are required to store the byte enables. With a large number

of partitions, the byte enables are divided up into small enough chunks that they

always fit in a single BRAM per partition. There is a wide range in the number of

BRAMs that can be used by MXP. A designer has the freedom to allocate BRAMs

on the FPGA device to achieve the best performance with their algorithm, either

by increasing scratchpad capacity, or by increasing flexibility for conditional exe-

cution.

65

Figure 4.9: Mandelbrot Benchmark

4.3.3 Mandelbrot Benchmark

Figure 4.9 shows speedup results for computing the Mandelbrot set (geometric

mean of 23 frames shown in a visual demo). Results are shown compared to a

scalar version run on the Nios II/f as a baseline. The Mandelbrot computation

iterates a complex valued equation at each pixel until either the pixel reaches a set

condition (the early exit) or else a maximum iteration count is reached. Without

masked instructions (CMOV configurations) we can only exit early after all pixels

in the group agree to exit early. We show results for two versions of the algorithm:

the ‘line’ implementation which naively computes pixels in raster order (row by

row), and the ‘square’ implementation which computes a 2D block of pixels at a

time. The ‘line’ implementation is more straightforward. However, since the early

exit pixels are correlated spatially, selecting a group of pixels closer together in a

block results in less wasted computation and therefore higher performance.

For the CMOV configurations, the difference between the line and square im-

plementations is vast; for V32 the square implementation has a speedup that is

almost a 4× higher than the line implementation. With the masked implementa-

tions, the difference between line and square are much less–at most 10%. The

masked implementations always outperform the CMOV implementations. Parti-

66

Figure 4.10: FAST9 Feature Detection

tioned wavefront skipping has little effect in Mandelbrot and so is not shown; the

data is grouped together in such a way that wavefronts exit at the same or nearly the

same time. The CMOV implementation also uses a vector length determined by

profiling; too long and early exits are not helpful, and too short and instruction dis-

patch rate and data hazards reduce performance. The masked implementation just

uses the maximum vector length it can, which is either determined by the MMVL

of the masked instructions or the size of the scratchpad and number of vectors

needed. Between not having to profile to find the best vector length, and being able

to use the naive ‘line’ implementation with little performance penalty, the masked

implementation is likely much easier for the programmer.

4.3.4 FAST9 Feature Detection

Figure 4.10 shows the results for FAST9 feature detection. FAST9 determines if

a pixel is a feature by examining a circle of pixels around the target location and

looking for a consecutive series of pixels that are darker or lighter by a threshold.

An early exit can happen if certain conditions hold, such as if neither of two pixels

on opposite sides are above or below the threshold. All operations are byte-wide,

67

taking advantage of MXP’s subword-SIMD which executes byte operations 4×
faster than word operations. While running FAST9 on simple input data with the

CMOV code, we found checking early exit (as done in Mandelbrot) to be helpful.

However, on a real image (Lenna), the early exit code only helped on a V1. Thus,

the CMOV code is doing the full calculation for all pixels on V4 and V32. In

contrast, the masked code is able to achieve speedup by skipping at a more fine-

grained level. However, if the mask is too coarse, such as at V32-P1 which is 128

bytes wide, very little is gained. Only with 4 or 32 partitions is speedup achieved.

It may be possible to gain even more speed by using byte-wide partitions, but our

MXP test configurations had a minimum partition size of one 32-bit lane wide.

4.3.5 Viola-Jones Face Detection

For Viola-Jones face detection, we used the same algorithm settings as those used

in an FPGA implementation created in RTL [10]. No reference image was spec-

ified in the publication, so we used the standard ‘Lenna’ image. Their hardware

implementation with 32 PEs was able to achieve 30fps. Our SVP implementation

has an inner loop containing 9 or 13 instructions (depending on the Haar classifier),

instead of being fully pipelined as in a hardware implementation, so it is expected

to be somewhat slower. Also, our implementation includes full data movement,

from input image to frame buffers driving a DVI display.

Figure 4.11 shows the results for CMOV only and masked implementations

including partial wavefront skipping. The masked implementations with a single

partition are up to 3× faster than CMOV, and partitioning increases it to up to

4.1×. For a V4 processor, partitioning gives a 29% improvement from P1 to P4,

and for a V32 processor, partitioning gives a 35% improvement from P1 to P4

and an additional 22% improvement from P4 to P32 for an overall 65% improve-

ment. While the impact of partitioning is not as dramatic as the impact of switching

from CMOV instructions to wavefront skipping, it provides a performance increase

without having to rewrite software.

Figure 4.12 presents the results as speedup versus area (eALMs). MXP without

wavefront skipping is roughly the same the performance per area as a Nios II/f

(which in practice can not scale ideally to achieve higher performance). Wavefront

68

Figure 4.11: Viola-Jones Face Detection Speedup

skipping provides significantly higher performance per area, since the area impact

is minimal compared to the performance gained. The highest performance per

area is 4.1× that of Nios II/f (37.8× faster with 9.2× more area for the V4-P4

configuration).

With our fastest configuration, we achieve 3 frames per second, or about 1/10th

that of the previous hardware result, on the Lenna input image. Not all of the pro-

cessing time of our implementation is in Haar classifier tests; there is some over-

head such as loading data from memory and resizing images. To test the amount

of overhead we used a blank image (where all pixels exit early), which achieved

60 frames per second.

4.3.6 MMVL Tradeoffs

So far we have examined tradeoffs in additional logic and BRAMs when us-

ing multiple partitions, but it’s also possible to use more BRAMs to allow for

longer masked vector instructions. Each BRAM needs to store an offset of width

log2(MMV L) as well 4 byte-enables per lane and an end bit. With multiple parti-

tions, the byte enables are split between BRAMs, but the other data is replicated.

69

Figure 4.12: Viola-Jones Face Detection Speedup Vs Area

Figure 4.13 shows the BRAM usage for two configurations of MXP as the MMVL

is varied. As explained in Section 4.2, we default to a MMVL of 256 wavefronts

since that is the minimum depth of M9Ks. Hence, a MMVL of 128 or 256 wave-

fronts almost always has the same resource usage, except on a V16 with one parti-

tion where the width of the BRAM data goes from 72 and 73 bits and can no longer

fit in two 36-bit wide M9Ks. Increasing MMVL to 512 does have a cost in BRAMs

once the width of the BRAM data gets past 18-bits. An MMVL of 1024 requires

even more resources, as BRAMs are only 9-bits wide at that depth.

Figure 4.14 shows the results of changing MMVL on the face detection bench-

mark. For V1, there is a reasonable gain when increasing MMVL; there is 16%

better performance as the number of wavefronts is increased from 128 to 256, with

an additional 13% improvement as the number of wavefronts is increased from

256 to 512. The results are even more dramatic on a V4 with 4 mask partitions:

100% faster as the number of wavefronts is increased from 128 to 1024. The fact

that a V4-P4 with MMVL 128 is actually slower than a V4-P1 with MMVL 256

suggests that using BRAM for increased depth can be better than using it for more

partitions. The reason that increased MMVL makes such a large difference is that

as masked instructions have fewer and fewer valid wavefronts, they start taking so

few cycles that efficiency drops (either data hazards or instruction dispatch rates

70

Figure 4.13: BRAM Usage for Masks When Varying MMVL for 1 (top) and
4 (bottom) Partitions

dominate). Longer MMVL means that fewer masked instructions are needed, and

less time is spent in this low efficiency regime. However, in the V32 processor, the

masked vector length is no longer limited by MMVL but by the number of vectors

needed and the size of the scratchpad. In this case, changing MMVL had no effect

71

Figure 4.14: Effect of Changing MMVL on Viola-Jones Face Detection

on the results so they are not shown. The trend for V1 and V4 does suggest that

increased vector length (in this case by having a larger scratchpad) would provide

higher performance on this application.

4.3.7 Results Summary

Figure 4.15 summarizes the speedup of wavefront skipping over the previous

CMOV implementation on our three benchmarks, while Figure 4.16 shows the

speedup per area (eALMs). The maximum speedups for a single partition is 3.3×
on FAST9 (V1-P1) and 3.2× on Viola-Jones (V4-P1). The largest speedup from

partitioning over full wavefront skipping is 1.65× on Viola-Jones (V32-P32 vs

V32-P1). All of the benchmarks gain at least as much in speedup as the cost in

area of the wavefront skipping implementation, with the minimum gain being 1.1×
better performance per area for FAST9 on a V32 with one wavefront partition. Al-

though an increased number of partitions causes a corresponding increase in the

area of MXP, for FAST9 and Viola-Jones the performance per area continues to in-

crease as the number of partitions increases. Wavefront skipping is therefore useful

for all the benchmarks we tested, and partitioning is useful for two of the three.

For a programmer implementing a conditional algorithm, the configuration of

72

Figure 4.15: Speedup from Wavefront Skipping

BRAM usage for scratchpad size, wavefront partitions, and maximum masked vec-

tor length will depend on the application. The designer will generally want to

devote as much BRAM as possible to scratchpad data, as longer vectors will ben-

efit all parts of an application. However, for heavily conditional applications like

Viola-Jones, having masked vectors that are long enough to keep the vector core

busy as the number of valid wavefronts shrink is also important. Few BRAMs are

needed for just a single partition; using multiple partitions adds several BRAMs,

but this may be justified when performance is absolutely necessary or the targetted

FPGA has leftover BRAMs with a given design.

4.4 Summary
This chapter shows how a class of irregular data parallel algorithms that are dif-

ficult or inefficient to implement with other approaches can be accelerated using

wavefront skipping. Our implementation of wavefront skipping in soft vector pro-

cessors (SVPs) can be done efficiently in terms of logic and BRAM usage. Wave-

front skipping allows for higher performance due to skipping masked off elements.

In addition, from our experience, masked execution is also much easier to use

73

Figure 4.16: Speedup per Area (eALMs) from Wavefront Skipping

than checking early exit conditions on blocks of elements using predicated/CMOV

instructions. Our implementation stores offsets in BRAMs, which are relatively

plentiful and high-performance in FPGAs. The alternative, which uses a count-

leading-zeros operation, would have higher latency and also limit the number of

wavefronts skipped in one cycle. Our approach keeps the mask logic simple and

off the critical path, and can also skip an arbitrary number of wavefronts.

When not partitioned, our wavefront skipping implementation uses less than

5% extra area and gives 3.2× better performance on Viola-Jones face detection.

Extra logic and BRAMs can be used to gain additional performance by partition-

ing, allowing parts of a wavefront to have different offsets. Although costly in

terms of area, partitioning gives up to 1.65× extra performance on face detection.

Partitioned wavefront skipping may not be a reasonable design tradeoff in a fixed

vector processor. In an FPGA, partitioned wavefront skipping gives a designer an

extra tool to tradeoff additional logic and BRAM for application specific perfor-

mance.

74

Chapter 5

Attaching Streaming Pipelines to
Soft Vector Processors

The expert knows more and more about less and less until he knows
everything about nothing. — Mahatma Gandhi

So far, this dissertation has shown how to better optimize SVPs for increased

performance per area and how to enable applications that are traditionally difficult

to accelerate. These approaches help make SVPs more attractive for applications

requiring modest performance or those with divergent control flow. However, they

do not take full advantage of the underlying FPGA fabric, and they do not offer a

path for migrating a design from an SVP program to an RTL pipeline. This chapter

explores the challenges and benefits of interfacing custom pipelines to an SVP.

The SVP is able to manage data movement and perform computations that are less

performance critical, while dispatching heavy computation to custom engines that

can fully exploit the underlying FPGA fabric. In this manner, applications can

migrate fixed parts of their algorithms to get the full performance the FPGA can

provide while maintaining software design and control at each step.

5.1 Introduction
FPGAs are most useful when designs exploit deep pipelines, utilize wide data par-

allelism, and perform operations not found in a typical CPU or GPU. This typically

75

requires a hardware designer to design a custom system in an RTL such as VHDL

or Verilog. Recently, the emergence of electronic system level (ESL) tools such as

Vivado HLS and Altera’s OpenCL compiler allow software programmers to pro-

duce FPGA designs using C or OpenCL. However, since all ESL tools translate a

high-level algorithm into a hardware description language (HDL), they share com-

mon drawbacks: changes to the algorithm require lengthy FPGA recompiles, re-

compiling may run out of resources (eg, logic blocks) or fail to meet timing, debug-

ging support is very limited, and high-level algorithmic features such as dynamic

memory allocation are unavailable. This suggests ESL users need some degree of

hardware design expertise. Hence, ESL tools may not be the most effective way to

make FPGAs accessible to software programmers.

An SVP achieves high performance through wide data parallelism, efficient

looping, and prefetching. The main advantages of an SVP over RTL are scalable

performance and a traditional software programming model. Performance scaling

is achieved by adding more ALUs, but beyond a certain point (eg, 64 ALUs) the

increases in parallelism are eroded by clock frequency degradation. Additionally,

even if performance scales perfectly, performance per area will lag behind that of

a custom design.

To increase performance of SVPs even further, they must also harness deep

pipeline parallelism. For example, most types of encryption (such as AES) need

deep pipelines to get significant speedup. Although processors (and SVPs) are not

built to exploit deep pipeline parallelism, FPGAs support it very well.

Several questions then arise: How can a SVP be augmented to exploit both

wide and deep parallelism? What differs in interfacing an SVP to external logic

versus a scalar soft processor? How can control flow be coordinated between deep

custom pipelines and the fixed execution stages of the SVP? Can more complex

instructions than the standard two-input, one-output format be supported, and how

much benefit do they provide?

We investigated these questions using the VectorBlox MXP SVP. We devised

a way to add custom vector instructions (CVIs) to the processor, shown in Fig-

ure 5.1. Such CVIs can be simple operations, or they may contain wide and deep

pipelines. The interface is kept as simple as possible so that software programmers

can eventually develop these custom pipelines using C; we also show that a simple

76

Align B

Align A

Align C

Scratchpad

Address Generation

DMA and Vector Work Queues, Instruction Decode & Control

Avalon

Bus

Custom Pipelines

Σ

DMA

M

S
Rd

SrcA

Rd

SrcB

Wr

DstC

R/W

DMA

A B C D

Custom Instructions

P3P1 P2 P4

Figure 5.1: Internal View of VectorBlox MXP

high-level synthesis tool can be created for this purpose. To demonstrate speedups,

we selected the N-body gravity problem as case study. In this problem, each body

exerts an attractive force on every other body, resulting in an O(N2) computation.

The size and direction of the force between two bodies depends upon their two

masses as well as the distance between them. Solving the problem requires square

root and divide, neither of which are native operations to the MXP. Hence, we start

by implementing simple custom instructions for the reciprocal and square root op-

erations. Then, we implement the entire gravity equation as a deep pipeline.

The main contribution of this chapter is the introduction of a modular way of

allowing users to add streaming pipelines into SVPs as custom vector instructions

to get significant speedups. On the surface, this appears to be a simple extension

of the way custom instructions are added to scalar CPUs such as Nios II. However,

there are unique challenges that must be addressed to enable streaming data from

multiple operands in a SVP. Also, scalar CPU custom instructions are often data

starved, limiting their benefits. We show that SVPs can provide high-bandwidth

data streaming to properly utilize custom instructions.

77

5.2 Custom Vector Instructions (CVIs)
The VectorBlox MXP was designed to have a minimal core instruction set. It is

important to keep this instruction set minimal in an SVP because the area required

by an operation will be replicated in every vector lane, thus multiplying its cost

by the number of lanes. In MXP, multiply/shift/rotate instructions are included as

core instructions because they share the use of the hard multipliers in the FPGA

fabric. However, divide and modulo are not included as core instructions because a

pipelined implementation requires more than three pipeline stages and more logic

than all other operators combined.

There are many instructions that could be useful in certain applications; some

are large and complex but there are also simple, stateless 1- or 2-input, single-

output operators with no state. These include arithmetic (e.g., divide, modulo,

reciprocal, square root, maximum, minimum, reciprocal square root), bit manip-

ulation (e.g., population count, leading-zero count, bit reversal), and encryption

acceleration (e.g., s-box lookup, byte swapping, finite field arithmetic). Some of

these operators require very little logic, while others demand a significant amount

of logic. However, supporting all such operators is prohibitively expensive. Also,

it is unlikely that a single application would make use of almost all of these spe-

cialized instructions. Finally, even when they are used by an application, these

instructions may not appear frequently in the dynamic instruction mix. For this

reason, the base MXP ISA excludes many operations that could potentially be use-

ful, but were considered to be too specialized.

Instead, we would like to add such specialized instructions on a per-application

basis. We would also like to allow the user to decide how many of these operators

should be added to the pipeline, since it may not make sense to replicate large op-

erators in every lane. Additionally, operators with deep pipelines should be able to

co-exist along with the existing three stage execution pipeline without lengthening

the number of cycles taken to process normal instructions.

5.2.1 CVI Design Approach

Our add-on custom vector instruction (CVI) approach is different from the VESPA

approach [74], which allows selective instruction subsetting from a master instruc-

78

tion set. Subsetting allows a reduction in area when an application does not use

specific instructions, but does not allow for further customization. Additionally,

since no base instruction set is defined, it may be difficult to change an alogirthm

running on a subsetted processor without resynthesizing the processor to add back

needed instructions.

In contrast, the MXP approach defines a core set of instructions to increase soft-

ware portability, while user-specified CVIs can be added to accelerate application-

specific operations that are rarely needed by other applications. CVIs use an exter-

nal port interface to MXP, allowing the addition to be done without modifying the

processor source HDL. This modularity may also make it easier to add CVIs us-

ing run-time reconfiguration. Some CVIs will be application specific, while others

(such as square root) may be resuable.

5.2.2 CVI Interface

A typical CVI is executed in MXP like a standard arithmetic instruction, with two

source operands and one destination operand. The main difference is that data is

sent out of MXP through a top-level port, processed by the CVI, then multiplexed

back into the MXP pipeline before writeback. One individual CVI may consist of

many parallel execution units, processing data in both a parallel and a streaming

fashion.

In Altera’s Qsys environment, CVIs are implemented as Avalon components

with a specific conduit interface. Qsys conduits are a way to bundle signals to-

gether when connecting modules in the graphical Qsys interface. Vector data and

control signals are exported out of the top level of MXP and connected to the CVI

automatically through the conduit. The signals in the conduit interface can be seen

in Figure 5.2. The left side (Figure 5.2a) shows an example of a simple CVI, the

‘difference-squared’ operation. This CVI does the same action on all data, so its

individual execution units are simply replicated across the number of CVI lanes. In

the simplest case, the number of CVI lanes will match the number of MXP lanes.

This is adequate if the CVI is small, or there is sufficient area available. In Sec-

tion 5.2.3, we will consider the area-limited case when there must be fewer CVI

lanes than MXP lanes.

79

clock
start
valid

opsize
opcode

2

2

A0

B0

A1

B1

A2

B2

A3

B3

C0

wr0

C1

wr1

C2

wr2

C3

wr3

SUB x
2

SUB x
2

SUB x
2

SUB x
2

clock
start
valid

opsize
opcode

2

2

A0

B0

A1

B1

A2

B2

A3

B3

C0

wr0

C1

wr1

C2

wr2

C3

wr3

ADD

ADD

ADD

ADD

DQ

00 01

a) Custom instruction

within lanes

b) Custom instruction

prefix sum across lanes

Figure 5.2: Examples of Custom Vector Instructions

The right side (Figure 5.2b) shows a more complicated example, a prefix sum,

where data is communicated across lanes. The prefix sum calculates a new vector

that stores the running total of the input vector appearing on operand A. This makes

it a very different type of operation than the difference-squared operation, which

does not have communication between lanes. As a result, computing a prefix sum is

a difficult operation for wide vector engines; it is best implemented in a streaming

fashion. Since a vector may be longer than the width of the SVP, it is important to

accumulate the value across multiple clock cycles in time. To support this, the CVI

interface provides a clock and vector start signal. Furthermore, a data valid signal

indicates when each wave of input data is provided, and individual data-enable

input signals (not shown for clarity) are provided for each lane.

Additional signals in the CVI interface include an opsize (2 bits) that indicates

whether the data is to be interpreted as bytes, halfwords, or words. Also, output

byte-enable signals allow the instruction to write back only partial vector data,

or to implement conditional-move operations, or write back a last (incomplete)

wave. Finally, an opcode field is provided to allow the selection of multiple CVIs.

80

Alternatively, the opcode can be passed to a single CVI and used as a mode-select

for different functions, such as sharing logic between divide and modulo, or to

implement different rounding modes. The opcode field is shown as two bits, but

this can be easily extended.

One notable exclusion from the interface is a stall signal or other means of

providing back pressure. Allowing a CVI to stall the MXP front end was consid-

ered undesirable from a clock speed standpoint. More precisely measuring and

addressing this limitation is left to future work.

5.2.3 Large Operator Support

Custom operators may be prohibitively large to add to each vector lane. For ex-

ample, a fully pipelined 32-bit fixed-point divider with 16 fractional bits (Q16.16

format) requires 2,652 ALMs to implement in a Stratix IV FPGA. This is more

logic than an entire vector lane in the MXP. Thus, it may be desirable to use fewer

dividers than the number of lanes (depending upon the number of divides in the dy-

namic instruction mix). We have designed an interface that allows using narrower

CVIs with minimal overhead by reusing the existing address generation and data

alignment logic.

Figure 5.3 shows how CVIs with a different number of lanes are added to the

existing MXP datapath. During normal operation, the address generation logic

increments each address by the width of the vector processor each cycle. For the

example shown, i.e., an MXP with four 32-bit lanes (written as a ‘V4’), each source

and destination address is incremented by 16 bytes, until the entire vector is pro-

cessed. MXP’s input alignment networks align the start of both source vectors to

lane 0 before the data is processed by the ALUs. After execution, the destination

alignment network is used to align the result to the correct bank in the scratchpad

for writeback.

During a CVI, the address generation logic increments the source and destina-

tion addresses by the number of CVI lanes times the (4-byte) width of each lane.

In the example shown, the addresses are incremented by 12 bytes for each wave,

regardless of the SVP width; operand A starts at address 0x04 on the first cycle

(Figure 5.3a) and increments to 0x10 on the second cycle (Figure 5.3b). As in

81

0

1

2

3

4

5

6

70

1

2

3

Align A Align B
Custom
ALUsScratchpadAlign C

0

1

2

3

4

5

6

7

4

5

6

7

10

14

18

1C

00

04

08

0C

30

34

38

3C

20

24

28

2C

50

54

58

5C

40

44

48

4C

70

74

78

7C

60

64

68

6C

90

94

98

9C

80

84

88

8C

ALUs

b) Funneling elements 3, 4, 5 through three custom ALUs

0

1

2

3

4

5

6

70

1

2

3

Align B

ALUs

ScratchpadAlign C

0

1

2

3

4

5

6

7

4

5

6

7

10

14

18

1C

00

04

08

0C

30

34

38

3C

20

24

28

2C

50

54

58

5C

40

44

48

4C

70

74

78

7C

60

64

68

6C

90

94

98

9C

80

84

88

8C

Custom
ALUs

a) Funneling elements 0, 1, 2 through three custom ALUs

Align A

Figure 5.3: Custom Vector Instructions With Fewer Lanes Than the SVP

normal execution, the alignment networks still align source data to start at lane 0

before data is processed in the custom ALUs. In this case, the fourth lane would

not contain any data, so its data-enable input would be inactive. After execution,

the CVI result is multiplexed back into the main MXP pipeline, and finally the re-

82

sulting data is aligned for writeback into the scratchpad. On CVI writeback, the

output byte enables are then used to write out data for only the first 12 bytes of each

wave; the destination alignment network then repositions the wave to the correct

target address.

5.2.4 CVIs with Deep Pipelines

MXP uses an in-order, stall-free backend for execution and writeback to achieve

high frequencies. The CVIs are inserted in parallel to the regular 3-stage arithmetic

pipeline of MXP, which means they can also have 3 internal register stages. If fewer

stages are needed, it must be padded to 3 stages.

Some operations, such as divide or floating point, require much deeper

pipelines. If the user naively creates a pipeline that is longer than 3 cycles, the

first wave of data would appear to the writeback stage later than the writeback

address, and the last wave of data would not reach the writeback stage at all.

To address the latter problem, we have devised a very simple strategy for in-

serting long pipelines. In software, we extend the vector length to account for

the additional pipeline stages (minus the 3 normal stages). This solves part of the

problem, allowing the last wave of vector data to get flushed out of the pipeline

and appear at the writeback stage. During the last cycles, the pipeline will read

data past the end of the input operands, but their results will never be written back.

However, the beginning of the output vector will have garbage results.

To eliminate this waste of space, the MXP could simply delay the writeback

address by the appropriate number of clock cycles. A second approach is to allow

the CVI itself to specify its destination address for each wave. This requires the

MXP to inform the CVI of the destination addresses, and rely upon the CVI to

delay them appropriately. We have chosen this latter technique, as it allows for

more complex operations where the write address needs to be controlled by the

CVI, such as vector compression. Because this can write to arbitrary addresses,

any CVI using this mode must set a flag which tells MXP to flush its pipeline

after the CVI has completed. The flag is set as a top-level parameter to the MXP

instance.

Although this approach does not require additional space, it still requires ex-

83

tending the length of the vector and flushing the pipeline. The extended vector

length makes the instruction take a number of additional cycles equal to the num-

ber of pipeline stages in the CVI, while the MXP pipeline flush costs the depth

of the MXP pipeline (eight to ten stages, depending on the MXP configuration).

During normal execution instructions can issue back-to-back and multiple instruc-

tions can be in the MXP pipeline in parallel, but deep-pipeline CVIs cannot execute

concurrently with other instructions in our approach.

5.3 Multi-Operand CVI
The CVIs described in the previous section are intended for one or two input

operands, and one destination operand. However, the DFGs of large compute ker-

nels may require multiple inputs and outputs, and require both scalar and vector

operands. In this section, we describe how to support multiple-input, multiple-

output CVIs. As a motivating example, we have chosen the N-body gravitational

problem. We have modified the problem slightly to produce a pleasing visual

demonstration: keep calculations to only 2 dimensions, use a repelling force rather

than an attracting force, and allow elastic collisions with the screen boundary.

5.3.1 N-Body Problem

The traditional N-body problem simulates a 3D universe, where each celestial ob-

ject is a body, or particle, with a fixed mass. Over time, the velocity and position

of each particle is updated according to interactions with other particles and the

environment. In particular, each particle exerts a net force (i.e., gravity) on every

other particle. The computational complexity of the basic all-pairs approach we

use is O(N2). Although advanced methods exist to reduce this time complexity,

we do not explore them here.

In our modified version, we consider a 2D screen rather than a 3D universe.

The screen is easier to render than a 3D universe, but it also has boundaries. Also,

we change the sign of gravity so that objects repel each other, rather than attract.

(Attractive forces with screen boundaries would result in the eventual collapse into

a moving black hole, which is not visually appealing.) Like the traditional N-

body problem, we also treat particles as point masses, i.e., there are no collisions

84

x i

dx

y i

dy

Scalar

data in:

y i
F

x i
F

Data

out:

1.0
r

sqrt
r

custom instruction

 full custom pipeline
Streaming vector

data in:

x j x j+1x j-1
.

y j y j+1y j-1
.

Gmi

mjGm i.m j-1 jm m j+1

(48)(16)

xdF

ydF

(65)

(65)

(65)

6821

69 70 71 72 73
74

19

Figure 5.4: Force Summation Pipeline

between particles. We have also adjusted the gravitational constant to produce

visually pleasing results.

The run-time of the N-body problem is dominated by the gravity force calcu-

lation, shown below:

~Fi, j = G
MiM j

r2 = 0.0625
MiM j

|~Pi−~Pj|3
(~Pi−~Pj)

where ~Fi, j is the force particle i imposes on particle j, ~Pi is the position of particle

i, and Mi is the size or ‘mass’ of particle i. When computing these forces, we chose

a fixed-point Q16.16 fixed-point representation, where the integer component of ~P

represents a pixel location on the screen.

When a particle reaches the display boundary, its position and velocity are

adjusted to reflect off the edge (towards the center) after removing some energy

from the particle. These checks do not dominate the run-time as they are only

O(N).

An implementation of the gravity computation as a streaming pipeline is shown

in Figure 5.4. This is a fixed-point pipeline with 74 stages; the depth is dominated

by the fixed-point square root and division operators which require 16 and 48 cy-

cles, respectively.1 For each particle, its x position, y position, and mass (premul-

tiplied by the gravitational constant) are loaded into scalar data registers within the

instruction. This is the reference particle, Pi. Then, three vectors representing the

1We used Altera’s LPM primitives for these operators. The pipeline would benefit from a com-
bined reciprocal square root operator, but it does not exist in the Altera library.

85

x position, y position and mass of all particles, Pj, are streamed through the vec-

tor pipeline. The pipeline integrates the forces exerted by all these particles, and

accumulates a net force on the reference particle.

Overall, the pipeline requires three scalar inputs (reference particle properties)

and three vector inputs (all other particles). It also produces two vector outputs (an

x vector and a y vector), although the output vectors are of length 1 because of the

accumulators at the end of the pipeline. Hence, this gravity pipeline is a 3-input,

2-output CVI.

All of the MXP vector instructions, including the custom type, only have two

inputs and one output. This is a limitation in the software API, where only two

inputs and one output can be specified, as well as the hardware dispatch, where

only two source vector addresses and one destination vector address can be issued.

Loading of scalar data can be accomplished by using vector operations with length

1, and either using an opcode bit to select scalar loading versus vector execution,

or by fixed ping-ponging between scalar loading and vector execution. We use the

ping-pong approach to save opcodes.

Supporting multiple vector operands is not as simple, however, and will be

discussed below.

5.3.2 Multi-Operand CVI Dispatch

Figure 5.5 shows two approaches to dispatching multi-operand CVIs. A ‘wide’

approach requires data to be laid out spatially, such that operand A appears as

vector element 0, operand B appears as vector element 1, and so forth. This is

shown in Figure 5.5a. In other words, the operands are interleaved in memory

as if packed into a C structure. To stream these operands as vectors, an array of

structures (AoS) is created. Ideally, the input operands would precisely fit into the

first wave; with two read ports, the amount of input data would be twice the vector

engine width. If more input data is required, then multiple waves will be required,

which will be similar to the depth approach below. If less input data is required,

then the CVI does not need to span the entire width of the SVP. In this case,

it may be possible to provide multiple copies of the pipeline to add SIMD-level

parallelism to the CVI.

86

a) Wide multi-operand streaming datapaths require interleaved data

b) Deep multi-operand streaming datapaths can avoid interleaved data

0

0

1

1

2

2

3

30

0

1

1

Align BScratchpadAlign C

0

0

1

1

2

2

3

3

2

2

3

3

10

14

18

1C

00

04

08

0C

30

34

38

3C

20

24

28

2C

50

54

58

5C

40

44

48

4C

70

74

78

7C

60

64

68

6C

90

94

98

9C

80

84

88

8C

Streaming PipelineAlign A

0

1

2

3

0

1

2

30

1

2

3

Align BScratchpadAlign C

0

1

2

3

0

1

2

3

0

1

2

3

10

14

18

1C

00

04

08

0C

30

34

38

3C

20

24

28

2C

50

54

58

5C

40

44

48

4C

70

74

78

7C

60

64

68

6C

90

94

98

9C

80

84

88

8C

Streaming PipelineAlign A

Figure 5.5: Multi-Operand Custom Vector Instructions

The main drawback of the wide approach is that the data must be interleaved

into an AoS. In our experience, SVPs work better when data is arranged into a

structure of arrays (SoA). The SoA layout assures that each data item is in its own

array, so SVP instructions can operate on contiguouly packed vectors.

For example, suppose image data is interleaved into an AoS as {r,g,b} triplets.

With this organization, it is difficult to convert the data to {y,u,v} triplets because

each output data item requires a different equation. When the image data is blocked

as in a SoA, it is easy to compute the {y} matrix based upon the {r}, {g}, and {b}
matrices. Furthermore, converting between AoS and SoA on the fly requires data

87

02

0x300

0x310

0x320

0x330

08 09

0x290

0x480

0x490

0x4A0

0x4B0

00 01 02

03 04 05 06

07 08 09

v_A1

= 0x300

v_A2

= 0x484

00 01 02 03

04 05 06 07

0x0 0x4 0x8 0xC

0x020

0x030

0x040

0x050

08 09

0x010

0x830

0x840

0x850

0x860

00

01 02 03 04

05 06 07 08

09

v_B1

= 0x028

v_B2

= 0x83C

00

03 04 05

06 07

0x0 0x4 0x8 0xC

01

VL = 2 (number of elements to keep together)

num1 = (number of arrays to interleave)

 = 2

num2 = (number of elements/VL)

 = 10/VL = 5

srcAStride1 = (v_A2 - v_A1)

 = 0x184

srcAStride2 = (v_A1[VL] - v_A1[0])

 = 0x08

vbx_set_vl(VL);

vbx_set_2D(num1, dstStride1, srcAStride1, srcBStride1);

vbx_set_3D(num2, dstStride2, srcAStride2, srcBStride2);

vbx_3D(VVW, VCUSTOM1, v_dest, v_A1, v_B1);

srcBStride1 = (v_B2 - v_B1)

 = 0x814

srcBStride2 = (v_B1[VL] - v_B1[0])

 = 0x08

Interleaved read-out order:

00 01

00 01

02 03

02 03

00 01

00 01

02 03

02 03

Operand A Operand BCycle

1

2

3

4

B1

B2

B1

B2

A1

A2

A1

A2

vbx_interleave_4_2(VVW, VCUSTOM1, num_elem, VL,

 v_D1, v_D2, v_A1, v_A2, v_B1, v_B2);

vbx_interleave_4_2(int TYPE, int INSTR, int NE, int VL,

 int8 *v_D1, int8 *v_D2,

 int8 *v_A1, int8 *v_A2, int8 *v_B1, int8 *v_B2)

{

 vbx_set_vl(VL);

 vbx_set_2D(2, v_D2-v_D1, v_A2-v_A1, v_B2-v_B1);

 vbx_set_3D(NE/VL, v_D1[VL]-v_D1[0],

 v_A1[VL]-v_A1[0], v_B1[VL]-v_B1[0]);

 vbx_3D(TYPE, VINSTR, v_D1, v_A1, v_B1);

}

Figure 5.6: Using 3D Vector Operations for Multi-Operand Dispatch

copying and can be time consuming. Hence, it is better for regular SVP instructions

to use SoA format.

An alternative ‘deep’ approach to multiple-operand CVIs requires data to be

interleaved in time. This is shown in Figure 5.5b, where a streaming datapath only

has access to two physical ports, operands A and B of one vector lane. This can be

combined with wide parallelism by replicating the deep pipeline. It is not desirable

to simply fully read two input vectors and then read the third input, though, as the

CVI would have to buffer the full length of the instruction. In MXP, vector lengths

are limited only by the size of the scratchpad, so the buffering could be costly.

Rather, it is desirable to only buffer a single cycle’s worth of inputs.

We accomplish this in MXP by using its 2D and 3D instruction dispatch to

issue a single wavefront of data from each input on alternating cycles. The 2D

instructions work by first executing a normal (1D) vector instruction to read one

wavefront of data, then applying a different stride to each of the input addresses and

output address and to switch among input arrays and thus interleave the wavefronts.

The strides and repetitions can be set at runtime using a separate set 2D instruction.

The 3D instructions are an extension of this, where 2D instructions are repeated

using another set of strides.

Figure 5.6 illustrates how these 2D/3D ops are used to dispatch CVIs with

multiple operands. In this example, a CVI with 4 inputs (A1, A2, B1, and B2) and

88

0

1

2

3

0

1

2

30

1

2

3

Align BScratchpadAlign C

0

1

2

3

0

1

2

3

0

1

2

3

10

14

18

1C

00

04

08

0C

30

34

38

3C

20

24

28

2C

50

54

58

5C

40

44

48

4C

70

74

78

7C

60

64

68

6C

90

94

98

9C

80

84

88

8C

Streaming PipelineAlign A

Figure 5.7: Multi-Operand Custom Vector Instruction Funnel Adapters

2 outputs (D1 and D2) is to be executed. The desired result is that the CVI will

alternate A1/B1 and A2/B2 inputs each cycle, and alternate D1/D2 outputs each

cycle.

To get this outcome, first the 1D vector length (VL) is set to the number of CVI

lanes, and the 2D strides are set to the difference between input addresses (A2-A1,

B2-B1) and output addresses (D2-D1). Since the inner vector length is the same

as the number of custom instruction lanes, each row is dispatched as one wave

in a single cycle, followed by a stride to the next input. The 2D vector length is

set to the total number of cycles required (max(inputs/2, outputs/1)). Note that if

more than 2 cycles (4 inputs or 2 outputs) are needed, sets of additional inputs and

outputs will need to be laid out with a constant stride from each other.

Since a 2D operation merely alternates between sets of inputs (and outputs), a

3D instruction is used to stream through the arrays of data. Each 2D instruction

processes one wavefront (of CVI lanes) worth of data, so the 3D instruction is set to

stride by the number of CVI lanes. The number of these iterations (the 3D length)

is set to the data length divided by the number of CVI lanes.

In Figure 5.6, the complex setup routine (top) can be abstracted away to a single

function call, vbx interleave 4 2() (middle). One possible implementation

of this call is shown at the bottom of the figure.

On the hardware side, data is presented in wavefronts and needs to be multi-

plexed into a pipeline. Because a new set of inputs only arrives every max(inputs/2,

89

c2j c2j+1c2 j-1
.

a2j a2j+1a2 j-1
.

d2j d2j+1d2 j-1
.

b2j b2j+1b2 j-1
.

w2j w2j+1w2j-1
.

c1j c1j+1c1 j-1
.

a1j a1j+1a1 j-1
.

d1j d1j+1d1 j-1
.

b1j b1j+1b1 j-1
.

w1j w1j+1w1j-1
.

t j t j+1t j-1
.

var

p j p j+1p j-1
.

f j f j+1f j-1
.

0

1
s

c3j c3j+1c3 j-1
.

a3j a3j+1a3 j-1
.

d3j d3j+1d3 j-1
.

b3j b3j+1b3 j-1
.

w3 j w3j+1w3j-1
.

Figure 5.8: Face Detection Pipeline

outputs) cycles, the pipeline would be idle part of the time if it had the same width

and clockrate as the CVI interface. We can recover the lost performance, and save

area, by interleaving two or more logical streams into one physical pipeline. To do

this, we have created ‘funnel adapters’ which are used to accept the spatially dis-

tributed wave and feed it to the pipeline over time. This is illustrated in Figure 5.7.

The funnel adapter for our 3-input, 2 output particle physics pipeline, which

has inputs arriving every 2 cycles (and outputs leaving every 2 cycles), allows two

MXP lanes worth of data to share a single physical streaming pipeline.

5.3.3 Face Detection CVI Example

As another example, we have also outlined the design of a multiple-input/output

CVI for Viola-Jones face detection. The face detection pipeline is shown in Fig-

ure 5.8. Unlike the gravity pipeline, the face detection requires far more inputs – a

total of 18 vector inputs and 1 scalar input. It produces a single vector output.

Using regular SVP instructions, this face detection requires a total of 19 in-

90

structions, requiring 19 clock cycles per wave of data. In contrast, due to the large

number of vector input operands, the face detection pipeline takes 9 clock cycles

per wave of data. Hence, the best-case speedup expected from this custom pipeline

is 19
9 , or roughly 2 times. Even though face detection contains a large number of

operators, the number of input operands limits the overall speedup. Hence, not all

applications will benefit significantly from custom pipelines.

5.4 CVI Limitations
Our CVI implementation was designed to address a wide range of operations and

support different use cases, but it is not without limitations. These include the

inability of a CVI to provide flow control or back pressure to the vector processor,

inability to write longer vectors than the inputs, loss of scratchpad bandwidth when

using narrow CVIs, and the inability to pipeline deep CVIs with regular vector

instructions.

There are situations where it may be useful to provide back pressure from the

CVI to the vector processor. For example, a CVI that accesses an external memory

or network interface may need to stall for a variable number of cycles. However,

our CVI interface only works with a fixed-length pipeline. Adding back pressure

would require changing MXP’s entire pipeline, which uses a fixed-length, stall-free

execution backend. The benefits of this would not be measureable unless we had

a CVI which needed this feature, and the costs would not only include increased

area but also possibly decreased frequency, as any stall signal would have to be

propagated to all lanes of the vector processor. Still, there may be situtations where

it would be useful to have back pressure.

Most of the CVIs we have implemented write back an output vector of the same

length as the inputs, and we have provided a write address port so that the CVI can

write a shorter vector (as in a vector compress operation) or write to arbitrary ad-

dresses. However, this is not general enough to implement operations that require

more write cycles than read cycles. For instance, a parallel vector scatter operation

may require writing back multiple wavefronts given a single cycle of reading ad-

dresses and data to scatter. This could be implemented if back pressure on reading

data in was available while still writing output data.

91

When using fewer CVI lanes than the width of the vector processor, more data

is read from and scratchpad memory than is used, and less data is written to scratch-

pad memory than is possible. Since we have more scratchpad bandwidth than is

needed for the CVI, it is reasonable to investigate if we can do something useful

with that extra read and write bandwidth. For instance, if there are half the num-

ber of CVI lanes as vector lanes, it could be possible to issue a half-speed vector

instruction using the other half of the scratchpad memory bandwidth. How best to

utilize the extra bandwidth (if it can be utilized usefully at all) is left as an open

question.

Finally, as mentioned in Section 5.2.4, when executing deep pipeline CVIs we

extend the vector length so that the instruction takes a number of cycles equal to the

pipeline depth. This means in an N-stage pipeline CVI, the first N cycles are spent

reading data into the pipeline, and no data is written to the scratchpad memory.

In the last N cycles, no more data is needed to be read into the pipeline while the

CVI writes back results already in its pipeline. Currently we deal with the N cycle

penalty of deep pipeline CVIs by amortizing this pipeline filling overhead over very

long vector lengths, but a solution that allowed other instructions to execute using

the unutilized scratchpad write and read cycles would be preferable. However, this

is not trivial, especially since write bandwidth is available at the beginning of the

CVI execution and read bandwidth at the end.

5.5 CVI Design Methodologies
While implementing a CVI to accelerate a SVP program is much easier than writ-

ing a complete accelerator, implementing them in HDL is not desirable for our tar-

get users, software programmers. Hence, we have explored an additional method

for generating CVI pipelines that uses a high-level tool from Altera.

Altera’s DSP Builder Advanced Blockset for Simulink (DSPBA) [2] is a block-

based toolset integrating into Matlab and Simulink to allow for push-button genera-

tion of RTL code. Figure 5.9 shows a floating-point version of our physics pipeline

implemented in DSPBA. DSPBA was able to create the entire pipeline, includ-

ing accumulation units, and design was significantly faster than manually building

the fixed-point version in VHDL. Although we were not able to create a fixed-

92

Figure 5.9: FLOAT Custom Vector Pipeline in Altera’s DSP Builder

point version of our pipeline in DSPBA because it lacks fixed-point reciprocal and

square root, we generated a floating-point version as an additional data point.

Glue logic was needed to integrate the pipeline into a CVI, however, because

our CVI pipelines require a clock enable signal, which DSPBA-generated logic

does not have. Rather than attempt to modify the output of DSPBA (including

libraries used), we built a FIFO buffer to retime data appropriately, which adds

minimal logic and uses one additional M9K memory per lane. This glue logic is

sufficiently generic to allow any DSPBA-generated pipeline to be integrated into a

CVI.

An additional method of creating CVIs was designed by Hossein Omidian us-

ing HLS techniques to generate RTL from a C function. More details can be found

in [60].

5.6 Results
All FPGA results are obtained using Quartus II 13.0 and a Terasic DE4 develop-

ment board which has a Stratix IV GX530 FPGA and a 64-bit DDR2 interface. For

comparison, Intel Core i7-2600 and ARM Cortex-A9 (from a Xilinx Zynq-based

ZedBoard) performance results are shown. Both fixed-point (fixed) and floating-

point (float) implementations were used. MXP natively supports fixed-point multi-

plication in all lanes. The Nios II/f contains an integer hardware multiplier and

hardware divider; additional instructions are required to operate on fixed-point

93

Table 5.1: Results with MXP Compared to Nios II/f, Intel, and ARM Proces-
sors

Processor Area DSPs fmax s/frame GigaOp/s pairs/s Speedup
ALMs 18-bit MHz

Nios II/f (fixed) 1,223 4 283 231.6 0.004 0.3M 1.0
Cortex A9 (fixed) – – 667 52.1 0.02 1.3M 4.5
Cortex A9 (float) – – 667 14.0 0.07 4.8M 16.6

Core i7-2600 (fixed) – – 3400 6.5 0.15 10.3M 35.6
Core i7-2600 (float) – – 3400 1.6 0.63 41.9M 144.8
MXP V32 (fixed) 46,250 132 193 73.8 0.14 9.1M 31.4

MXP V32+16FLOAT 115,142 644 122 0.041 24.6 1,326M 5,669
MXP V32+16FIXED 86,642 740 153 0.032 31.3 2,087M 7,203

Figure 5.10: Area of Gravity Pipeline Systems

data. The Intel, ARM and Nios II versions are written with the same C source

using libfixmath [9]. We developed a vectorized version of this library for use with

MXP. Nios II/f and MXP results use gcc-4.1.2 with ‘-O2’. The Core i7 results use

gcc-4.6.3 and ‘-O2 -ftree-vectorize -m64 -march=corei7-avx’. ARM results use

gcc-4.7.2 and reports the best runtime among ‘-O2’ and ‘-O3’. Our Intel and ARM

code is typical of what a C programmer would start with, not highly optimized

code.

When gathering the MXP results we varied the number of SVP lanes (V2, V8,

and V32) and the number of CVI lanes. Three types of CVIs are generated: one

containing separate fixed-point divide and square root instructions (DIV/SQRT),

one containing a manually generated fixed-point gravity pipe (FIXED), and an

DSPBA pipe (FLOAT).

94

Figure 5.11: Performance and Performance-per-Area of Gravity Pipeline

Figure 5.10 shows the area, in Adaptive Logic Modules (ALMs) on the left

and DSP Block 18-bit elements on the right. The DIV/SQRT configurations take

roughly the same area (in ALMs) as the FIXED pipeline. However, FIXED re-

quires more multipliers. The FLOAT pipelines require about 5,500 ALMs and 38

DSP elements per lane versus 3,000 and 32 per lane for FIXED.

Figure 5.11 shows the speedup of an algorithm to solve the N-body problem

with 8192 particles. Speedup is relative to a Nios II/f soft processor, and is shown

for the various MXP configurations as well as a 3.4GHz Intel Core i7-2600 and

a 667MHz ARM Cortex A9. As mentioned earlier, the Intel and ARM code is

basic C code and not highly optimized, but implements the algorithm exactly as

our MXP code does. A highly optimized single-core AVX implementation of the

N-Body problem for i7-2600 matches our best MXP performance at 2×109 pairs

per second [64]. An exact performance comparison between MXP and an Intel

processor is not intended; rather, this shows that the level of performance of an

SVP with CVIs is on par with that of a hard processor.

Comparing results within the MXP designs shows the usefulness of CVIs.

Without any CVIs, MXP achieves comparable performance to Nios II/f per lane,

and its performance scales nearly linearly from V2 to V32. MXP is running

the fixed-point divide and square root operations in software for these builds,

which hampers its overall performance. Adding in divide and square root CVIs

greatly improves performance, to the extent that a V2 with a single lane of di-

vide and square root CVIs (V2+1DIV/SQRT configuration) outperforms a V32

95

without any CVI. Adding more lanes of the divide and square root CVIs only

slightly increases performance; from V8+1DIV/SQRT to V8+4DIV/SQRT and

from V32+4DIV/SQRT to V32+16DIV/SQRT performance per area decreases.

An additional order of magnitude more performance is seen going from the

V2+1DIV/SQRT configuration to the V2+1FIXED configuration which has the

full N-body CVI. This configuration has two orders of magnitude higher perfor-

mance per area than Nios II/f. Performance of the V8+1FIXED and V32+1FIXED

is essentially the same as the V2+1FIXED, showing that the kernel of the com-

putation is running entirely on the N-body CVI, with only some housekeeping

operations running on the SVP. Additional lanes of the N-body CVI increase per-

formance to 7200× that of Nios II/f for the V32+16FIXED configuration. The

FLOAT configurations created with DSPBA have slightly higher area and slightly

lower performance (due to having a longer pipeline) compared to the FIXED con-

figurations.

5.7 Summary
This chapter has presented a method of attaching custom vector instructions (CVIs)

to SVPs, allowing the SVP to take advantage of custom data processing pipelines

implemented in the FPGA fabric. This approach broadens the design space in

which SVPs are useful by allowing the designer to acheive increased performance

by migrating the most compute-intensive parts of the algorithm into custom logic.

Instead of designing entirely in software or RTL, the designer is able to start in

software on an SVP and create a working solution first, and only then incrementally

add CVIs as needed.

Our approach reuses existing structures in SVPs to attach a variable number

of streaming pipelines with minimal resource overhead. These can be accessed

in software as an extension to the SVP’s ISA. Logic-intensive operators, such as

fixed-point divide, should not be simply replicated across all vector lanes. Doing so

wastes FPGA area unnecessarily. Instead, it is important to consider the frequency

of use of the specialized pipeline, and add enough copies to get the most speed-up

with minimal area overhead. Methods for dispatching complex CVIs were pre-

sented, including a time-interleaved method that allows an arbitrary number of

96

inputs and outputs using funnel adapters.

The performance results achieve speedups far beyond what a plain SVP can

accomplish. For example, a 32-lane SVP achieves a speedup of 31.4, whereas a

CVI-optimized version is another 230 times faster, with a net speedup of 7,200

versus Nios II/f. As a point of comparison, this puts the MXP roughly at par with

reported results for an AVX-optimized Intel Core i7 implementation of the N-Body

problem [64].

97

Chapter 6

Conclusions

What we call the beginning is often the end. And to make an end is to
make a beginning. The end is where we start from. — T. S. Eliot

This work has expanded the applicability of soft vector processors (SVPs),

making them more efficient for applications they could already handle, and en-

abling new classes of applications to execute on them. Soft processors have advan-

tages and drawbacks compared to RTL design. The software style design flow is

easier to understand and faster to debug and iterate. In particular, SVPs are a good

match for embedded media applications, where data can be processed as large vec-

tors. In contrast, RTL design gives full control to do exactly what the algorithm

needs with the only practical constraint being area and power budgets.

We started from the results of previous work which showed that SVP are useful,

and improved upon that work with better results and new features and applications.

It is important to step back and look at this work at its conclusion and try to gauge

what its impact may be. In addition to the academic work (ours and the parallel

work mentioned in Chapter 2), there is a commercial entity started as a result of this

work. VectorBlox Computing Inc. [67] was founded in 2011, and the author has

worked with that company through NSERC and MITACS scholarships. The ability

of this startup company to get funding and employ multiple engineers speaks to

the current relevance of SVPs, and the research work presented here in particular.

That said, this work is an academic thesis and stands on its own as a set of ideas,

execution of those ideas, and observations and conclusions that are useful to those

98

who might build upon them.

6.1 Contributions
This work has demonstrated three main contributions. First, the area and perfor-

mance penalty is reduced; our VENICE processor has 2× the performance per area

of the previous best SVP. This is done through a combination of FPGA-specific

optimizations and architectural enhancements that focus on efficiency rather than

maximum performance/scaling. Instead of implementing an existing vector ISA as

our starting point, we designed VENICE around the FPGA hardware and thereby

were able to both increase performance and reduce area.

Second, we enabled a new class of applications with wavefront skipping. For

applications with divergent control flow, such as those which do a variable amount

of computation depending on the input data, wavefront skipping allows for much

higher performance; 3× higher performance than the base SVP was observed with

less than 5% area overhead. This enables SVPs to tackle computer vision algo-

rithms such as object and face detection without wasting cycles doing unnecessary

processing. These types of algorithms are also difficult to implement efficiently in

hardware due to the divergent control flow, making SVPs an attractive target.

Finally, we directly addressed the gap between SVPs and RTL by allowing

the use of custom vector instructions (CVIs). These allow the user to extend the

SVP by connecting additional processing pipelines, created using a small amount

of RTL or using a GUI. Our CVIs can attach arbitrary length pipelines to the fixed-

length pipeline of a simple SVP, and can be used with an arbitrary number of inputs

and outputs with little additional buffering required. This allows a user to put the

most compute-intensive parts of their applications into a fixed pipeline, while still

being able to do auxillary processing in software. We show how on an N-body

problem we can gain speedups of 230× that of the base SVP by implementing

simple CVIs to perform the main force calculation, while doing all of the particle

movement, bounds checking, etc. with software.

99

6.2 Future Work

6.2.1 Initial Work

Our current SVPs use an existing scalar core to perform address calculations, high

level control flow, etc. VENICE uses Altera’s Nios II/f, while MXP can use Nios

II/f, Xilinx’s MicroBlaze, or ARM’s Cortex-A9. This was a pragmatic design de-

cision; we can take advantage of the existing toolchain and get industry standard

scalar performance without having to redesign a high performance scalar core.

However, this means that no resources (such as DSP blocks) can be shared be-

tween the scalar core and vector core. Additionally, vector instructions are issued

using multiple scalar instructions, which limits vector instruction issue speed and

ties up the scalar processor when it could be making other progress. Fully integrat-

ing the vector and scalar cores would allow for more sharing and better instruction

stream optimization. This would require either modifying an existing open-source

soft processor (such as OpenRISC []) or implementing a new processor compatible

with an open toolchain (such as the RISC-V project [66]).

Our wavefront skipping work was based upon the vision algorithms we studied,

but it could be made more general. We mentioned in Section 4.3.6 that it would

be possible to support multiple masks at the same time. Early exit algorithms

only need a single mask, as elements are either being processed currently or else

finished and do not need to be revisited. However, arbitrary branching in algorithms

would currently require saving and restoring the contents of the mask BRAM. It

may be useful to support multiple masks instead of having to save and restore

when switching between branches. With a short enough maximum masked vector

length (MMVL) each mask is not as deep as a full BRAM, so multiple masks could

share a BRAM.

We may also be able to repurpose our multiple partition addressing logic to

increase the speed of transposed matrix accesses. We can already set up strided

accesses using masked vector instructions; they will run at full speed provided

they do not cause bank conflicts (by being a power of two, for instance). We

could also do transposed accesses in this manner for matrices that are of the correct

dimensions (2N ± 1) or were padded to the correct dimensions. However, in this

100

case, we would want to write out the destination at different offsets than we read

the input, so we would have to either have a mixed addressing mode (mask inputs,

flat addressed outputs) or else use multiple mask RAMs to store different mask

offsets for the inputs and the outputs.

We might also want to directly accelerate strides that are powers of two. Index-

ing into scratchpad banks is done by taking the address modulo the width of the

scratchpad, which is a power of two. Thus, power of two strides always fall within

the same scratchpad bank and cannot be accelerated via wavefront skipping. Power

of two strides are useful for algorithms such as fast Fourier transforms (FFTs) as

well as matrix transposition. To allow parallel memory access to elements at power

of two strides, they cannot be stored in the same memory bank. Prime number

banking [44] can achieve this at the cost of requiring complex addressing logic.

For fixed sizes, Latin squares [34] allow fully parallel access to row/column/diago-

nals of a matrix. Either of these alternatives could be applied to scratchpad banking

or a future banked external memory system.

Regarding CVIs, larger companies such as Xilinx and Altera are seeking to

move to higher level design through high level synthesis (HLS) tools such as

OpenCL compilers [19, 73]. These tools allow designers to specify data flow al-

gorithms as a series of multithreaded kernels which can be mapped into FPGA

logic. While this gives a data parallel method of programming FPGAs, it still re-

quires performing FPGA synthesis during the algorithm design and debug stages.

It may be possible to combine the best of both OpenCL HLS and SVPs. Com-

piling OpenCL to an SVP should be relatively straightforward, though additional

features would have to be added (e.g., atomic memory operations) for full sup-

port. Integrating SVPs and OpenCL HLS could be done through a custom vector

instruction (CVI) interface or something similar.

6.2.2 Long Term Directions

A major point this thesis does not address is accelerating scatter/gather and power

of two stride support on SVPs. Scatter/gather is the vector parlance for indexed

(data-dependent) memory operations; a scatter takes an address vector and ’scat-

ters’ data to memory while a gather uses an address vector to ’gather’ data from

101

various locations in memory and load it into a packed data vector. These operations

are necessary for algorithms such as sorting, graph traversal, and sparse matrix ma-

nipulation. However, fulfilling multiple memory requests per cycle is non-trivial,

though. A first step towards accelerating scatter/gather operations was done with

TputCache [58] which is a high-throughput cache that allowed MXP to increase

performance on scatter/gather benchmarks. TputCache does not perform any mem-

ory access coalescing, but a future version could have multiple cache banks share

a wide back-end that interfaces to external memory, increasing bandwidth utiliza-

tion.

Longer term ambitions might include creating a wider family of soft parallel

processors that can be targetted by the same software and looking at architectural

support in the FPGA fabric.

One direction towards increasing performance would be to keep the vector pro-

gramming model and creating a family of processors that could even better exploit

existing parallelism than the straightforward SVPs we have used. We have not

explored superscalar or VLIW type approaches on top of the vector paradigm,

which would allow for multiple functional units (FUs) to be utilized simultane-

ously. Vector chaining is not straightforward on our SVPs due to the use of scratch-

pad pointers rather than vector registers, but would be possible for some instruction

sequences. We treat our SVPs and its banked scratchpad monolithically, dispatch-

ing a single instruction per cycle, but it may be advantageous to fracture it into

multiple running threads which could synchronize when possible.

Support in the FPGA fabric could come in a number of forms. Hardening

of individual functions, such as having a full integer ALU as an element within

the FPGA fabric, would be useful in reducing area and power, though less flexi-

ble than using soft logc. Fully hardening the vector processor itself and keeping

the tightly coupled CVI interfaces to the FPGA fabric would reduce power and in-

crease performance even more, though with even less flexibility. A hardened vector

core could operate at higher frequency than the FPGA logic, but the vector model

makes it straightforward to use funnel adapters where the CVI would operate at

one half or one fourth of the frequency of the vector core, but use two or four times

as many lanes.

102

6.3 Summary
This dissertation demonstrates that SVPs can be applicable in a range of appli-

cations for which they were previously not well suited. VENICE significantly

reduces the performance/area penalty of using SVPs compared to RTL, showing

that SVPs need not use large amounts of area to accelerate modest-performance

applications. Our work on wavefront skipping shows how SVPs can be used to ac-

celerate applications that may be difficult to implement in RTL. Our CVI interface

gives a way of interfacing deep pipelines with multiple inputs and outputs to SVPs,

enabling designers to harness the power of the FPGA fabric directly while retain-

ing the software control that the SVP provides. Together, these contributions help

SVPs to be a much more useful tool for implementing data parallel applications on

FPGAs.

103

Bibliography

[1] Altera Corporation. Nios II compiler user guide, . URL
http://www.altera.com/literature/ug/ug nios2 c2h compiler.pdf. Accessed
December 2009. → pages 19

[2] Altera Corporation. DSP builder, . URL http://www.altera.com/technology/
dsp/advanced-blockset/dsp-advanced-blockset.html. Accessed September
2013. → pages 92

[3] Altera Corporation. Increasing productivity with Quartus II incremental
compilation, . URL http://www.altera.com/literature/wp/
wp-01062-quartus-ii-increasing-productivity-incremental-compilation.pdf.
Accessed September 2014. → pages 13

[4] Altera Corporation. Nios II processor: The world’s most versatile embedded
processor, . URL
http://www.altera.com/devices/processor/nios2/ni2-index.html. Accessed
September 2014. → pages 3, 14, 27

[5] Altera Corporation. Stratix V FPGA family overview, . URL http://www.
altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/stxv-overview.html.
Accessed September 2014. → pages 12

[6] K. Asanovic. Vector Microprocessors. PhD thesis, University of California
at Berkeley, May 1998. Technical Report UCB-CSD-98-1014. → pages 18

[7] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović. Chisel: constructing hardware in a Scala
embedded language. Proceedings of the 49th Annual Design Automation
Conference, pages 1216–1225, 2012. → pages 2

[8] A. Brant and G. Lemieux. Zuma: An open FPGA overlay architecture.
IEEE Symposium on Field Programmable Custom Computing Machines,
pages 93–96, 2012. → pages 14

104

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/technology/dsp/advanced-blockset/dsp-advanced-blockset.html
http://www.altera.com/technology/dsp/advanced-blockset/dsp-advanced-blockset.html
http://www.altera.com/literature/wp/wp-01062-quartus-ii-increasing-productivity-incremental-compilation.pdf
http://www.altera.com/literature/wp/wp-01062-quartus-ii-increasing-productivity-incremental-compilation.pdf
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/stxv-overview.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/overview/stxv-overview.html

[9] B. Brewer. libfixmath - cross platform fixed point maths library. URL
http://code.google.com/p/libfixmath/. Accessed September 2013. → pages
94

[10] B. Brousseau and J. Rose. An energy-efficient, fast FPGA hardware
architecture for OpenCV-compatible object detection. International
Conference on Field-Programmable Technology, pages 166–173, Dec 2012.
→ pages 68

[11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson. LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems. ACM
Transactions on Embedded Computing Systems, 13(2):24:1–24:27, 2013. →
pages 2

[12] D. Capalija and T. Abdelrahman. A high-performance overlay architecture
for pipelined execution of data flow graphs. International Conference on
Field Programmable Logic and Applications, pages 1–8, Sept 2013. →
pages 4

[13] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. Accelerating
compute-intensive applications with GPUs and FPGAs. Symposium on
Application Specific Processors, pages 101–107, 2008. → pages 1

[14] D. Chen, J. Cong, and P. Pan. FPGA design automation: A survey.
Foundations and Trends in Electronic Design Automation, 1(3):139–169,
2006. → pages 13

[15] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G. Lemieux.
VEGAS: Soft vector processor with scratchpad memory. ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages
15–24, 2011. → pages x, 5, 20, 30

[16] J. Cong, M. A. Ghodrat, M. Gill, H. Huang, B. Liu, R. Prabhakar,
G. Reinman, and M. Vitanza. Compilation and architecture support for
customized vector instruction extension. Asia and South Pacific Design
Automation Conference, pages 652–657, 2012. → pages 27

[17] T. E. M. B. Consortium. EEMBC - the embedded microprocessor
benchmark consortium. URL
http://www.eembc.org/benchmark/products.php. Accessed January 2015.
→ pages 44

105

http://code.google.com/p/libfixmath/
http://www.eembc.org/benchmark/products.php

[18] Convey Computer. The Convey HC-2 computer: Architectural overview.
URL http://www.conveycomputer.com/files/4113/5394/7097/
Convey HC-2 Architectual Overview.pdf. Accessed September 2013. →
pages 22, 27

[19] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh. From OpenCL to
high-performance hardware on FPGAs. International Conference on Field
Programmable Logic and Applications, pages 531–534, 2012. → pages 2,
101

[20] R. Duncan. A survey of parallel computer architectures. IEEE Transactions
on Computers, 23(2):5–16, 1990. → pages 15

[21] R. Espasa, M. Valero, and J. E. Smith. Vector architectures: Past, present
and future. International Conference on Supercomputing, pages 425–432,
1998. → pages 15

[22] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown. A multithreaded soft
processor for SoPC area reduction. IEEE Symposium on Field
Programmable Custom Computing Machines, pages 131–142, 2006. →
pages 19

[23] W. Fung and T. Aamodt. Thread block compaction for efficient SIMT
control flow. International Symposium on High Performance Computer
Architecture, pages 25–36, Feb 2011. ISSN 1530-0897. → pages 26

[24] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation
and scheduling for efficient gpu control flow. IEEE/ACM International
Symposium on Microarchitecture, pages 407–420, 2007. → pages 26

[25] R. E. Gonzalez. Xtensa: A configurable and extensible processor.
IEEE/ACM International Symposium on Microarchitecture, 20(2):60–70,
2000. → pages 27

[26] E. Hung and S. J. Wilton. Accelerating FPGA debug: Increasing visibility
using a runtime reconfigurable observation and triggering network. ACM
Transactions on Design Automation of Electronic Systems, 19(2):
14:1–14:23, 2014. → pages 2

[27] Intel Corporation. Intel instruction set extensions, . URL
https://software.intel.com/en-us/intel-isa-extensions. Accessed December
2014. → pages 4, 16

106

http://www.conveycomputer.com/files/4113/5394/7097/Convey_HC-2_Architectual_Overview.pdf
http://www.conveycomputer.com/files/4113/5394/7097/Convey_HC-2_Architectual_Overview.pdf
https://software.intel.com/en-us/intel-isa-extensions

[28] Intel Corporation. Intel Xeon Phi coprocessor: Datasheet, . URL
http://www.intel.com/content/www/us/en/processors/xeon/
xeon-phi-coprocessor-datasheet.html. Accessed December 2014. → pages
16

[29] H. Ishihata, T. Horie, S. Inano, T. Shimizu, and S. Kato. An architecture of
highly parallel computer AP 1000. IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, pages 13–16, 1991. →
pages 25

[30] D. Kanter. Intel’s Haswell CPU microarchitecture. URL
http://www.realworldtech.com/haswell-cpu/. Accessed December 2012. →
pages 18

[31] N. Kapre and A. DeHon. Accelerating SPICE model-evaluation using
FPGAs. IEEE Symposium on Field Programmable Custom Computing
Machines, pages 37–44, 2009. → pages 14

[32] N. Kapre, N. Mehta, M. Delorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. Dehon. Packet switched vs. time multiplexed FPGA
overlay networks. IEEE Symposium on Field Programmable Custom
Computing Machines, pages 205–216, 2006. → pages 14

[33] J. Kathiara and M. Leeser. An autonomous vector/scalar floating point
coprocessor for FPGAs. IEEE Symposium on Field Programmable Custom
Computing Machines, pages 33–36, 2011. → pages 22

[34] K. Kim and V. K. Prasanna. Latin squares for parallel array access. IEEE
Transactions on Parallel and Distributed Systems, 4(4):361–370, Apr. 1993.
ISSN 1045-9219. → pages 101

[35] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simmulated
annealing. Science, 220(4598):671–680, 1983. → pages 13

[36] C. Kozyrakis. Scalable Vector Media Processors for Embedded Systems.
PhD thesis, University of California at Berkeley, May 2002. Technical
Report UCB-CSD-02-1183. → pages 18

[37] C. Kozyrakis and D. Patterson. Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks. IEEE/ACM
International Symposium on Microarchitecture, pages 283–293, 2002. →
pages 4

107

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-coprocessor-datasheet.html
http://www.realworldtech.com/haswell-cpu/

[38] R. Krashinsky, C. Batten, M.Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanovic. The vector-thread architecture. International Symposium on
Computer Architecture, pages 52–63, June 2004. → pages 50

[39] D. J. Kuck and R. Stokes. The Burroughs Scientific Processor (BSP). IEEE
Transactions on Computers, C-31(5):363–376, May 1982. ISSN 0018-9340.
→ pages 24

[40] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(2):203–215, 2007. → pages 11

[41] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.
Foundations and Trends in Electronic Design Automation, 2(2):135–253,
2008. → pages 11

[42] C. E. LaForest and J. G. Steffan. OCTAVO: an FPGA-centric processor
family. ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 219–228, 2012. → pages 4

[43] Lattice Semiconductor Corporation. LatticeMico32 open, free 32-bit soft
processor. URL
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/
IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx. Accessed
December 2014. → pages 3

[44] D. H. Lawrie and C. Vora. The prime memory system for array access.
IEEE Transactions on Computers, C-31(5):435–442, May 1982. ISSN
0018-9340. → pages 101

[45] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and
K. Asanović. Exploring the tradeoffs between programmability and
efficiency in data-parallel accelerators. ACM Special Interest Group in
Computer Architecture News, 39(3):129–140, 2011. → pages 26

[46] Z. Liu, A. Severance, S. Singh, and G. G. Lemieux. Accelerator compiler
for the VENICE vector processor. ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pages 229–232, 2012. → pages iv, 22, 31

[47] A. Ludwin and V. Betz. Efficient and deterministic parallel placement for
FPGAs. ACM Transactions on Design Automation of Electronic Systems, 16
(3):22:1–22:23, 2011. → pages 2, 13

108

http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx

[48] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and
Y. N. Patt. Improving GPU performance via large warps and two-level warp
scheduling. IEEE/ACM International Symposium on Microarchitecture,
pages 308–317, 2011. → pages 26

[49] M. Naylor and S. W. Moore. Rapid codesign of a soft vector processor and
its compiler. International Conference on Field Programmable Logic and
Applications, pages 1–4, 2014. → pages 22

[50] M. Naylor, P. Fox, A. Markettos, and S. Moore. Managing the FPGA
memory wall: Custom computing or vector processing? International
Conference on Field Programmable Logic and Applications, pages 1–6, Sept
2013. → pages 22

[51] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level
specifications. ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, pages 69–70, 2004. → pages 2, 22

[52] K. Ovtcharov, I. Tili, and J. Steffan. TILT: A multithreaded VLIW soft
processor family. International Conference on Field Programmable Logic
and Applications, pages 1–4, Sept 2013. → pages 4

[53] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. GPU computing. Proceedings of the IEEE, 96(5):879–899, 2008.
→ pages 26

[54] K. Papadimitriou, A. Dollas, and S. Hauck. Performance of partial
reconfiguration in FPGA systems: A survey and a cost model. ACM
Transactions on Reconfigurable Technology and Systems, 4(4):36:1–36:24,
2011. → pages 3

[55] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History,
overview, and perspective. The Journal of Supercomputing, 7(1-2):9–50,
1993. → pages 18

[56] R. M. Russell. The CRAY-1 computer system. Communications of the ACM,
21(1):63–72, Jan. 1978. ISSN 0001-0782. → pages 15

[57] A. Severance and G. Lemieux. VENICE: A compact vector processor for
FPGA applications. International Conference on Field-Programmable
Technology, pages 261–268, Dec 2012. → pages iv

109

[58] A. Severance and G. Lemieux. TputCache: High-frequency, multi-way
cache for high-throughput FPGA applications. International Conference on
Field Programmable Logic and Applications, pages 1–6, Sept 2013. →
pages 25, 102

[59] A. Severance and G. G. Lemieux. Embedded supercomputing in FPGAs
with the VectorBlox MXP matrix processor. International Conference on
Hardware/Software Codesign and System Synthesis, pages 6:1–6:10, 2013.
→ pages 22, 36, 53

[60] A. Severance, J. Edwards, H. Omidian, and G. Lemieux. Soft vector
processors with streaming pipelines. ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, pages 117–126, 2014. → pages v, 93

[61] A. Severance, J. Edwards, and G. Lemieux. Wavefront skipping using
BRAMs for conditional algorithms on vector processors. ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Feb 2015.
→ pages iv

[62] J. E. Smith. Density dependent vector mask operation control apparatus and
method, 1996. URL http://www.google.com/patents/US5940625. US Patent
5,940,625. → pages 25

[63] J. E. Smith, G. Faanes, and R. Sugumar. Vector instruction set support for
conditional operations. ACM Special Interest Group in Computer
Architecture News, 28(2):260–269, May 2000. ISSN 0163-5964. → pages
7, 23, 26, 52

[64] A. Tanikawa, K. Yoshikawa, K. Nitadori, and T. Okamoto.
Phantom-GRAPE: numerical software library to accelerate collisionless
N-body simulation with SIMD instruction set on x86 architecture. arXiv.org,
Oct. 2012. → pages 95, 97

[65] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: Using data parallelism to
program GPUs for general-purpose uses. Technical Report
MSR-TR-2005-184, Microsoft Research, October 2006. URL
http://research.microsoft.com/apps/pubs/default.aspx?id=70250. → pages
22

[66] University of California, Berkeley. RISC-V. URL http://riscv.org/. Accessed
December 2014. → pages 100

[67] VectorBlox Computing, Inc. VectorBlox - embedded supercomputing. URL
http://vectorblox.com/. Accessed September 2014. → pages 98

110

http://www.google.com/patents/US5940625
http://research.microsoft.com/apps/pubs/default.aspx?id=70250
http://riscv.org/
http://vectorblox.com/

[68] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 1:511–518, 2001. → pages 7

[69] C. Wang and G. Lemieux. Scalable and deterministic timing-driven parallel
placement for FPGAs. ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 153–162, 2011. → pages 2, 13

[70] M. Weiss. Strip mining on SIMD architectures. International Conference on
Supercomputing, pages 234–243, 1991. → pages 4, 56

[71] H. Wong, V. Betz, and J. Rose. Comparing FPGA vs. custom CMOS and the
impact on processor microarchitecture. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, pages 5–14, 2011. →
pages 3, 15, 64

[72] Xilinx, Inc. MicroBlaze soft processor core, . URL
http://www.xilinx.com/tools/microblaze.htm. Accessed September 2014. →
pages 3, 27

[73] Xilinx, Inc. All programmable abstractions, . URL
http://www.xilinx.com/content/xilinx/en/products/design-tools/
all-programmable-abstractions/#software-based. Accessed December
2014. → pages 101

[74] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA: portable, scalable, and
flexible FPGA-based vector processors. International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, pages 61–70,
2008. → pages 4, 19, 78

[75] P. Yiannacouras, J. G. Steffan, and J. Rose. Fine-grain performance scaling
of soft vector processors. International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, pages 97–106, 2009. →
pages 19, 27

[76] P. Yiannacouras, J. G. Steffan, and J. Rose. Data parallel FPGA workloads:
Software versus hardware. International Conference on Field
Programmable Logic and Applications, pages 51–58, 2009. → pages 19

[77] P. Yiannacouras, J. G. Steffan, and J. Rose. Data parallel fpga workloads:
Software versus hardware. International Conference on Field
Programmable Logic and Applications, pages 51–58, 2009. → pages 5

111

http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/content/xilinx/en/products/design-tools/all-programmable-abstractions/#software-based
http://www.xilinx.com/content/xilinx/en/products/design-tools/all-programmable-abstractions/#software-based

[78] J. Yu, C. Eagleston, C. H. Chou, M. Perreault, and G. Lemieux. Vector
processing as a soft processor accelerator. ACM Transactions on
Reconfigurable Technology and Systems, 2(2):1–34, 2009. → pages 4, 5, 19

112

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Soft Vector Processors
	1.3 SVP Weaknesses
	1.4 Goals
	1.5 Approach
	1.6 Contributions
	1.7 Dissertation Organization

	2 Background
	2.1 FPGAs
	2.1.1 Architecture and Design Flow

	2.2 Overlays
	2.3 Vector Processing and SIMD Overview
	2.4 Soft Vector Processors (SVPs)
	2.5 Divergent Control Flow
	2.5.1 Execution Pipeline Customization

	3 VENICE: Optimizing for Small but Capable
	3.1 Introduction
	3.2 Design and Architecture
	3.3 VENICE Implementation
	3.3.1 Removal of Vector Address Register File
	3.3.2 2D and 3D Vector Instructions
	3.3.3 Operations on Unaligned Vectors
	3.3.4 New Vector Conditional Operations
	3.3.5 Streamlined Instruction Set
	3.3.6 FPGA Architecture-Specific Optimizations

	3.4 Native Programming Interface
	3.5 Evalution Results
	3.5.1 Area and Clock Frequency
	3.5.2 Benchmark Performance
	3.5.3 Speedup versus Area
	3.5.4 Case Study: DCT

	3.6 Summary

	4 Wavefront Skipping on Soft Vector Processors
	4.1 Introduction
	4.2 BRAM Based Wavefront Skipping
	4.2.1 Full Wavefront Skipping
	4.2.2 Wavefront Partitioning
	4.2.3 Application Example: Viola-Jones Face Detection
	4.2.4 Comparison with Vector Compress

	4.3 Results
	4.3.1 Area Results
	4.3.2 BRAM Usage
	4.3.3 Mandelbrot Benchmark
	4.3.4 FAST9 Feature Detection
	4.3.5 Viola-Jones Face Detection
	4.3.6 MMVL Tradeoffs
	4.3.7 Results Summary

	4.4 Summary

	5 Attaching Streaming Pipelines to Soft Vector Processors
	5.1 Introduction
	5.2 Custom Vector Instructions (CVIs)
	5.2.1 CVI Design Approach
	5.2.2 CVI Interface
	5.2.3 Large Operator Support
	5.2.4 CVIs with Deep Pipelines

	5.3 Multi-Operand CVI
	5.3.1 N-Body Problem
	5.3.2 Multi-Operand CVI Dispatch
	5.3.3 Face Detection CVI Example

	5.4 CVI Limitations
	5.5 CVI Design Methodologies
	5.6 Results
	5.7 Summary

	6 Conclusions
	6.1 Contributions
	6.2 Future Work
	6.2.1 Initial Work
	6.2.2 Long Term Directions

	6.3 Summary

	Bibliography

