

Impact of Interconnect Architecture on VPSAs (Via-Programmed Structured ASICs)

Usman Ahmed Guy Lemieux Steve Wilton

System-on-Chip Lab University of British Columbia

What is a Structured ASIC?

- An FPGA without <u>reprogrammable interconnect</u>
 - Interconnect is mask-programmed

What is a Structured ASIC?

- An FPGA without <u>reprogrammable interconnect</u>
 - Interconnect is mask-programmed
- Two types

What is a Structured ASIC?

- An FPGA without <u>reprogrammable interconnect</u>
 - Interconnect is mask-programmed
- Two types

Key Messages

1. Structured ASICs will be the key technology of the future.

Key Messages

1. Structured ASICs will be the key technology of the future.

Because the <u>key issues</u> that make structured ASICs attractive have <u>not been solved</u>.

They are growing more prominent.

Key Messages

1. Structured ASICs will be the key technology of the future.

Because the <u>key issues</u> that make structured ASICs attractive have <u>not been solved</u>.

They are growing more prominent.

2. Interconnect matters.

MPSAs have better performance, VPSAs are cheaper.

Motivation for Structured ASICs

• Enormous NRE + Design cost limit access to advanced process

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

VPSA Die-Cost

- Cost is more important than die area
- Primary cost components
 - Die Area
 - Number of configurable layers (New for structured ASICs)
- Secondary cost components
 - Die Yield
 - Wafer and processing cost
 - Volume requirements

$$Cost_{die} = C_{base} +$$

C_{custom} +

C_{proto}

 $Cost_{die} = Cost of the masks for the base + Cost of fabricating the base + portion + Cost of fabricating the base + Cost$

C_{custom} +

Cproto

 $Cost_{die} = Cost of the masks for the base + Cost of fabricating the base + portion + Cost of fabricating the base + Cost$

Cost of the remaining masks + Cost of fabricating the + remaining portion

C_{proto}

 $Cost_{die} = Cost of the masks for the base + Cost of fabricating the base + portion + Portion$

Cost of the remaining masks + Cost of fabricating the + remaining portion

Similar to C_{custom}, but depends on the number of spins

- Die Area and Yield: N_{gdpw}
 Configurable layers: N_{vl}
- Fixed layers: N_{fm}, N_{fm},

16

- Key Assumptions
 - 45nm Maskset cost: \$2.5M
 - Total volume: 2M
 - Per-customer volume: 100k
 - No. of spins: 2

 At constant cost, area can be traded for number of customizable layers

11 mm²/layer

 At constant cost, area can be traded for number of customizable layers

 At constant cost, area can be traded for number of customizable layers

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

Metrics

Cost

- Detailed cost model (just presented)

- Area
 - Placement grid size after whitespace insertion
 - Determined by CAD flow
- Delay and Power
 - Please see paper

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

Crossover Fabric

All wires same length!

Crossover Fabric

All wires same length!

Crossover Fabric

All wires same length!

Jumper Fabric

Long wires OK!

Jumper Fabric

Long wires OK!

Jumper Fabric

Long wires OK!

Routing Fabric Comparison

Crossover Fabric

- Single via to extend
- All wires same: length-1

Jumper Fabric

- Two vias to extend
- Short segments: 1 blocks
- Long segments: 4 blocks, staggered
- Two variants
 - Jumper20: 20% Long segments
 - Jumper40: 40% Long segments
Logic Block Model

Parameterize Logic Block

- Cover wide search space for logic blocks
- Vary layout density
 - **Dense**: Determined by # pins (small layout area)
 - **Sparse**: Determined by Standard Cell implementation
- Vary logic capacity
 - Sweep number of inputs and outputs
 - 2-input, 1-output logic blocks (shown here)
 - 16-input, 8-output logic blocks (also in paper)
 - Use logic clustering (T-VPack) as tech-mapper

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

Area, Cost Trends

- Experimental results
 - MCNC benchmarks
 - Geometric mean over 19 large circuits
 - Logic block density
 - Dense, medium, and sparse
 - Logic block capacity
 - From 2-input, 1-output to 16-input, 8-outputs
 - Only 2-input, 1-output results shown here

Area and Die-Cost Trends

Area and Die-Cost Trends

Area and Die-Cost Trends

- Sparse layout is better! ???
 - Less whitespace needed
- Need to study whitespace allocation

Delay and Power Trends

Key results (in paper):

MPSA is significantly better than VPSA

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, cost trends
- Conclusions

Conclusions

- Trends for VPSAs
 - Die-cost more important than die-area
 - MPSAs better in Area, Delay, and Power
 - VPSAs better in Cost
 - Interconnect Matters
 - Performance varies with different routing fabrics
 - Even significant variation among VPSA structures
- Ongoing research
 - Interconnect architectures
 - Whitespace insertion algorithm

Limitations

- CAD framework available online
 <u>http://groups.google.com/group/sasic-pr</u>
- This is early work ... need improvements!
 - Whitespace insertion
 - Buffer insertion
 - Delay/Power of logic blocks
 - Power/clock network area overhead
 - SRAM-configurable logic blocks

🎱 sasic-pr Google Groups - Mozilla Firefox		
Ele Edit View Higtory Bookmarks Iools Help		
😮 🗸 🔥 😥 http://groups.google.com/group/sasic-pr 🚮 🏠 🔹 🛃 - Google 🔎		
😞 sasic-pr Google Groups 🛛 🐳		
Gmail Calendar Documents Reader Web more V	-	
guy.lemieux@gmail.com My Groups 💌 Favorites Profile Help My Account Sign out		
Google groups		
🔌 sasic-pr	Search this group Search Groups	
Home	Home	
	Discussions	
Start a new discussion topic	Pages	
	Files	
To create some pages	About this group	
🍞 Upload some files	Edit my membership	
Report this group XXII. Send email to this group: <u>sasic-</u> pr@googlegroups.com	Group info Members: 3 Group categories: Science and Technology More group info a	

Key Message

1. Structured ASICs will be the key technology of the future.

Because the <u>key issues</u> that make structured ASICs attractive have <u>not been solved</u>.

They are growing **more prominent**.

2. Interconnect matters.

MPSAs have better performance, VPSAs are cheaper.

CAD Framework Available

🥹 sasic-pr Google Groups - Mozilla Firefox	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
C X 🏠 http://groups.google.com/grou	p/sasic-pr 🔝 🏠 🔹 🔀 🛪 Google 🛛 🔎
🕞 sasic-pr Google Groups 🛛 🔅	~
<u>Gmail</u> <u>Calendar</u> <u>Documents</u> <u>Reader</u> <u>Web</u> <u>more</u> •	<u> </u>
guy.lemieux@gmail.com My Groups 💌 Favorites	Profile Help My Account Sign out
Google groups	
	Search this group Coarch Croups
Sasic-pi	Search this group
Home	Home
Home	
	Discussions
Start a new discussion topic	Pages
Create some pages	Files
	About this group
	Edit my membership
Report this group XML Send email to this group: sasic-	Group into
progradiegroups.com	Members: 3
	Science and Technology
	More group info »

Power and Delay Trends

Metrics

• Area

- Determined from placement grid size

- Delay
 - Average net delay (Elmore model)
 - Register locations unknown; critical path delay calculation is difficult
 - CAD flow is not timing driven
- Power
 - Total metal + via capacitance

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, delay, power, cost trends
- Cost model sensitivity
- Conclusions

Power Trends

Power Trends

- Significant range for different routing fabrics
- More custom via layers \rightarrow Lower Power
 - Especially for dense layouts

Power Trends

- Re-Normalized to MPSAs
- VPSAs use more power
 - 2x (sparse) to 6x (dense) more than MPSAs

- Significant range for different fabrics
 - Delay improves with more custom via layers
- Jumper Fabric: Long segments improve delay (but higher power)

- Re-Normalized to MPSAs
- VPSA delay up to 20x worse

- Re-Normalized to MPSAs
- VPSA delay up to 20x worse

Cost Model Sensitivity

Talk Outline

- Cost model
- Experimental methodology
 - Metrics
 - CAD flow
 - Architecture modeling
- Area, delay, power, cost trends
- Cost model sensitivity
- Conclusions

Cost Model Sensitivity

- How sensitive is the die-cost to various factors?
- Primary factors
 - Die area
 - Number of customizable layers
- Secondary factors
 - Maskset cost
 - Volume requirements
 - Number of fixed lower masks

Cost Model Sensitivity

Sensitivity to Maskset Cost

VPSAs less sensitive to maskset cost
Cost Model Sensitivity

– Sensitivity to Number of Fixed Lower Masks (N_{fm})

VPSA cost increases more rapidly than MPSAs

 Large area of VPSAs

Cost Model Sensitivity

– Sensitivity to Per Customer Volume (V_c)

 VPSAs less sensitive to customer volume than MPSAs