

Impact of Custom Interconnect Masks on Cost and Performance of Structured ASICs

Final Doctoral Exam

Usman Ahmed

Department of Electrical and Computer Engineering

April, 2011

Overview

- Motivation
- Research Problem
- Previous Work
- Contributions
 - Cost Model to Estimate Structured ASIC Die-cost
 - Structured ASIC Evaluation Framework
 - Area, delay, power, and die-cost trends for Structured ASICs
- Limitations and Future work

Motivation

Motivation

Each customer only programs a different bitstream Different for each customer

Common for all customers

Research Problem

How is the *cost* and *performance* of Structured ASICs affected by the number of *custom masks*?

Types of Structured ASICs

• Which masks need to be customized?

Metal-and-via Programmable (MPSA) Via Programmable (VPSA)

Types of Structured ASICs

Previous Work

- Academic Efforts
 - Ran & Sadowska: VPSA logic and interconnect fabrics
 - Pillegi et al. and Koorapaty et al.: VPSA logic block
 - Kheterpal et al.: VPSA interconnect fabrics
 - Veredas et al.: MPSA (Zelix)
 - Nakamura et al.: VPSA (VPEX)
 - Chau et al.: VPSA logic block
- Point solutions
 - Logic block and routing fabrics with fixed configurability

Previous Work

- Commercial Efforts
 - Point Solutions
 - Mostly MPSAs
 - Wide range for configurability
 - Products with high configurability have been discontinued

State	Company	Product	Туре	Custom Layers (M: metal, V: via)
Active	Altera	Hardcopy Series	MPSA	2M
	eASIC	Nextreme Series	VPSA	IV
	ChipX	CX6200	MPSA	2-4M
	Faraday	MPCA	MPSA	3M + 2V
Semi- Active	ON Semi- conductor	Xpress Array-II	MPSA	?
	ViASIC	ViaMask, DuoMask	VPSA	1–2V
	Virage Logic	ASAP	MPSA	3–4M
	Fujitsu	AccelArray	MPSA	3-4M
	Lightspeed	-	MPSA	2M+2V to 6M+6V
Defunct	LSI Logic	RapidChip	MPSA	all-M + all-V
	NEC	ISSP	MPSA	2M
	Tier Logic	-	-	?

Contributions

- 1. Cost Model to Estimate Die-cost of Structured ASICs
- 2. Structured ASIC Evaluation Framework
- 3. Area, Delay, Power, and Die-cost Trends for Structured ASICs

Contributions

- 1. Cost Model to Estimate Die-cost of Structured ASICs
- 2. Structured ASIC Evaluation Framework
- 3. Area, Delay, Power, and Die-cost Trends for Structured ASICs

Structured ASIC Die-Cost

- Primary cost components
 - Die Area
 - Number of configurable layers (New for structured ASICs)
 - Metal layers used for routing
 - Configured by one or more via, or metal-and-via masks
- Secondary cost components
 - Die Yield
 - Mask-set and processing costs
 - Volume requirements

 $Cost_{die} = Area \times K_0 + Config. Layers \left(Area \times K_1 + K_2\right) + K_3$

• Variables

- Die Area and Yield
- Configurable layers
- Constants
 - Mask/wafer processing cost
 - Volume requirements
 - Architecture Related

• At constant cost, area can be traded for number of customizable layers

Contributions

1. Cost Model to Estimate Die-cost of Structured ASICs

2. Structured ASIC Evaluation Framework

3. Area, Delay, Power, and Die-cost Trends for Structured ASICs

Structured ASIC Evaluation Framework

- Architecture Modeling
 - Logic Fabric
 - Interconnect Fabric
- Metrics
- CAD Flow

Metrics

- Cost
 - Detailed cost model (just presented)
- Area
 - Chip Area
- Delay
 - Average net delay (Elmore model)
- Power
 - Total metal + via capacitance

CAD Overview

Contributions

- 1. Cost Model to Estimate Die-cost of Structured ASICs
- 2. Structured ASIC Evaluation Framework
- 3. Area, Delay, Power, and Die-cost Trends for Structured ASICs

Performance and Cost Trends

- MPSAs
 - Two Benchmark Suites
 - Homogeneous (MCNC) Circuits
 - Heterogeneous (eASIC) Circuits
 - Comparison to CBIC costs
 - Impact of Whitespace Insertion
- VPSAs
 - Fixed-metal Routing Fabrics
 - Impact of Logic Block Pin Positions
 - Power, Delay, Area, and Die-cost
 - Comparison to MPSAs

Performance and Cost Trends

• MPSAs

- Two Benchmark Suites
 - Homogeneous (MCNC) Circuits
 - Heterogeneous (eASIC) Circuits
- Comparison to CBIC costs
- Impact of Whitespace Insertion

• VPSAs

- Fixed-metal Routing Fabrics
- Impact of Logic Block Pin Positions
- Power, Delay, Area, and Die-cost
- Comparison to MPSAs

- Device Architecture
 - Logic Elements
 - eCell, eDff, BlockRAM, RegFile
- Circuits
 - Up to 1 Million logic blocks
- Placement Enhancement
 - Different logic elements
- Layout Effort
 - Dense
 - Medium
 - Sparse

Area and Die-Cost

Lowest cost obtained with 3 or 4 layers
More than 4 layers offer little advantage

Performance and Cost Trends

• MPSAs

- Two Benchmark Suites
 - Homogeneous (MCNC) Circuits
 - Heterogeneous (eASIC) Circuits
- Comparison to CBIC costs
- Impact of Whitespace Insertion

• VPSAs

- Fixed-metal Routing Fabrics
- Impact of Logic Block Pin Positions
- Power, Delay, Area, and Die-cost
- Comparison to MPSAs

Trends for VPSAs

- Routing Fabrics (by Ran & Sadowska)
 - Crossover
 Jumper20, Jumper40
 n-1 custom via layers
 n fixed-metal layers
 1 custom via layer

- SingleVia

- Logic Blocks
 - Logic Capacity
 - 2-in,1-out to 16-in,8-out
 - Layout Effort
 - Dense
 - Medium
 - Sparse

VPSA Area and Die-cost Example

- Logic Block
 - Logic Capacity: 2-in, 1-out
 - Layout Effort: Medium
- MPSAs: Small Area
 VPSAs: Lower Cost
- Gap between different VPSA Fabrics

VPSA Area and Die-cost Trends

Key Observations

		Delay Trends	Power Trends	Area Trends	Cost Trends
VPSAs	Crossover Fabric	-	-	-	-
	Jumper Fabric	0 to 89% worse	0 to 85% worse	0 to 60% worse	-
	SingleVia Fabric	than Crossover	than Crossover	than Crossover	0 to 36% cheaper than VPSAs with other fabrics
MPSAs vs. VPSAs		MPSAs 1 to 10x better than VPSAs	MPSAs 1 to 3.5x better than VPSAs	MPSAs 1 to 5x better than VPSAs	MPSAs are cheaper only for Dense Logic Blocks with 2 or 3 layers. VPSAs are up to 50% cheaper in other cases

Contributions

- 1. Cost Model to Estimate Die-cost of Structured ASICs
- 2. Structured ASIC Evaluation Framework
- 3. Area, Delay, Power, and Die-cost Trends for Structured ASICs

Limitations

- Uniform Whitespace Distribution
- No Buffer Insertion
- No Detailed Logic Block Architectures
 - "Approximate" Technology Mapping
 - Delay and Power of Logic Blocks
 - Critical Path Delay
- Logic Block Configuration Schemes
- Overhead of Power and Clock Networks

Future Work

- Short term
 - Congestion-driven Whitespace Insertion
 - Impact of Buffer Insertion
 - Efficient Algorithm for VPSA Detailed Routing
 - Timing and/or Power Aware CAD Flows
 - New Logic and Interconnect Fabrics
- Long term
 - Improved Manufacturability
 - Ease of Design

Publications

Refereed Journal Publication

U. Ahmed, G. Lemieux, S. Wilton, "Performance and Cost Tradeoffs in Metal-Programmable Structured ASICs (MPSAs)," IEEE Transactions on VLSI Systems, 2010. Available Online: <u>http://dx.doi.org/10.1109/TVLSI.2010.2076841</u>

Refereed Conference Publications

U. Ahmed, G. Lemieux, S. Wilton, "**Area, Delay, Power and Cost Trends for Metal-Programmable Structured ASICs (MPSAs)**," International Conference on Field-Programmable Technology (ICFPT'09), Dec. 2009.

U. Ahmed, G. Lemieux, S. Wilton, "**The Impact of Interconnect Architecture on Via-Programmed Structured ASICs (VPSAs)**," International Symposium on Field-Programmable Gate Arrays (FPGA 2010), Feb. 2010.

• In Preparation

U. Ahmed, G. Lemieux, S. Wilton, "**Performance and Cost Tradeoffs in Via-Programmable Structured ASICs (VPSAs),**" to be submitted to IEEE Transactions on VLSI Systems.

Structured ASIC Vendor and User

Cost Comparison

	FPGA	Structured ASIC	CBIC
Total Design Cost	\sim \$165k	\sim \$500k	\sim \$5.5 <i>M</i>
Vender NRE	None	\sim \$100 <i>k</i> - \$200 <i>k</i>	\sim \$1 <i>M</i> - \$3 <i>M</i>
#Tools Required	2 to 3	2 to 3	6 to 10
Cost of Tools	\sim \$30k	\sim \$120 <i>k</i> - \$250 <i>k</i>	> \$300k
#Engineers	1 to 2	2 to 3	5 to 7
Price per chip	220 - 1k	\sim \$30 to \$150	\sim \$ 30
Total Unit Cost			
(Qty: 1k)	\sim \$1000('03)	$\sim \$500 - \650	\$55k
Total Unit Cost			
(Qty: 5k)	\sim \$220(4Q'04)	\sim \$100 - \$150	\$1.1k
Total Unit Cost			
(Qty: 500k)	\sim \$40(4Q'04)	> \$21	11 - 20

$$Cost_{die} = C_{base} +$$

C_{custom} +

C_{proto}

 $Cost_{die} = Cost of the masks for the base + Cost of fabricating the base + portion + Cost of fabricating the base + Cost$

C_{custom} +

C_{proto}

 $Cost_{die} = Cost of the masks for the base_{(common portion)} + Cost of fabricating the base_{portion} + Cost of fabricating the base_{portion}$

Cost of the remaining masks + Cost of fabricating the remaining portion +

C_{proto}

 $Cost_{die} = Cost of the masks for the base_{(common portion)} + Cost of fabricating the base_$

Cost of the remaining masks + Cost of fabricating the remaining portion +

Similar to C_{custom}, but depends on the number of spins

VPSA

• At constant cost, area can be traded for number of customizable layers

VPSA

Logic Block Model

- Characteristics of logic block
 - Physical dimensions (in wire pitches)
 - Pin locations
- Do not need low-level under layout details

Parameterize Logic Block

- Cover wide search space for logic blocks
- Vary layout density
 - Dense: Determined by # pins (small layout area)
 - **Sparse**: Determined by Standard Cell implementation
- Vary logic capacity
 - Sweep number of inputs and outputs
 - 2-input, 1-output logic blocks (shown here)
 - 16-input, 8-output logic blocks (also in paper)
 - Use logic clustering (T-VPack) as tech-mapper

Interconnect Model

- MPSAs
 - Set of equally-wide and equally-spaced horizontal or vertical wires for each configurable layer
- VPSAs
 - Detailed architecture specified for a basic tile
 - Metal segments (start, end positions)
 - Potential via sites (fixed or configurable vias)

CAD Framework for Structured ASICs

CAD Framework

MPSA vs. VPSA Detailed Routing

Impact of Whitespace Insertion

Estimated using Routing Capacity

Impact of Whitespace Insertion

Area and Die-cost

- 60% reduction in area and 55% reduction in cost

Logic Block Pin Positions

• Three schemes

- More tracks available for routing
- Each pin can connect to fewer tracks

- Each pin can connect to more tracks
- Fewer routing tracks in the lowest layer

Logic Block Pin Positions

• Three schemes

- Better when number of routing resources is large

Experiments used best scheme for each case

Logic Block Pin Positions

16-input, 8-output Logic Block

- Significant difference between different schemes
- Performance dependent on
 - Routing fabric architecture
 - Number of routing layers

Delay and Power

- Best performance obtained with 3 or 4 layers
- More than 4 layers offer little advantage

VPSA Area and Die-cost Trends

Technology Scaling

Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
W , L, t _{ox}		1/S	1/ <i>S</i>	1/S
V_{DD} V_T		1/S	1/U	1
N_{SUB}	V/W_{depl}^2	S	S^2/U	S^2
Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$
C _{ox}	$1/t_{ox}$	S	S	S
C _{gate}	$C_{ox}WL$	1/S	1/ <i>S</i>	1/S
$k_{n} k_{p}$	C _{ox} W/L	S	S	S
Isat	$C_{ox}WV$	1/S	1/U	1
Current Density	I _{sat} /Area	S	S^2/U	S^2
Ron	V/I _{sat}	1	1	1
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S
Р	$I_{sat}V$	$1/S^2$	$1/U^2$	1
Power Density	P/Area	1	S^2/U^2	S^2

55