
PERG-Rx: An FPGA-based Pattern-Matching Engine
with Limited Regular Expression Support for Large Pattern Database

Supervisor: Guy Lemieux
Date: September 11, 2009

University of British Columbia

Johnny Ho

The Pattern-Matching Problem

5312c39392c33372c3131372c35312c35332c35352c35322c33372c3131372c34382c35312c3
5352c35362c33372c3131372c35332c35342c3130322c35332c33372c3131372c35352c3534
2c35362c39382c33372c3131372c34382c35312c35302c34382c33372c3131372c35312c3531
2c3130322c35332c33372c3131372c35322c35372c39392c35372c33372c3131372c39372c31
30302c35322c34392c33372c3131372c3130302c39382c35312c35312c33372c3131372c343
82c31530065006e00640020006b5312c39392c33372c3131372c35312c35332c35352c35322
c33372c3131372c34382c35312c35352c35362c33372c3131372c35332c35342c3130322c353
32c33372c3131372c35352c35342c35362c39382c33372c3131372c34382c35312c35302c343
82c33372c3131372c35312c35312c3130322c35332c33372c3131372c35322c35372c39392c3
5372c33372c3131372c39372c3130302c35322c34392c33372c3131372c3130302c39382c35

Pattern Database

234ab3200000383 Fixed string

The Pattern-Matching Problem

5312c39392c33372c3131372c35312c35332c35352c35322c33372c3131372c34382c35312c3
5352c35362c33372c3131372c35332c35342c3130322c35332c33372c3131372c35352c3534
2c35362c39382c33372c3131372c34382c35312c35302c34382c33372c3131372c35312c3531
2c3130322c35332c33372c3131372c35322c35372c39392c35372c33372c3131372c39372c31
30302c35322c34392c33372c3131372c3130302c39382c35312c35312c33372c3131372c343
82c31530065006e00640020006b5312c39392c33372c3131372c35312c35332c35352c35322
c33372c3131372c34382c35312c35352c35362c33372c3131372c35332c35342c3130322c353
32c33372c3131372c35352c35342c35362c39382c33372c3131372c34382c35312c35302c343
82c33372c3131372c35312c35312c3130322c35332c33372c3131372c35322c35372c39392c3
5372c33372c3131372c39372c3130302c35322c34392c33372c3131372c3130302c39382c35

Pattern Database

234ab3200000383 Fixed string
21372{8}ef00{2}17ad Multiple strings with fixed gaps

The Pattern-Matching Problem

5312c39392c33372c3131372c35312c35332c35352c35322c33372c3131372c34382c35312c3
5352c35362c33372c3131372c35332c35342c3130322c35332c33372c3131372c35352c3534
2c35362c39382c33372c3131372c34382c35312c35302c34382c33372c3131372c35312c3531
2c3130322c35332c33372c3131372c35322c35372c39392c35372c33372c3131372c39372c31
30302c35322c34392c33372c3131372c3130302c39382c35312c35312c33372c3131372c343
82c31530065006e00640020006b5312c39392c33372c3131372c35312c35332c35352c35322
c33372c3131372c34382c35312c35352c35362c33372c3131372c35332c35342c3130322c353
32c33372c3131372c35352c35342c35362c39382c33372c3131372c34382c35312c35302c343
82c33372c3131372c35312c35312c3130322c35332c33372c3131372c35322c35372c39392c3
5372c33372c3131372c39372c3130302c35322c34392c33372c3131372c3130302c39382c35

Pattern Database

234ab3200000383 Fixed string
21372{8}ef00{2}17ad Multiple strings with fixed gaps
234a*00000*df Wildcards

The Pattern-Matching Problem

5312c39392c33372c3131372c35312c35332c35352c35322c33372c3131372c34382c35312c3
5352c35362c33372c3131372c35332c35342c3130322c35332c33372c3131372c35352c3534
2c35362c39382c33372c3131372c34382c35312c35302c34382c33372c3131372c35312c3531
2c3130322c35332c33372c3131372c35322c35372c39392c35372c33372c3131372c39372c31
30302c35322c34392c33372c3131372c3130302c39382c35312c35312c33372c3131372c343
82c31530065006e00640020006b5312c39392c33372c3131372c35312c35332c35352c35322
c33372c3131372c34382c35312c35352c35362c33372c3131372c35332c35342c3130322c353
32c33372c3131372c35352c35342c35362c39382c33372c3131372c34382c35312c35302c343
82c33372c3131372c35312c35312c3130322c35332c33372c3131372c35322c35372c39392c3
5372c33372c3131372c39372c3130302c35322c34392c33372c3131372c3130302c39382c35

Pattern Database

234ab3200000383 Fixed string
21372{8}ef00{2}17ad Multiple strings with fixed gaps
234a*00000*df Wildcards

The Pattern-Matching Problem

5312c39392c33372c3131372c35312c35332c35352c35322c33372c3131372c34382c35312c3
5352c35362c33372c3131372c35332c35342c3130322c35332c33372c3131372c35352c3534
2c35362c39382c33372c3131372c34382c35312c35302c34382c33372c3131372c35312c3531
2c3130322c35332c33372c3131372c35322c35372c39392c35372c33372c3131372c39372c31
30302c35322c34392c33372c3131372c3130302c39382c35312c35312c33372c3131372c343
82c31530065006e00640020006b5312c39392c33372c3131372c35312c35332c35352c35322
c33372c3131372c34382c35312c35352c35362c33372c3131372c35332c35342c3130322c353
32c33372c3131372c35352c35342c35362c39382c33372c3131372c34382c35312c35302c343
82c33372c3131372c35312c35312c3130322c35332c33372c3131372c35322c35372c39392c3
5372c33372c3131372c39372c3130302c35322c34392c33372c3131372c3130302c39382c35

o
f P

at
te

rn
s

Pattern Database

234ab3200000383 Fixed string
21372{8}ef00{2}17ad Multiple strings with fixed gaps
234a*00000*df Wildcards

The Pattern-Matching Problem

5312c39392c33372c3131372c35312c35332c35352c35322c33372c3131372c34382c35312c3
5352c35362c33372c3131372c35332c35342c3130322c35332c33372c3131372c35352c3534
2c35362c39382c33372c3131372c34382c35312c35302c34382c33372c3131372c35312c3531
2c3130322c35332c33372c3131372c35322c35372c39392c35372c33372c3131372c39372c31
30302c35322c34392c33372c3131372c3130302c39382c35312c35312c33372c3131372c343
82c31530065006e00640020006b5312c39392c33372c3131372c35312c35332c35352c35322
c33372c3131372c34382c35312c35352c35362c33372c3131372c35332c35342c3130322c353
32c33372c3131372c35352c35342c35362c39382c33372c3131372c34382c35312c35302c343
82c33372c3131372c35312c35312c3130322c35332c33372c3131372c35322c35372c39392c3
5372c33372c3131372c39372c3130302c35322c34392c33372c3131372c3130302c39382c35

o
f P

at
te

rn
s

Pattern Length

• Applications:

 Network intrusion detection systems (NIDS)
• Deep packet inspection
• Well-studied
• Several thousands in number of patterns (Snort

database)

 Antivirus
• Virus signature matching
• PERG
• Over 80,000 patterns in ClamAV database used

The Pattern-Matching Problem

• Antivirus is slow

 Up to over 500% slowdown in I/O intensive
process

 Bottleneck: Pattern-Matching
 Virus signature database

• Large in number and range of lengths
• Requires frequent update

Motivation

Antivirus
(ClamAV)

Motivation

1

10

100

1000

0 20 >=40

o
f

Pa
tte

rn
s

Pattern Length (Bytes)

1

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180 200 220 240 >=260

o
f

Pa
tte

rn
s

Pattern Length (Bytes)

NIDS
(Snort)

• Existing approaches:

• FSM (Aho-Corsaik) , Bloom filter, Perfect/Cuckoo hash

Related Works

Regular
Expression

Dynamic
Update

Resource
Density

FSM Excellent Poor Poor

Bloom filter Poor Excellent Excellent

Perfect/Cuckoo
hash

Medium Medium Medium

• PERG : A FPGA-based pattern-matching engine for ClamAV
• Support limited regular expression
• 24x better density than the next-best competitor (excluding

Bloom filter)
• 15x faster than software antivirus scanner

Contributions

Regular
Expression

Dynamic
Update

Resource
Density

FSM Excellent Poor Poor

Bloom filter Poor Excellent Excellent

Perfect/Cuckoo
hash

Medium Medium Medium

PERG Good Good Good

• A Novel Hardware Architecture
• Handle pattern matching in a multi-staged manner without

resorting to high-bandwidth off-chip memory requirement

• A Novel Filter Consolidation Algorithm
• Reduce the hardware resources required by packing filter

units into high capacity, thus reducing the number of filter
units needed.

• Circular State Buffer
• Support multiple traces of multi-segmented patterns with zero

false negative probability

• Limited Regular Expression Support
• Support for wildcard operators to detect polymorphic virus

Contributions

• Published in three conferences:

1. J. Ho, G. Lemieux, “PERG: A Scalable Pattern-matching Accelerator,”
CMC Microsystems and Nanoelectronics Research Conference, Ottawa,
pp. 29-32, October 2008.

2. J. Ho, G. Lemieux, “PERG: A Scalable FPGA-based Pattern-matching
Engine with Consolidated Bloomier Filters,” IEEE International
Conference on Field-Programmable Technology, Taipei, Taiwan,
December 2008, pp. 73-80.

3. J. Ho, G. Lemieux, “PERG-Rx: A Hardware Pattern-matching Engine
Supporting Limited Regular Expressions,” ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, California,
pp. 257-260, February 2009.

Contributions

• Boolean hash table

 False: Input MUST not be a pattern in database
• Zero false negative probability

 True: Input MAY be a pattern in database
• False positive probability due to hash collision
• Do not know which pattern is the potential match

• Exact matching is needed and complex

• Use multiple hash functions to reduce false positive probability
 All hash locations returned must be true for a match in a Bloom filter

 One Bloom filter is needed for each input (hash) length

Background: Bloom Filters

Pattern 1: 1234567890abc

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Pattern 1: 1234567890abc

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Pattern 1: 1234567890abc

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

1 0 0 0 0 1 0 0 0 0

Hash0 Hash1

Pattern 2: 234567890abcd

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

1 0 0 0 0 1 0 0 0 0

Hash0 Hash1

Pattern 2: 234567890abcd

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

1 0 0 0 0 1 0 0 0 0

Hash0 Hash1

Pattern 2: 234567890abcd

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Pattern 2: 234567890abcd

• Construction: Hash patterns in database to the Boolean hash table

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Hash collision

Input 1: abc34243432e2

• Usage: Hash input and logic-AND Boolean values at the hash locations

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Input 1: abc34243432e2

• Usage: Hash input and logic-AND Boolean values at the hash locations

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Input 1: abc34243432e2

• Usage: Hash input and logic-AND Boolean values at the hash locations

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Input 1: abc34243432e2

• Usage: Hash input and logic-AND Boolean values at the hash locations

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Logic AND 1 AND 0 = 0 = FALSE!

Input 2: 234567890abcd

• Usage: Hash input and logic-AND Boolean values at the hash locations

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Logic AND 1 AND 1 = 1 = TRUE!

Input 2: 234567890abcd

• Usage: Hash input and logic-AND Boolean values at the hash locations

Background: Bloom Filters

1 0 1 0 0 1 0 0 0 0

Hash0 Hash1

Logic AND 1 AND 1 = 1 = TRUE!
But..Pattern 1? Pattern 2?

• Structurally similar to Bloom filter
 Resource efficient
 Zero false negative probability
 False positive probability

• Perfect-hash capability
 Associate hash location with ONE single

pattern
• Use multiple hash functions
 Higher theoretical setup success rate

than traditional perfect hash

Background: Bloomier Filters

• Construction: Start off similarly to Bloom filter; hash
each pattern in database one by one into a hash table

Background: Bloomier Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

• Instead of storing Boolean membership information, stores
two attributes: a hash select and the pattern itself

Background: Bloomier Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Hash Select

Pattern

Pattern 1: 1234567890abc

• Construction: Hash patterns in database to the hash table

Background: Bloomier Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Pattern 2: 234567890abcd

• As with Bloom filter and any other hash-based scheme, collision is
inevitable

Background: Bloomier Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Hash collision between Pattern 1 and 2

• Identify hash location that is uniquely occupied by a pattern
• If N hash functions are used, only one out of the N hash

locations need to be unique

Background: Bloomier Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Unique to Pattern 1 (using Hash0)
Unique to Pattern 2 (using Hash1)

• Store the pattern at its uniquely associated location
• Store a hash select value to identify which of the N hash

function will point to this unique location

Background: Bloomier Filters

0 0 1 0 0 0 0 0 0 0
P1 P2

Hash0 Hash1

Pattern 3: 123e342430aaea

• A location can be uniquely associated with a pattern even if
it exists in multiple pattern neighborhoods

Background: Bloomier Filters

0 0 1 0 0 0 0 0 0 1
P1 P2 P3

Hash0 Hash1

Pattern 1 and 3 both map to this location

Pattern 3: 123e342430aaea

• Construction may fail if unique association between hash
location and input pattern cannot be achieved

Background: Bloomier Filters

0 0 0 0 0 0 0 0 0 0

Hash0 Hash1

Pattern 1 and 2Pattern 1 and 3
Pattern 2 and 3

• Usage: Similar to Bloom filter, hash the input with the N hash
functions

Background: Bloomier Filters

0 0 1 0 0 0 0 0 0 0
P1 P2

Hash0 Hash1

Input: 1234567890abc

• Logic-XOR hash select values at the N hash locations to
determine which hash location stores the unique pattern

Background: Bloomier Filters

0 0 1 0 0 0 0 0 0 0
P1 P2

Hash0 Hash1

Input: 1234567890abc

Logic XOR 0 XOR 0 = 0 = Use Hash0(Input)

• Performs virus pattern matching on hardware
 Rely on host to perform exact-matching
 Communicate with host system through PCI bus

• Contains two parts
 Pattern Compiler

• Input: pattern database
• Output: HDL and memory initialization file
• Breaking up patterns into segments for optimization and

regular-expression support purpose
 Configurable Hardware Architecture

• Virtex II-Pro FPGA + 4 MB SRAM

PERG System Overview

• Hardware contains three units:
 Inspection Unit

• Contains Bloomier Filter Units (BFU) to filtering input for patterns
 Metadata Unit

• Stores Metadata that contains information on how to link segments of
patterns back together

 Fragment Reassembly Unit (FRU)
• Keep track of traces of multi-segmented patterns and link them back

accordingly

PERG System Overview

Pattern Compiler

Pattern Compiler: Segmentation

ABCD{4}EFG

Pattern Compiler: Segmentation

1. Split at displacement/wildcardABCD{4}EFG

ABCD{4} EFG

Pattern Compiler: Segmentation

1. Split at displacement/wildcard
2. Adjust offset

ABCD{4}EFG

ABCD{7} EFG

• Patterns in ClamAV comes in a wide range of lengths
 Each pattern length would require its own BFU
 Pattern length range is not evenly distributed

• Filter consolidation reduces the number of pattern lengths by
packing patterns at different length together
 Packing begins at the longest pattern length
 When the utilization threshold of a BFU hash table is met,

assign this length as a BFU length
 Segments whose lengths do not match any BFU length are

split into two overlapping segments of equal length
• Length of the new overlapping segments is equal to the

length of the nearest shorter BFU length
• Splitting is done in filter-mapping stage

Pattern Compiler: Filter Consolidation

• Assume threshold is set to be 9 patterns

Pattern Compiler: Filter Consolidation

0

1

2

3

4

5

6

7

8

9

10

10 12 13 14 15 16 17 18

o
f P

at
te

rn
s

Pattern Lengths

• If the current length is below threshold, decrement the length

Pattern Compiler: Filter Consolidation

0

1

2

3

4

5

6

7

8

9

10

10 12 13 14 15 16 17 18

o
f P

at
te

rn
s

Pattern Lengths

• If a length is skipped, patterns at the skipped length are divided to
two overlapping segments

Pattern Compiler: Filter Consolidation

0

1

2

3

4

5

6

7

8

9

10

10 12 13 14 15 16 17 18

o
f P

at
te

rn
s

Pattern Lengths

• Since the # of segments doubled, its cost contribution also doubles

Pattern Compiler: Filter Consolidation

0

1

2

3

4

5

6

7

8

9

10

10 12 13 14 15 16 17 18

o
f P

at
te

rn
s

Pattern Lengths

• The contribution however only needs to be doubled once

Pattern Compiler: Filter Consolidation

0

1

2

3

4

5

6

7

8

9

10

10 12 13 14 15 16 17 18

o
f P

at
te

rn
s

Pattern Lengths

• Consolidation completes at user-defined minimum length

Pattern Compiler: Filter Consolidation

0

1

2

3

4

5

6

7

8

9

10

10 12 13 14 15 16 17 18

o
f P

at
te

rn
s

Pattern Lengths

Pattern Compiler: Filter Mapping

1. Split at displacement/wildcard
2. Adjust offset

ABCD{4}EFG

ABCD{7} EFG

Pattern Compiler: Filter Mapping

1. Split at displacement/wildcard
2. Adjust offset
3. Assume BFU length = 3 character,

split the unfit segment into two
overlapping segments

ABCD{4}EFG

ABCD{7} EFG

ABC{1} BCD{7} EFG

Pattern Compiler: Filter Mapping

1. Split at displacement/wildcard
2. Adjust offset
3. Assume BFU length = 3 character,

split the unfit segment into two
overlapping segments

4. Assign Link #

ABCD{4}EFG

ABCD{7} EFG

ABC{1} BCD{7} EFG
[1] [2] [3]

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

Hardware Architecture

• Purpose
 Detect patterns spanned across multiple

segments and separated by fixed byte lengths

• Advantages
 Support Multiple Traces
 Guarantee No False Negative
 Low Hardware Usage

• Aliasing allows Design Trade-off between
• Hardware and False Positive Probability

Circular Speculative Buffer

• Works like a time-wheel
• Operation is divided into Verification and Speculation phases
• Number of rows = Maximum displacement supported

 Indexed by lower bits of Byte Count
• Three types of columns

 Upper bits of Byte Count
 Data (Rule ID + Link #)
 Occupancy

• Reset upon a new file stream

Circular Speculative Buffer

B
yt

e
C

nt

O
C

C
U

P.

• Example
 Pattern A: ABC{1} BCD{7}EFG
 Input: ABCD1234EFG

Circular Speculative Buffer

• At Byte Count = 2, C arrives and Segment ABC is detected
• Verification:

 ABC is the first segment of Pattern A, so no previous state
is needed to progress

Circular Speculative Buffer

• Speculation:
 Record the next segment (BCD) expect to follow ABC at

the expected Byte Count location (Speculation Pointer)
 Byte Count + Displacement =2+1= 3

• Increment Occupy Column pointed by Speculation Pointer by 1

Circular Speculative Buffer

• At Byte Count = 3, D arrives and Segment BCD is detected
• Verification:

 Is BCD expected by an ongoing trace at the current Byte Count
row? Yes, as set previously by Segment ABC

Circular Speculative Buffer

• Speculation:
 Record the next segment (EFG) expect to follow BCD at

the expected Byte Count location
 Speculation Pointer = 3 + 7 =10
 If Speculation Pointer > # of rows, the value wraps over

• Increment Occupy Column by 1

Circular Speculative Buffer

• At Byte Count = 10, G arrives and Segment EFG is detected
• Verification:

 Returns true as EFG is indeed expected by an ongoing
trace as set previously by Segment ABC

Circular Speculative Buffer

• Since EFG is the last segment of the pattern
• The full pattern has been reconstructed from the input
• Request for exact-matching is sent

• Trace of Pattern A remains in CSB until overwritten or reset
when new file stream arrives

Circular Speculative Buffer

• Wildcards can be generated to two types
 At-least wildcard
 Within wildcard (Lossy)

Wildcard Support

Symbol Original After Conversion

?? Single-Byte Wildcard Displacement

* (Any-Number-of-Byte)

Wildcard

At-Least Wildcard

{n-} At-Least (n-Byte)

Wildcard

At-Least Wildcard

{-N} Within (n-Byte) Wildcard Within Wildcard

{n-N} Range wildcard Within Wildcard

• Wildcard Table
 Indexed directly by Rule ID of the pattern
 Contains a Byte Range attribute in each entry to

keep track of within/at-least conditions
 State (progress of trace) is maintained through

Link # similar to CSB
• Reset at start of a new file stream

 Different traces of the same pattern is mapped to the
same table entry to reduce resource usage

 Lossy but resource efficient
 Increase false positive probability
 Zero false negative probability

Wildcard Support

• At-least Wildcard
 State only progress forwards (Link # only

increases)
 If state remains the same until the expected

segment arrives after its Byte Range is satisfied
• For an At-least Wildcard of n bytes ({n-}),

once n bytes has passed in the file stream,
the range condition is always satisfied

Wildcard Support

• Within Wildcard
 State only progress forwards (Link # only

increases)
 If state remains the same until the expected

segment arrives after its Byte Range is satisfied
• For an At-least Wildcard of n bytes ({n-}),

once n bytes has passed in the file stream,
the range condition is always satisfied

• Exception
• If incoming segment contains the same Link

as the previous segment (which indicate it
is followed by a Within Wildcard), Byte
Range is refreshed (updated)

Wildcard Support

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

Wildcard Support

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the first ABC has arrived at Byte Count =0

Wildcard Support

Link # Byte Range Wildcard Type
2 3 At-Least

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the first DEF has arrived at Byte Count =4

Wildcard Support

Link # Byte Range Wildcard Type
3 11 Within

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the first GHI has arrived at Byte Count =10

Wildcard Support

Link # Byte Range Wildcard Type
4 18 Within

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the first JKL has arrived at Byte Count =20
 Byte Range condition is NOT satisfied; no action taken

Wildcard Support

Link # Byte Range Wildcard Type
4 18 Within

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the second DEF has arrived at Byte Count =23
 Incoming Link # < Link # in Table Entry; no action taken

Wildcard Support

Link # Byte Range Wildcard Type
4 18 Within

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the second GHI has arrived at Byte Count =26
 Incoming Link # < Link # in Table Entry, BUT

 Wildcard Type = Within
 Incoming Link # = Link # - 1

 Updated Byte Range: 26+8 = 34

Wildcard Support

Link # Byte Range Wildcard Type
4 34 Within

• Example

 Pattern A: ABC{3-}DEF{-7}GHI {-8}JKL
 Input: ABC…DEF….GHI…JKL…DEF…GHI…JKL

• Wildcard Table Entry After the second JKL has arrived at Byte Count =30
 Incoming Link # = Link # in Table Entry
 Metadata indicates JKL is the final segment of the pattern

 Request of exact-matching is sent
 Wildcard Table entry unchanged

Wildcard Support

Link # Byte Range Wildcard Type
4 34 Within

• Resource usage is determined by synthesizable Verilog model

• Performance is determined by cycle-accurate simulator written in C,
normalized to the frequency reported by synthesis tool
 SRAM is assumed to operate at ¼ of core frequency

• Based on ClamAV 0.93.1 main
 # of patterns remained after special-case removal stage= 84,387

• Use Ubuntu-7.10-i386.iso sample input
 Two tests: iso and extracted

Experimental Results

Performance

Single File
(Ubuntu7_10_x86.iso)

Extracted
Files (274)

of Bytes Scanned 729,608,192 727,677,929
of False Positives 4 4

False Positive Probability
for Each Byte Scanned

0.0000005% 0.0000005%

of Off-chip
Memory Requests

82,499,591 80,500,329

Probability of Off-chip
Memory Request for
Each Byte Scanned

11.31% 11.07%

Off-chip Memory
Throughput

19.4 MB/s 19.0 MB/s

Average Throughput
166 MB/s

(0.922 B/cycle)
168 MB/s

(0.933 B/cycle)
Modeled Frequency 180 MHz 180 MHz

Comparison

System Patterns
mapped

LC per
Pattern

Memory per
Pattern

(kb/pattern)

TLP TMP Throughput
(Gbps)

PERG 84,387 0.5073 0.0358 2.56 36.28 1.3

Cuckoo
Hashing

5,026 0.5933 0.2220 3.84 10.27 2.28

HashMem 1,474 1.7436 0.4410 1.55 6.12 2.70

PH-Mem 2,200 2.8509 0.1309 0.74 16.12 2.11

ROM+Coproc 2,031 4.1753 0.1359 0.50 15.31 2.08

Comparison

166

10.5

0

20

40

60

80

100

120

140

160

180

PERG ClamAV 0.93.1 on Intel Core Duo E4500

Average Throughput (MB/s)

Effectiveness of Filter Consolidation

Without Filter
Consolidation

With Filter
Consolidation

Total # of Segments
Mapped to BFUs

89,423 141,147

Total # of BFUs 220 26
Total # of BRAMs

used by BFUs
256 168

of Cache Entries 132 3823

Scalability and Dynamic Updatability

Number of BFUs 16 16 16 16 16
Total number of patterns 1440000 1440000 1440000 1440000 1440000
Utilization 90% 90% 90% 90% 90%
Change % 10% 25% 50% 75% 100%
Average number of rehashes 13.98 11.36 15 16.56 15.72
Number of setup failures (out of 50) 32 36 31 30 29

Scalability and Dynamic Updatability

Number of BFUs 16 16 16 16 16
Total number of patterns 80000 96000 112000 128000 144000
Utilization 50% 60% 70% 80% 90%
Average number of patterns inserted 37466 27774 17892 3892 48
Average number of
insertions until failure 749.32 555.48 357.84 77.84 0.96
% of theoretical max reached 73.41625 77.35875 81.1825 82.4325 90.03

• PERG excels in pattern-per-resource density
• Lags behind in throughput
 Still significantly faster than software

• Bloomier filters, checksum, and FRU together
ensure false positives stay low despite lossy
wildcard support

• A highly-utilized BFU is desirable
 Filter consolidation is necessary

• To allow dynamic update, hash function must
become more programmable

Conclusions

• Support for interleaving file stream
• Integration with antivirus software
• Alternative database
• Update and Expansion Option
• Eliminate special-case removal stage

Future Works

• A Novel Hardware Architecture
• Handle pattern matching in a multi-staged manner without

resorting to high-bandwidth off-chip memory requirement

• A Novel Filter Consolidation Algorithm
• Reduce the hardware resources required by packing filter

units into high capacity, thus reducing the number of filter
units needed.

• Circular State Buffer
• Support multiple traces of multi-segmented patterns with zero

false negative probability

• Limited Regular Expression Support
• Support for wildcard operators to detect polymorphic virus

Contributions

