
Department of Electrical and Computer Engineering

University of British Columbia

Alex Brant, Guy G.F. Lemieux

ZUMA: An Open FPGA Overlay 

Architecture

K-LUT
k

1 1

k

k

1 1

k

k

1 1

k

P

1 1

N

P

1 1

N

P

1 1

N

1

k

P k x k

LUTRAMs

k P x N

LUTRAMs

N k-input 

LUTs

K-LUT
1

k

K-LUT
1

k

P=(I+N)/k

I+N

Inputs
N*k

Outputs

Reduced Two Stage Network ZUMA

eLUTs

n

1 1

m

n

1 1

m

n

1 1

m

r

1 1

r

r

1 1

r

r

1 1

r

n

1

n

1

n

1

1

m

1

m

1

m
r n x m

crossbars

m r x r

crossbars

r m x n

crossbars

K-

LUT FFTwo Stage 

Crossbar 

Network

S-Block

Input Block

Logic Cluster

 An Embedded FPGA (eFPGA), aka "FPGA-on-an-FPGA"

 Open, cross-compatible architecture

 Open architecture for open P&R tools

 Compiled onto Xilinx and Altera FPGAs

 Place and route using VTR

ZUMA Overlay

 Enabling Applications

 Dynamic reconfiguration on any device

 User-configured logic added to fixed FPGA bitstream

 Bitstream compatibility between vendors and parts

 Enabling Research

 Open access to architecture & CAD

 Device-independent platform for reconfigurable computing

Motivation

Details (continued)

Results

IEEE Symposium on Field-Programmable Custom Computing Machines 2012

 Fully connected logic cluster interconnect (LUT input selection matrix) is large

 Replace with Clos network, routes any input to any output

 Clos network is 3 stages, but 3rd stage can be LUTs themselves

 Crossbars in Clos network built from eMUXs using LUTs in RAM mode

 Similar to classic VPR architecture

 Single-driver routing for efficient implementation on FPGA host 

 Implemented in two ways 

 Generic Verilog (compiles to any FPGA)

 FPGA-specific Verilog (compiles efficiently to specific FPGA)

Architecture

6-LUT, configured 
as a 4-to-1 MUX

One ZUMA Tile

Generic Clos Network Two-Stage Crossbar Network
used in ZUMA Logic Cluster

Xilinx Virtex 5 
used as host 
for both 
Generic and 
Custom 
versions.

Altera host is 
similar, but 
uses more FFs. 

Generic Verilog Custom Xilinx Version
Host LUTs Host FFs Host LUTs Host FFs

Switch Block 121 156 104 0
Input Block 56 288 56 0
Crossbar 288 248 144 0
BLEs 528 520 16 8
Total 993 1212 320 8
Total per eLUT 124.1 151.5 40 1

Contributions

 An open FPGA with fully disclosed details 

 Adds flexibility and capability to real FPGAs 

 Efficient implementation of LUTs and MUXs on real FPGAs

 Target for new, open tools

 More efficient using LUTs in "LUTRAM" mode

 To build entire 6-eLUT, requires just one 6-LUT in RAM mode

 Saves twenty 6-LUTs

 To build one 16:1 mux, requires three 6-LUTs in RAM mode

 Saves two 6-LUTs (see figure in next column)

 Generic implementation overheads

 To build one 6-eLUT, requires 21 6-LUTs for the 64:1 mux alone

 To build one 16:1 mux, requires five 6-LUTs

 Plus many FFs needed for configuration bits

Details

 We have built Xilinx and Altera versions 

 Using 4-LUT (Spartan/Cyclone) and 6-LUT (Virtex/Stratix) hosts 

 VTR to place and route 19 MCNC benchmarks

 Using 6-LUTs, N=8, L=4 wires, requires channel width of 112

 Area overhead as low as 40 LUTs per eLUT

 Our generic version is 125-150 LUTs per eLUT

 Prior work: Virtual FPGA architecture 3-LUTs, N=4, channel width of 32

 Implementation 1 uses 86 4-LUTs + 554 FFs per eLUT

 Implementation 2 uses 354 4-LUTs + 234 FFs per eLUT
R. Lysecky et al., “Firm-core Virtual FPGA for Just-in-Time FPGA Compilation,” poster at FPGA2005

16-to-1 MUX built 
using five 6-LUTS

6-LUT
s0

y
y

s1

d1
d2
d3

d0

d1
d2
d3

d0

d4
d5

we

data out

Config Bits
2k

Decoder

rd addr

wr addr

data in

k

k
Config Bits

2k

K-input LUT in RAM Mode 6-LUT 6-LUT, configured 
as a 6-to-1 MUX 
in RAM mode

16-to-1 MUX built using 
three 6-LUTs in RAM mode

d0

d11

d12

d15

y

s0
s1

d0

d3

d4

d7

d8

d11

d12

d15

y

s0
s1

s0
s1

s0
s1

s2
s3


