Estimating Reliability and Throughput of Source-synchronous Wave-pipelined Interconnect

Paul Teehan, Mark Greenstreet, Guy Lemieux

University of British Columbia

Overview

- NoCs motivate using highly optimized interconnect.
 - It's easy to make a link that has great performance in SPICE.
 - It's harder to get an acceptable bit-error-rate (BER).
- Real designs need BERs of 10^{-20} or less.
 - Can't establish this with SPICE simulations.
 - Need to use statistical methods.
- We present a methodology for assessing the BERs of NoC interconnect.
 - Compare wave-pipelined and latch pipelined interconnect as a working example.

Motivation

Bit-serial links for reconfigurable computing:

Today's FPGA

FPGA with serial interconnect

- Word-oriented blocks cause routing congestion for a traditional FPGA.
- FPGA clock periods are typically > 100 gate delays.
- Wires can be pipelined with \sim 10 gate delay period.
- Bit-serial interconnect can alleviate routing congestion

Globally-Synchronous Interconnect:

😳 Standard, synchronous design.

Needs high-speed, global clock that is unused by the rest of the system

- High-power consumption, even with clock gating.
- Complicates timing closure.

Wave Pipelined, No Latches:

- iinimal hardware.
- \approx Requires close matching of min and max delays.
- Phase-alignment increases complexity and power consumption of receiver circuit.

Source-Synchronous, Wave Pipelined

 \approx Strobe eliminates need for clock-phase recovery at receiver.

- \bigotimes Extra power and area for strobe.
- \gtrsim Need to match delays of data and strobe paths.
- Strobe pulses may be dropped due to jitter.

Source-Synchronous, Latched, Wave Pipelined

- Everiodic latching keeps data aligned with strobe.
- Strobe timing susceptible to jitter.
- Edge-to-pulse converters add circuitry and contribute to jitter between strobe and data.

Timing uncertainty is the problem

- Source-synchronous is advantageous for on-chip, high-speed, serial communication.
 - No need for a global, high-speed clock.
 - Strobe only sent with actual data transfers saves more power.
- Need to keep data and strobe aligned.
 - Requires analysis of delay variations in both paths.
- Worst-case timing analysis is overly pessimistic.
 - 6σ jitter at every stage for a particular data bit is extremely unlikely.
 - Need a statistical approach.

Outline

Reliability and throughput estimation

- Motivation
- Timing uncertainty
 - Static vs. dynamic timing variation.
 - Inter-Symbol Interference (ISI)
 - Crosstalk
 - Power supply noise
- Statistical timing analysis for source-synchronous communication.
- Examples: analysis of bit-serial links in 65nm CMOS
- Conclusions and future work.

Static vs. dynamic timing variation

Static variation

- Die-to-die, cross-chip, and device-to-device parameter variation.
- Other variations that change slowly wrt. bit period
 - sub-GHz power supply noise
 - temperature variation
- Dynamic variation:
 - Crosstalk
 - ISI
 - Power-supply noise
 - Anything on a time scale of one to a few bits.

Dynamic Uncertainty is the Problem

Need to keep strobe and data aligned:

• This is determined by timing variation that affects a single {strobe, data-bit} pair.

- Need to preserve pulses on strobe and data lines.
 - This is determined by timing variation between consecutive transitions on the strobe path or data path.
- Prior work:
 - Many proposals for on-chip, serial interconnect: [Ou 2004], [Zhang 2005a], [Dobkin 2007], [Joshi 2007].
 - [Zhang 2005b] applied statistical timing analysis to globally clocked, pipelined interconnect.
 - Our contribution: A systematic application of statistical timing methods to source-synchronous, on-chip interconnect.

Inter-Symbol Interference (ISI)

- Buffers propagate the trailing edge of a short pulse with less delay than that of a long pulse.
 - This is because the short pulse doesn't swing the wire all the way to the power supply rail.
 - Thus, the trailing edge of a short-pulse gets a head start.
 - If the minimum pulse width is > 10 gate delays, then this is not a serious problem: all transitions make it very close to the rail.
- Wires propagate high-frequency signals faster than low-frequency ones.
 - RC delay dominates for low-frequency components of signal.
 - LC delay dominates for high-frequency components of signal.
 - In practice, ISI is not a serious problem for practical wire lengths with data rates < 10 Gbps.
- Conclusion:
 - In 65nm, with bit-periods of 10-20 gate delays, ISI is not a serious problem.
 - Care needed for bit-periods < 10 gate delays.
 - ISI will become more important for smaller processes.

Interconnect without shielding

Conclusion: Crosstalk effects are relatively small (~ 0.1 gate delay) if wires are shielded.

Power Supply Noise

- High-frequency noise:
 - Impacts source synchronous interconnect.
 - Detailed models unavailable
 - includes clock network component
 - includes logic switching component
- Low-frequency noise:
 - Less critical for source synchronous interconnect.
 - Arises from ringing of off-chip inductance and on-chip capacitance.
- For our FPGA example:
 - Clock is relatively low frequency.
 - Serial transfer initiated after active clock edge.
 - Main source of noise is ongoing logic switching.

Summary of Timing Uncertainty

- Inter-Symbol Interference (ISI)
 - Small impact for bit periods greater than 10 gate delays and 100ps.
 - Likely to become more significant in sub 65nm designs.
- Crosstalk
 - Shielding required for high-speed links.
- Power-supply noise
 - Main concern for serial interconnect.
 - Better models needed.

Outline

Reliability and throughput estimation

- Motivation
- Timing uncertainty
- Statistical timing analysis for source-synchronous communication.
 - Statistical modeling of timing variation
 - Identifying failure modes
 - Computing bit-error rates
- Examples: analysis of bit-serial links in 65nm CMOS
- Conclusions and future work.

Statistical modeling of timing variation

Focus on power supply noise.

- Residual jitter (at no noise) of slightly less than 2% due to HSPICE numerical noise.
- Jitter has slight sensitivity to V_{dd} drop.
- Jitter roughly proportional to transient noise.

Identifying failure modes

Edge Separation

Pulse-width transfer function.

- Loss of strobe pulses
 - Minimum pulse width is point where ISI becomes dominant and leads to loss of the pulse.

Identifying failure modes

Set-up or hold failures

- Set-up failure: data arrives too late relative to the strobe.
- Hold failure: data arrives too early relative to the strobe.

Computing bit-error rates

- Determine failure limits (HSPICE)
- Estimate per-hop jitter statistics (HSPICE)
- Compute total link jitter statistics
 - Assume independent jitter at each hop (because we don't have better models):

$$\sigma_{total} = \sqrt{\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2}$$

Results

Summary

- Conclusions
 - Timing uncertainity must be accounted for in NoC high-bandwidth interconnect.
 - Statistical methods necessary to validate BERs required for practical interconnect.
 - Not all pipelining methods degrade equally.
- Future work
 - Model other signaling methods.
 - Better power supply noise models:
 - account for link latencies greater than one clock period
 - account for spatial correlations
 - Apply to applications other than FPGAs.

Summary

- Conclusions
 - Timing uncertainity must be accounted for in NoC high-bandwidth interconnect.
 - Statistical methods necessary to validate BERs required for practical interconnect.
 - Not all pipelining methods degrade equally.
- Future work
 - Model other signaling methods.
 - Better power supply noise models:
 - account for link latencies greater than one clock period
 - account for spatial correlations
 - Apply to applications other than FPGAs.

Questions?