Towards Reliable 5Gbps Wave-pipelined and 3Gbps Surfing Interconnect in 65nm FPGAs

> Paul Teehan Guy Lemieux Mark Greenstreet

Serial interconnect concept

FPGA'09

2 of 27

Motivation: Area and Bandwidth

- Wires use lots of area (muxes, buffers)
 - Serial may reduce total interconnect area
- Wire bandwidth usually 200Mbps (user clock)
 - Achievable wire bandwidth 30X higher
 - Serial good for high-throughput

FPGA'09

Base design

- Wave pipelining, source synchronous timing
- Minimal modification to existing FPGA
- Feasibility
 - Very high throughput, good area savings
 - Moderate to large latency and power penalties

Reliability

- Wave pipelining vulnerable to noise
- Use surfing pipelining for better robustness

Base design

- Wave pipelining, source synchronous timing
- Minimal modification to existing FPGA
- Feasibility
 - Very high throughput, good area savings
- Moderate to large latency and power penalties
 Reliability
 - Wave pipelining vulnerable to noise
 - Use surfing pipelining for better robustness

Design: Interconnect model

Design: Interconnect model

FPGA'09

Design: Wave pipelining

FPGA'09

Design: Wave pipelining

Design: Source-synchronous timing

FPGA'09

10 of 27

Base design

- Wave pipelining, source synchronous timing
- Minimal modification to existing FPGA
- Feasibility
 - Very high throughput, good area savings
- Moderate to large latency and power penalties Reliability
 - Wave pipelining vulnerable to noise
 - Use surfing pipelining for better robustness

Interconnect area savings: 10-50%

Single wire mux/buffer Input connection mux

assuming 8-bit buses

FPGA'09

Interconnect area savings: 10-50%

Serial bus mux/buffer Single wire mux/buffer Input connection mux

Interconnect area savings: 10-50%

Significant power overhead

Parallel: 12.5% data activity

Serial: 50% data activity, 100% strobe activity

Power penalty 6X to 10X (future work)

DDR clocking to save power

Moderate latency overhead

Base design

- Wave pipelining, source synchronous timing
- Minimal modification to existing FPGA
- Feasibility
 - Very high throughput, good area savings
 - Moderate to large latency and power penalties

Reliability

- Wave pipelining vulnerable to noise
- Use surfing pipelining for better robustness

Timing uncertainty: failure modes

Jitter: pulses collapse

Skew: sampling failure

Timing uncertainty accumulates

Surfing: removing timing uncertainty

- Add feedback and control
- Variable-strength buffers modulate timing

FPGA'09

Surfing: removing timing uncertainty

- Add feedback and control
- Variable-strength buffers modulate timing

Surfing: removing timing uncertainty

- Add feedback and control
- Variable-strength buffers modulate timing

Simulation prototype circuit

- Goal: Determine maximum safe throughput
- Compare wave pipelining with surfing
- Add Vdd noise to create timing uncertainty

Throughput vs link length

- Measured from 65nm HSPICE simulation with moderate supply noise
- Wave pipelining faster, surfing more robust

Throughput vs probability of error

- Calculate P(E) assuming normal random noise
- Surfing much more robust

Summary

- Serial pipelined interconnect enables very high throughput, large area savings
 - Surfing: robust at 3Gbps
 - Wave pipelining: up to 5Gbps, but less robust
 - Future work: robust high speed wave pipelining
 - Future work: architectural study/benchmarking
- Latency, power penalties are high
 - Future work: low-power signaling schemes
- Pay attention to reliability

Suwen Yang: UBC

Ande Ye: Ryerson University

Terrence Mak, Alastair Smith: Imperial College London

Jonathan Greene, Sinan Kaptanoglu: Actel architectural team

Funded by the National Sciences and Engineering Research Council of Canada (NSERC)

Summary

- Serial pipelined interconnect enables very high throughput, large area savings
 - Surfing: robust at 3Gbps
 - Wave pipelining: up to 5Gbps, but less robust
 - Future work: robust high speed wave pipelining
 - Future work: architectural study/benchmarking
- Latency, power penalties are high
 - Future work: low-power signaling schemes
- Pay attention to reliability

FPGA'09

Narrow pulses get dropped

Pulse transfer behavior

Waveforms

