

ZUMA: An Open FPGA Overlay Architecture

Alex Brant, Guy G.F. Lemieux

Department of Electrical and Computer Engineering

University of British Columbia

ZUMA Overlay

- An Embedded FPGA (eFPGA), aka "FPGA-on-an-FPGA"
 - Open, cross-compatible architecture
 - Open architecture for open P&R tools
- Compiled onto Xilinx and Altera FPGAs
- Place and route using VTR

Details (continued)

Motivation

- Enabling Applications
 - Dynamic reconfiguration on any device
 - User-configured logic added to fixed FPGA bitstream
 - Bitstream compatibility between vendors and parts
- Enabling Research
 - Open access to architecture & CAD
 - Device-independent platform for reconfigurable computing

Contributions

- An open FPGA with fully disclosed details
 - Adds flexibility and capability to real FPGAs
 - Efficient implementation of LUTs and MUXs on real FPGAs
 - Target for new, open tools

Architecture

- Clos network is 3 stages, but 3rd stage can be LUTs themselves
- Crossbars in Clos network built from eMUXs using LUTs in RAM mode

- Similar to classic VPR architecture
- Single-driver routing for efficient implementation on FPGA host
- Implemented in two ways
 - Generic Verilog (compiles to any FPGA)
 - FPGA-specific Verilog (compiles efficiently to specific FPGA)

- VTR to place and route 19 MCNC benchmarks
 - Using 6-LUTs, N=8, L=4 wires, requires channel width of 112
 - Area overhead as low as 40 LUTs per eLUT
 - Our generic version is 125-150 LUTs per eLUT

- Generic implementation overheads
 - To build one 6-eLUT, requires 21 6-LUTs for the 64:1 mux alone
 - To build one 16:1 mux, requires five 6-LUTs
 - Plus many FFs needed for configuration bits
- More efficient using LUTs in "LUTRAM" mode
 - To build entire 6-eLUT, requires just one 6-LUT in RAM mode
 - Saves twenty 6-LUTs
 - To build one 16:1 mux, requires three 6-LUTs in RAM mode
 - Saves two 6-LUTs (see figure in next column)

					Xilinx Virtex 5
	Generic Verilog		Custom Xilinx Version		used as host
	Host LUTs	Host FFs	Host LUTs	Host FFs	for both
Switch Block	121	156	104	0	Generic and
Input Block	56	288	56	0	Custom
Crossbar	288	248	144	0	versions.
BLEs	528	520	16	8	
Total	993	1212	320	8	
Total <i>per eLUT</i>	124.1	151.5	40	1	Altera nost is

similar, but uses more FFs.

- Prior work: Virtual FPGA architecture 3-LUTs, N=4, channel width of 32
 - Implementation 1 uses 86 4-LUTs + 554 FFs per eLUT
 - Implementation 2 uses 354 4-LUTs + 234 FFs per eLUT
 - R. Lysecky et al., "Firm-core Virtual FPGA for Just-in-Time FPGA Compilation," poster at FPGA2005

This research has been funded by

