

A CAD Framework for MALIBU: An FPGA with Time-multiplexed Coarse-Grained Elements

David Grant

Supervisor: Dr. Guy Lemieux

FPGA 2011 -- Feb 28, 2011

- Growing Industry Trend: Large FPGA Circuits
 - Often from C-to-Hardware or system generators
 - ex. molecular dynamics, rendering, nuclear simulation
 - Word-oriented
 - Millions of gates

- Problems with FPGAs
 - → CAD runtime can take hours or days
 - Fixed capacity
 - A large circuit may not fit
 - Inefficient use of resources
 - Resources sit idle most of the time

Motivation

• Benchmark: chem

Motivation

• Benchmark: chem

Motivation

- Solution
 - Divide up the circuit and run it on an array of processors
 - Preserve the coarse-grained features of the circuit
 - Create coarse-grained-aware CAD tools

- Time-Multiplexed FPGAs
 - → Look-up Table (LUT)

- Time-Multiplexed FPGAs
 - → Time-multiplexed LUT
 - Multiplexer is shared

- Datapath FPGAs
 - → Config bit sharing
 - → 1.1x density, same performance

Datapath Routing Mux

- Where we're going
 - Coarse-grained(datapath) time-multiplexed resources
 - ALU is shared

Overview

- Motivation
- Malibu Architecture
- Synthesis
- Results

Traditional Island-Style FPGA

Overview

- Motivation
- Malibu Architecture
- Synthesis
- Results

Malibu Architecture

Add Coarse-Grained inputs and outputs

• Add an ALU and register file

ADD NO,WO

-> E0

2

MUX W0, R0, CGI0->E0

2

MUX W0, R0, CGI0->E0

LUT

ADD NO, WO -> EO

Overview

- Motivation
- Malibu Architecture
- Synthesis
- Results

Bitstream

Overview

- Motivation
- Malibu Architecture
- Synthesis
- Results

21

Front-End Synthesis

- Parse and Elaborate
 - → Use Verilator
 - Construct a CDFG
 - → Optimize
- Coarse-Grained Synthesis
 - Map CDFG to Malibu instructions
 - Various CDFG transformations
- Fine-Grained Synthesis
 - → Extract signals \leq W_f
 - → Use OdinII and ABC to synthize to LUTs

Back-End Synthesis

- M-CAD
 - Traditional FPGA-CAD flow
 - → Separate Placement, Routing, <u>Scheduling</u>
- M-HOT
 - Integrated placement, routing, scheduling
 - Divides problem into levels, place+route each level
- Both Approaches
 - → Can target any-sized architecture
 - → Can trade area for performance
 - → Fast

• Example

Synthesis

• M-HOT Place, Route, Schedule each height

26

Overview

- Motivation
- Malibu Architecture
- Synthesis
- Results

• Frequency (MHz) for each benchmark

• Frequency (MHz) for each benchmark

• Area vs. Performance tradeoff

• Results (compared to Quartus II / Stratix III)

	M-HOT	M-CAD
Synthesis Time Improvement:	30.9x	77.0x
User Clock Speed:	0.12x	0.07x
Density:	1.48x	0.67x

10x = 10 times better than the Quartus result 1x = same as Quartus $0.1x = 1/10^{th}$ the Quartus result (10 times worse)

- Improve Front-End Synthesis
 - Needs to be both coarse-grain and fine-grain aware
 - Coarse-grained optimizations
- Improve M-CAD and M-HOT
 - Possibly 2x-3x performance improvement

Thanks

• Purpose

- Implement a circuit on a coarse-grained/fine-grained architecture
- Malibu Architecture
 - FPGA with time-multiplexed coarse-grained resources
 - Can trade density for performance
 - Synthesis (M-CAD and M-HOT)
 - → Fast, up to 250x faster than QuartusII
 - → Fmax results within 1/10th of an FPGA