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ABSTRACT

We present results which show that a separate global and detailed
routing strategy can be competitive with a combined routing pro-
cess. Under restricted architectural assumptions, we compute a
new lower bound for detailed routing and show that our detailed
router typically requires no more than two extra routing tracks
above this computed limit. Also, experimental results show that the
Mapping Anomaly presented in [20], which suggests that separated
routing may yield arbitrarily poor results in certain instances, is a
concern only if nets are restricted to a single track domain. Finally,
to motivate future work, we show the latest two-step routing results
that we have achieved with the VPR global router and SEGA de-
tailed router tools on the largest CBL benchmark circuits.

1. INTRODUCTION

Recent FPGA routing results have suggested that a separate global
and detailed routing strategy is inferior to a combined routing pro-
cess [1, 10, 19, 21]. Similarly, the practise of dividing multipoint
nets into multiple two-point nets for routing was thought to neg-
atively impact routability. In fact, recently published results have
shown that combined routers have used significantly fewer routing
tracks than the best-known two-step routers, CGE [4] and SEGA
[11]. However, results obtained with a new global router, VPR,
show that distinct global and detailed routing, combined with mul-
tipoint net division, can be competitive with the latest published
FPGA routing tools. This is encouraging because separate global
and detailed routing of two-point nets may have other practical ben-
efits such as reduced memory use or compute time.

There is an additional concern that separate global and detailed
routing may suffer from what [20] calls a Mapping Anomaly. This
is a condition where the global route forms such a constraint that
the channel density greatly under-specifies the minimum number
of routing tracks required. After making the architectural assump-
tions suggested by [20], we sometimes detect the presence of a
Mapping Anomaly. Our experimental results indicate that this
anomaly is of critical concern if multipoint nets are constrained to
a single track domain. However, the anomaly was not found to be
present when nets were allowed to be split onto multiple track do-
mains at input and output pins.

Finally, a new lower bound for evaluating the performance of
any detailed router is presented. Although the new bound is not

completely tight, the SEGA detailed router typically routes bench-
marks within two tracks of the bound.

1.1. Paper Overview

The rest of this paper is organized as follows. Section 2 describes
the FPGA architecture model used. Section 3 provides an overview
of previous FPGA routing algorithms against which comparisons
will be made. In Section 4, the Mapping Anomaly, confronting
graph, and other graph-theoretic terminology are defined. In Sec-
tion 5 the empirical methodology and tools used in this paper are
presented, and the results and analysis follow in Section 6. The
conclusions drawn from this data are summarized in Section 7.

2. FPGA ARCHITECTURE MODEL

The style of FPGA architecture assumed in this paper is similar to
the Xilinx XC4000 series, but it is modeled with a set of parameters
that represents a range of architectures. As illustrated in Figure 1,
the architecture comprises a rectangular array of logic blocks with
both horizontal and vertical routing channels, and I/O cells around
the periphery. The contents of the logic blocks (L) are not of in-
terest for this study. The routing channels comprise the wire seg-
ments and switches used to interconnect logic blocks. Wire seg-
ments are organized into both vertical and horizontal tracks; in the
example in Figure 1 there are four tracks per channel and each logic
block has two pins on each of its sides. We assume that all rout-
ing tracks consist of only short wire segments that span a single
logic block. This assumption is made because we wish to compare
results achieved by several recently-produced FPGA routing algo-
rithms, and all of these algorithms’ published results assume only
short wire segments.

A key characteristic of the FPGA model is that the channels
comprise two kinds of blocks, called Switch (S) and Connection
(C) blocks, as illustrated in Figure 1. The S blocks hold routing
switches that can connect one wire segment to another, and the C
blocks house the switches that connect the wire segments to the
logic block pins.

An S block is a rectangular switch box that connects wire seg-
ments in one segment of a channel to those in another. Depending
on the topology, each wire segment on one side of an S block may
be switchable to either all or some fraction of the wiring segments
on each other side of the S block. The flexibility of the S block
is given by the parameter

���
, which defines the number of other

wire segments that a wire segment ending at an S block can con-
nect to. An example S block appears in Figure 1a, in which each
dashed line represents a programmable routing switch—in this fig-
ure,

� �����
. In this study, the S-block topology is assumed to be

disjoint. This means that the wiring tracks are isolated into disjoint
domains by the switch organization. Consequently, if all S-block
switches are turned on, a number of unconnected wiring groups are
created, called track domains. For example, with the S block in
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Figure 1. General Model of an Array-based FPGA.
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Figure 1a, a signal beginning on track 0 is restricted to wire seg-
ments in track 0, no matter which S-block switches it goes through.

Figure 1b illustrates a C block. The tracks are hardwired to pass
through it and can be connected to the logic block pins via a set of
switches. The flexibility of a C block, �
	 , is defined as the num-
ber of wire segments in the C block that each logic block pin can
connect to. In the figure, a routing option is represented as an � —
for this example, each pin can be connected to two vertical tracks;
hence � 	
��� .

An important architectural feature is how the C block is imple-
mented. If each � is simply a pass transistor, then two or more
switches on the pin may be turned on to permit a routing dogleg,
where the pin and connected wires behave as one electrically equiv-
alent wire. However, if the � ’s along an input (driver) pin are im-
plemented as a (de)multiplexor, only one connection to the tracks
can be made. In these cases, doglegs are not possible. Many previ-
ous routing studies have assumed that routing doglegs can be used
at both input and driver pins. However, commercial FPGAs such
as Xilinx XC4000 [22] and Lucent ORCA FPGAs [12] do not per-
mit input pin doglegs. The study in this paper considers both cases:
doglegs at only the driver pin, and doglegs at any pin.

The main advantage provided by the FPGA model described
above is its generality, which supports a wide range of routing ar-
chitectures by changing the number of tracks per channel and the
contents of the C and S blocks. Earlier studies have examined the
effects of the �
	 and ��� parameters [16]. Based on those previous
studies, we will use the values � ����� and � 	���� , where �
is the number of tracks per channel, for all of the experiments in
this paper. Note that these same assumptions are also used in re-
cent publications on routing algorithms [1, 7, 10, 19, 21], and so
are generally accepted as being reasonable.

3. PREVIOUS WORK

This section describes previous work related to FPGA routing that
is directly comparable to the study in this paper.

3.1. FPGA Logic Block and I/O Placement
Many FPGA routing studies have used the benchmark netlists orig-
inally generated for CGE/SEGA. The placement for these bench-
marks was generated by ALTOR [14], a tool originally intended
for standard cell placement. ALTOR used a recursive min-cut bi-
partitioning strategy. By repeatedly partitioning in horizontal and
vertical directions, ALTOR creates a final placement.

Recent tools, namely FPR [2], SPLACE [19] and VPR [3], in-
clude placement algorithms that are targeted specifically for FPGA
use. FPR uses a recursive-partitioning technique that is similar to
ALTOR, but each step uses simulated annealing to divide the netlist
into an ����� grid, for some small fixed � and � . Before each
recursive step, FPR also performs some global routing. This si-
multaneous placement and global routing strategy is unique among
the FPGA tools considered in this paper. In comparison, SPLACE
and VPR use simulated-annealing placement algorithms. VPR pro-
vides more efficient treatment of high-fanout nets and can there-
fore consider more moves than SPLACE in a given amount of CPU
time.

3.2. FPGA Global Routers
The global router LocusRoute [15] was originally intended for
standard cell applications. It accepts a placement and a multipoint
netlist as inputs and breaks the nets into two-point nets. Each two-
point net is routed with two or fewer bends with the objective of
minimizing channel density. A bend cost can be applied to further
discourage bends [18]. The output is a coarse graph for each con-
nection consisting of a series of adjacent channel segments to guide
it through the FPGA array. The quality of the LocusRoute channel
assignment is measured by the maximum channel density, �����! ,
which is the largest number of distinct signals occupying a single
channel segment.

The global routing step of VPR [3] uses a maze router on mul-
tipoint nets in a manner similar to [13]. All nets are routed, ripped
up, and rerouted several times. After every iteration, it accrues a
history cost to channel segments with a density greater than the
target density, ��"#�%$'&)(*" . Subsequent net routings tend to avoid
congested channels unless no alternative exists. VPR finds the
minimum possible ��"+�%$'&,(*" that successfully routes a circuit with�����! �-���"+�%$'&)(." .
3.3. FPGA Detailed Routers
The Coarse Graph Expansion (CGE) algorithm [4] was specifically
developed for FPGA routing research. It expands all two-point nets
along their global route into a small number of distinct paths, care-
fully pruning the search space. Wire resources for the lowest cost
path are committed until the circuit is routed. A rip-up strategy is
employed if needed, in which less pruning of possible choices is
done in hard-to-route areas.

The successor to CGE, SEGment Allocator (SEGA) [11], used a
different cost function structure to make use of long wire segments.
SEGA also made the assumption that a net could be fully expanded
into all possible paths along the global route. Consequently, SEGA
does not re-expand a net when its paths are exhausted. Instead, the
cost function increases a net’s priority as its choices diminish. This
approach yielded good results, so CGE-style rip-up was deemed
unnecessary to the algorithm.

Since SEGA’s original publication date, a number of different
cost functions have been explored to investigate routability and
speed-performance [5]. The cost function used to produce the re-
sults for this paper, called Area, has been the most successful so
far in using the fewest wiring tracks. The Area cost causes SEGA
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to first identify the nets which have the fewest number of remain-
ing paths. Among these nets, the path with the lowest Demand cost
(akin to CGE’s cost) is chosen.

3.4. Combined FPGA Global and Detailed Routers
The Greedy Bin Packing (GBP) algorithm [20] combines both
global and detailed routing into one step. By making the assump-
tions that /�02143 , /
561�7 , and that a disjoint S-block topology is
used, an FPGA is routed by treating every track domain as a bin and
greedily filling that bin with nets until no more will fit. GBP then
proceeds to the next track domain and repeats the process. In this
way, GBP is similar to the Best Fit Decreasing bin-packing heuris-
tic. Observations that GBP did not densely pack the last few track
domains led to the Orthogonal Greedy Coupling (OGC) algorithm
[21]. By switching from one greedy algorithm to another (which
has a different optimization goal) after some track domains have
been packed, the last few track domains were more densely packed
and fewer routing tracks were used.

A series of one-step routing algorithms was presented in [1]. In
these algorithms, multipoint nets are routed one net at a time. If a
net fails to route, it is moved to the front of the net order and rout-
ing is restarted. The FPGA routing resources are represented by a
graph which shrinks as nets are routed. The algorithms differ by the
way they route a multipoint net through the remaining graph. Five
different core algorithms were presented, three of which were fur-
ther enhanced using iteration. Of these eight algorithms, four mini-
mized wirelength by solving the Network Steiner Tree Problem and
four minimized source to sink distance using shortest-paths algo-
rithms. In this paper, we compare our results to those produced by
IKMB, one of the iterated Steiner-tree algorithms.

The FPGA Placement and Routing (FPR) algorithm [2] uses the
same net routing strategy described above. It also uses the IKMB
algorithm to perform detailed routing. However, before each re-
cursive partitioning step, FPR greedily selects a partial global route
for each net based on rectilinear Steiner arborescences 8 and assigns
nets to specific S blocks. This allows FPR to balance congestion
across each cut and fix the signal entrance or exit points on each
side before cutting each subpartition.

The TRACER-fpga algorithm [7] also performs combined rout-
ing of multipoint nets. It uses a maze router seeded from the source
and all sinks to route each net. Initially, all nets are routed by
allowing them to share wires. Next, a simulated evolution tech-
nique (similar to simulated annealing) chooses nets for rip-up and
rerouting; nets sharing resources are more likely to be ripped up.
During rerouting, a high cost is used to discourage future sharing.
When no more sharing occurs, a solution has been found. The
TRACER-fpga PR algorithm [10] is similar, except that it avoids
sharing during initial net routing. Also, it uses slacks to order nets
during initial routing and for selection of nets during rip-up. By
using slacks, it gives long nets priority for direct connections and
allows short nets to route around congestion.

The SROUTE algorithm [19] sequentially maze-routes each
multipoint net by searching out the next closest sink. If a path for
a net cannot be found, it is moved to the front of the net order and
routing is restarted. To reduce the maze-routing search space, it ini-
tially follows paths which advance toward the closest sink.

3.5. Summary
A number of routers have been presented which address the routing
problem in slightly different ways. None of the algorithms above
directly address the issue of speed-performance, but some try to
reduce wasted wirelength or take more-direct paths. All of these
algorithms emphasize routability, and all try to minimize wire-
length. The most recent routers (VPR, SROUTE, FPR, TRACER,

8 An arborescence is a construction which contains the shortest path
from a distinguished vertex, or source, to all other vertices or sinks.

Figure 2. A sample global routing, 9 , for three nets (a, b, and
c) and the corresponding confronting graph, : . Notice the
three connected vertices in : imply that three routing tracks
are required to route. If the multipoint net c is broken into
two-point nets (c ; c 8 and c 8 c < ) and dogleg routes are permit-
ted, the confronting graph :�=>,? results and can be routed with
only two tracks. One possible solution is implicitly shown in 9 ,
where a dogleg occurs on pin c 8 . The confronting graph : =>,>,?
shows that when doglegs are allowed at the driver pin only,
three tracks are still required.
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IKMB, GBP, and OGC) improve routability by relaxing the mini-
mum wirelength condition.

Table 1 gives a general overview of various architectural features
and routing techniques that are used by the routers in this paper.
Blank entries in the table mean ‘not applicable’.

4. TERMINOLOGY

With the architectural assumptions that / 0 1@3 , / 5 1A7 , and
that S blocks are disjoint, the routing problem can be restated as
a graph colouring problem. This observation led to the concepts
of the Mapping Anomaly and a confronting graph in [20]. In this
section, these terms and the underlying graph theory are defined.

A multipoint netlist which has been global routed can be repre-
sented by a forest of trees, 9CBEDGFIH�J , or simply 9 . Each net is a
tree, where the driver and sinks form the leaves and intermediate
vertices between the leaves are C or S blocks through which the
net is routed. All vertices are labeled with the BLK�F'MNJ co-ordinates
of their location in the FPGA model. Additionally, leaf vertices are
labeled with their corresponding logic block pin number.

In this paper, a two-point netlist 9O=PBEDQFIH�J is constructed from9 in two different ways. In the first method, routing doglegs are
permitted at input and driver pins of a net, forming 9 =>)? BEDGFIH�J . The
second method permits routing doglegs at the driver pin only, and
is called 9 =>I>,? BEDQFIH�J . Each connected component of 9 =>)? or 9 =>I>,? is
a two-point net; in the latter graph, one endpoint is always a driver
pin.

The disjoint S-block topology divides each routing track into a
separate domain. This property allows the construction of the con-
fronting graph, :�BEDGFIH�J . Each vertex in : corresponds to a net in9 . An edge is placed between two nets (vertices) in : if they travel
through a common C block in 9 , i.e., each net contains a vertex
in 9 with the same C block BLK�F*MRJ label. Thus, an edge in : rep-
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Table 1. Comparison of architectural features (upper rows) and routing techniques (lower rows) used by FPGA routers.

LocusRoute CGE SEGA GBP OGC IKMB TRACER SROUTE FPR VPR
exploits pin equivalence y n n n n y n y
exploits output pin doglegs y y y y y y y y
exploits input pin doglegs y/n S y/n S y y y y n y
exploits long wire segments y T n y n n n n n n y T
performs rip-up and re-routing y y n n n y y n n y
greedy selection mechanism y y y y y n n y y U n
Steiner tree/arborescence based
global routing n n n y n n y n
shortest-path global routing y n n n n n y n
maze global routing n n n n y y n y
guaranteed performance bounds n n n n n y V n n y V n
net-order dependent results y y n n n y n y y nS CGE/SEGA will not dogleg at sinks if one end of the 2-pin input netlist always connects to the driver.T A ‘bend cost’ can be applied to help better exploit long wire segments.U A greedy selection is done to assign global routes at each partitioning step.V Each net is guaranteed to use WOXZY minimum number of wires (out of those remaining in the FPGA after previous nets are all routed).

resents an incompatibility between two nets to be assigned to the
same track domain.

Similar confronting graphs can be built for [O\V,] ^E_Q`Ia�b and[O\VIV)] ^E_G`Ia�b , denoted c�\V)] ^E_Q`Ia�b and c�\VIV)] ^E_Q`Ia�b , respectively.
However, for these graphs an edge is never placed between two-
point nets (vertices) which are part of the same multipoint net be-
cause they may be safely assigned to the same track domain. An
example graph [ , and the resulting confronting graphs c , c \V)] andc \VIV)] are shown in Figure 2. Note that [ is shown embedded in an
array of logic blocks to illustrate the global route.

Using the confronting graph, the detailed routing problem is
mapped to a graph (vertex) colouring problem. In this perspective,
the vertices of c must be assigned a colour (track domain) such
that no two adjacent vertices are assigned the same colour, and the
minimum number of colours is to be used. The graph colouring
problem is NP-complete on general graphs [9], so heuristics are
commonly used to solve it.

This minimum number of colours required to colour c is called
the chromatic number, denoted d ^ c b . It is important to note thatd ^ c b represents the minimum number of routing tracks required
for detailed routing of [ , and a routing solution with this many
tracks is guaranteed to exist.

The Mapping Anomaly [20] is the observation that [ may be
constructed such that d ^ c b can be arbitrarily higher than the max-
imum channel density, e�f S%g . Since c is implicitly produced by
the global router, the detailed router has no control over d ^ c b . Ad-
ditionally, the global router attempts to minimize e f S%g and notd ^ c b directly, so it may construct pathologically bad c configura-
tions. This observation was used in [20] to support the notion that
global and detailed routing should be combined.

The results presented in this paper suggest the Mapping Anom-
aly may not be a concern if routing doglegs are permitted, but it
is a problem if doglegs are not allowed. This is intuitive because
doglegs permit an ‘escape hatch’ for a signal to avoid interference,
effectively reducing the net’s length. Doglegs in the confronting
graph have the effect of splitting a vertex in c and spreading the
connectivity among the split vertices. The freedom to colour the
split vertices similarly or differently, depending on the colour of
adjacent vertices, often means that fewer colours are required.

It is desirable to compute d ^ c b and use it to determine the qual-
ity of the detailed routing heuristic. However, we could not find an
effective way to directly compute it. Instead, we compute a well-
known lower bound: the clique number of c , or h ^ c b . The clique
number of a graph is the size of the largest clique, or completely
connected subgraph. Clearly, at least h ^ c b different colours are

needed to colour the largest clique because all of its vertices are ad-
jacent to each other. Since all of the nets in a C block are completely
connected (thus, forming a clique), the following useful relation is
developed: e f S%gji h ^ c b i d ^ c b
A similar relationship holds for the c�\V)] and c�\V,V,] graphs.

The clique number is useful in two ways. First, it forms a tighter
lower bound to gauge the quality of SEGA. Second, it helps show
the presence of the Mapping Anomaly, as follows. If h is much
larger than e f S%g , then d must be large, so the Mapping Anom-
aly is present. However, if h is comparable to e�f S%g then it may
or may not be present. In this case, it is not present only if the
graph can be coloured (routed) with a few colours (tracks) more
than e�f S%g .

5. METHODOLOGY AND TOOLS

The approach used in this study is empirical. That is, a set of bench-
mark circuits is input to a CAD tool chain and the routing results
are analysed. The CAD tool chain consists of a new placement and
global routing tool, VPR [3], and a detailed routing tool, SEGA
[5, 11]. Two sets of benchmarks are used: older benchmarks pro-
vide a means of comparing to previously published results, and
newer benchmarks allow more rigourous testing of the tools. The
process and tools used are described in detail below. All of the
tools, circuits, and results are available for download. k
5.1. Benchmark Preparation
Benchmark circuits from [11] were widely used to produce com-
parative results between routers. To use a new VPR placement or
global routing for these circuits, they had to be converted to a for-
mat understood by VPR. A short program, sega2blif, was writ-
ten to extract the multipoint nets from the SEGA input, and output
the connectivity information in BLIF format. The same tool also
wrote out a placement file which could optionally be used by VPR. l

The new benchmark circuits used in this study are from the CAD
Benchmarking Laboratory (CBL) LGSynth93 suite [6]. A total of
198 circuits were converted to BLIF, optimized with SIS [17] and
mapped into 4-input LUTs with FlowMap [8]. They were then run
through theblifmap tool included with VPR to remove clock sig-
nals and, where possible, pack flip-flops into logic blocks. Clock

k http://www.eecg.utoronto.ca/˜lemieux/segal Note that while SEGA permits I/O pins to be in the four corners of the
periphery, VPR does not. Consequently, any corner I/O signals were moved
as short a distance as possible to the next available I/O pad.
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signals are removed because it is assumed that a global clock rout-
ing resource is available to route them.

5.2. Placement and Routing
All benchmarks were placed and global routed using VPR and de-
tail routed using SEGA. The exact tool setup is described below.

The default VPR placement options were used for all benchmark
circuits. However, for the older benchmarks, VPR was sometimes
told to use the old placement information. Also, VPR required a
parameter to describe the number of physical I/O pins that fit in
the pitch of a logic block. This pitch was set to two for the new
benchmarks, since this is comparable to current technology, and to
an appropriate value for older ones. For the new benchmarks, VPR
was allowed to choose the smallest square logic block array that
fit the I/O padframe or logic block demand. However, the older
benchmarks were consistently restricted to the original FPGA di-
mensions.

For global routing, VPR requires a logic block architecture spec-
ification. A logic block identical to the one used previously was
specified: four functionally-equivalent input pins, one on each side,
and two electrically-equivalent output pins on the right and bottom
sides. VPR also allows a bend cost to be specified. We varied the
bend cost between 0 and 10 on a subset of the new benchmarks and
experimentally determined that a value of 1.25 gave the lowest to-
tal m�n�o%p and the lowest total number of tracks required by SEGA
to route. Finally, VPR was restricted to route a net within 3 logic
blocks of a bounding box formed by the sources and sinks.

Prior to detailed routing, the VPR multipoint net format had to
be converted to a two-point net format for SEGA. To do this, a
vpr2sega tool was written. This program can operate in one of
two modes: doglegs and driverdoglegs. In doglegs mode, qOrs,t is
constructed as follows. A VPR net is read in and the distances be-
tween all pins along the global route are computed and used as edge
weights in a complete graph spanning all the pins. A minimum
spanning tree (MST) is then constructed, starting at the source, ac-
cording to Prim’s algorithm. Each edge in the MST is converted
back to a two-point net that follows the global route and joins
the pins. In driverdoglegs mode, a two-point netlist qOrsIs,t is con-
structed between the driver and every sink. Although this repre-
sentation is not as concise as qOrs,t , it implicitly instructs SEGA that
a net can connect to multiple track domains only at the driver pin.

Once the netlist is converted, SEGA is used with the Area cost
function to find the minimum number of tracks required to route.

5.3. SEGA Netlist Analysis
To analyse the SEGA netlist for m�nuo%p and construct the con-
fronting graph, v , and its properties, a new tool, chandens, was
written. It reports the maximum channel density and computeswyx v{z . Although computing wyx v{z is known to be NP-hard in gen-
eral [9], we have employed a branch-and-bound scheme with rea-
sonable success. One of the most difficult benchmarks to evaluate
with chandens in this fashion was pdc, requiring about 60 CPU
hours on a 167MHz UltraSPARC. Most other benchmarks were
evaluated in a matter of seconds to minutes.

Optionally, the chandens tool can also build the two-point
net versions of the confronting graph, v rs,t and v rsIs)t . Since these
graphs are generally less connected than v , this has still proven to
be computationally feasible for most benchmarks. However, due to
memory limitations we were unable to completely evaluate some of
the largest benchmarks. In these cases, the largest clique size found
at the time of failure, indicated by a | symbol, is used instead.

6. RESULTS AND ANALYSIS

6.1. Comparison to Previous Routers
The routing results for the older benchmark suite are shown in Ta-
ble 2. When the old ALTOR placement is used, the VPR/SEGA

combination routed all benchmarks with a total of 89 tracks, or
5 tracks fewer than IKMB. TRACER is the only router that pro-
duced better results, using only 85 tracks. If the placement is mod-
ified, the VPR/SEGA combination performed better than all oth-
ers, using 9 fewer tracks than SPLACE/SROUTE } and 41 fewer
than FPR. It is unexpected that a two-step router would perform
as well as the combined routers. For these results, SEGA required
one routing track more than the minimum predicted by the clique
size and two more tracks than the minimum predicted by m�n�o!p ,
on average. In the worst case, SEGA required two tracks above the
clique size.

6.2. Results with New Benchmarks
The 198 new benchmarks were all placed and routed. The results
for the 20 largest benchmarks (ranging in size from 1046 to 8381
logic blocks each) are presented in Table 3. Note that some entries,
denoted with a | symbol, could not be exactly computed in a rea-
sonable time because of excessive memory demands by SEGA and
chandens. The VPR m�nuo%p column refers to the maximum chan-
nel density, the old lower bound for detailed routing. The wyx v�rs,tLz
column shows the new lower bound for detailed routing with dog-
legs, based on the clique number of the doglegs confronting graph.
From Table 3, it is clear that wyx v�rs)t z is often larger than m�n�o!p and
therefore provides a tighter bound for detailed routing. On average,
the clique number tightens the bound by 1.1 tracks.

The SEGA q rs,t column shows the actual channel width required
by SEGA to route the benchmark with doglegs. On average, SEGA
requires two tracks above wyx v�rs,tLz to route these large benchmarks,
or 3.1 tracks over m�n�o!p . As a result, the Mapping Anomaly is not
significantly present when doglegs are permitted.

The wyx v�rs,s,t z and SEGA qOrsIs,t columns show the clique number
and channel width required to route with driver doglegs. Althoughwyx v rs,s,tLz could not be computed exactly for some circuits, it is rela-
tively unchanged from w~x v rs)t�z . Despite this, SEGA requires 55%
more tracks than before to route these circuits. For some bench-
marks such as s298, driver doglegs is a considerable restriction
which requires 160% more routing tracks than before. However,
other benchmarks such as tseng were relatively unaffected. Al-
though the Mapping Anomaly is clearly not present in tseng, we
cannot tell whether it is present in s298. The poor performance by
SEGA may be caused by the Mapping Anomaly or by poor heuris-
tic behaviour. To prove that the Mapping Anomaly is not at fault,
we would need to find a valid colouring of s298 with just over 6
colours.

Lastly, the wyx v{z column in Table 3 shows the clique number of
the confronting graph produced on the multipoint netlist. This col-
umn represents the lower bound for routing if no doglegs are per-
mitted at all. Since these clique sizes are considerably larger thanm�n�o!p , the Mapping Anomaly is present.

The data in Table 3 shows that the Mapping Anomaly has no
effect if doglegs are permitted in the architecture. Although the
driver dogleg restriction does not increase the clique size, it can-
not be said for certain whether the Mapping Anomaly is present.
However, it is strongly present if doglegs are not permitted at all.
In this case, the global router should attempt to compensate for the
‘confronting’ nets. One way to do this is to perform combined rout-
ing, as previous routers have done, with the objective of minimiz-
ing the final channel width. Another way would be to use a better
metric than channel density during global routing. For example, it
may be reasonable to compute the clique number (or an estimate)
of the confronting graph as global routing is done. The best way to
approach this problem is a topic for future research.

} Note that among these routers, only SROUTE restricts doglegs to
drivers. This restriction places it at a disadvantage in comparison to the oth-
ers, yet it still performs well.
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Table 2. Channel widths required to route older benchmarks. New results are in boldface.

Placement ALTOR SPLACE ALTOR VPR
Global R. LocusRoute FPR VPR
Detailed R. �~���!� CGE SEGA GBP OGC IKMB TRACER SROUTE SEGA
9symml 9 9 9 9 9 8 6 7 7 9 7 6
alu2 10 12 10 11 9 9 9 9 8 10 8 7
alu4 13 15 13 14 12 11 11 12 9 13 10 8
apex7 13 13 13 11 10 10 8 9 6 9 10 5
example2 17 18 17 13 12 11 10 11 7 13 10 5
k2 16 19 16 17 16 15 14 15 11 17 14 10
term1 9 10 9 10 9 8 7 8 5 8 8 5
too large 11 13 11 12 11 10 9 11 8 11 10 7
vda 14 14 14 13 11 12 11 12 10 13 12 9
TOTAL 112 123 112 110 99 94 85 94 71 103 89 62

Table 3. Channel widths using VPR and SEGA for placement, global and detailed routing of the 20 largest benchmarks.

VPR SEGA SEGA VPR SEGA SEGA
Circuit �~���!� ��������,�P� � ��,� �Q������I�)�P� � ��,�,� ����� � Circuit �~���%� �Q������,�P� � ��)� �Q������I�)�P� � ��I�)� ����� �
alu4 7 9 10 9 16 19 frisc 9 10 13 � 10 18 15
apex2 8 9 11 10 20 27 misex3 8 9 12 9 17 19
apex4 9 10 12 10 19 26 pdc 11 12 16 � 12 � 31 44
bigkey 6 7 8 7 9 9 s298 5 6 7 6 18 26
clma 9 � 10 14 � 10 � 24 30 s38417 6 � 7 8 � 7 10 11
des 6 7 9 7 11 11 s38584.1 7 � 8 9 � 8 12 11
diffeq 6 7 9 7 10 11 seq 8 10 12 10 18 24
dsip 5 6 7 6 9 9 spla 10 11 14 � 11 26 38
elliptic 8 9 11 � 10 16 20 tseng 6 6 8 7 9 9
ex1010 8 10 11 � 9 22 29 AVG. 7.6 � 8.7 10.7 � 8.8 � 16.6 20.4
ex5p 10 11 13 11 16 19 TOTAL 152 � 174 214 � 176 � 331 407

6.3. Graphical Results

In the graphs on the following page, we show the same routing
results in a different fashion with all 198 benchmarks included. �
The benchmarks are uniformly spread along the horizontal axis.
The vertical axis shows the channel width, in discrete steps, of the
routed circuits. All of the data could be presented in one graph,
but we chose instead to separate them for clarity. Because of this,
the vertical axis has different scales in the graphs. To further im-
prove clarity, we sort the order of the benchmarks differently in
each graph. This allows us to better illustrate trends in the data.

Figures 3 and 4 show how �y�P� ��,�L� and �y�P� ��I�)��� , respectively,
form a tighter bound than �����%� for detailed routing. In Figure 3,
the SEGA result with doglegs is shown to be very close to the lower
bound given by �y�P� ��,�L� . In this case, SEGA typically requires only
one routing track above the minimum to find a solution. The Map-
ping Anomaly is not present because SEGA found a valid routing
which is close to � �u�%� . In this graph, SEGA is exhibiting excel-
lent behaviour.

The corresponding SEGA result for driver doglegs is shown in
Figure 4. Although many circuits require less than three routing
tracks above �y�P� ��I�,�L� , a few require significantly more. In these
cases, since �y�P� ��I�)��� is close to � ���%� we are not certain whether
this is a result of the Mapping Anomaly or poor heuristic behaviour.

In Figure 5 the clique sizes of � , � ��,� , and � ��I�,� are compared.
The graph indicates that the dogleg and driver dogleg clique sizes
are very similar, but the no-doglegs clique size, �y�P� � , can grow
very large. Since �����!� is lower than the lowest line on this graph,
the Mapping Anomaly must be strongly present in the circuits on
the left of the graph. As a result, detailed routing without doglegs
will use up many more tracks than what is predicted by � �u�%� , even

� The few results which could not be properly computed are all included
in Table 3 and are approximated by the values shown there.

if a perfect algorithm is used. Although not shown, it is interest-
ing to note that the channel width from routing � ��I�)� with SEGA
roughly follows (but usually remains below) �y�P� � , even though
there is no direct relationship between them. We speculate that
this may be caused by the presence of the Mapping Anomaly in� �I�)� that does not take the form of a clique until some vertices are
merged as in � .

7. CONCLUSIONS

The comparison to previous results has shown that a two-step
global and detailed router can be competitive with the one-step ap-
proaches when routability is important. In fact, only TRACER was
able to provide a lower track count than the VPR and SEGA combi-
nation. This result indicates that one should consider more than just
routing in the minimum number of tracks when deciding whether a
one or two-step router is appropriate. Some of the other issues in-
clude maintainability, design time, expected memory use and com-
pute time, partitioning of software development effort, circuit de-
lay, and result quality monitoring. This last point is interesting be-
cause the global router and detailed router can be separately opti-
mized, and the progress of each can be recorded. Further, the clique
number and chromatic number of the confronting graphs serve as
improved lower bounds for detailed routing if certain architectural
assumptions are made.

The experimental results show that it is important to consider the
Mapping Anomaly in a global router if no doglegs are permitted,
but it is not important to do so if they are. If only driver doglegs
are allowed, we suggest that the Mapping Anomaly may be present,
but we do not have proof. Since this case is important for existing
FPGAs, more research is needed to confirm this.

One way for a global router to account for the Mapping Anomaly
is to perform a detailed route internally, hence becoming a one-step
router. However, another way is to estimate the chromatic num-
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ber or clique number as the global route is performed. Minimizing
this new number would be the new optimization goal for the global
router. This is an open problem for future research.

Another way to interpret the routing data is that doglegs (at the
driver and input pins) may be very useful architectural features to
reduce the channel width required for routing. This raises another
topic of future interest: is it area-efficient to fully support doglegs?
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Figure 3. The number of tracks required by SEGA to route
with full doglegs is slightly higher than the lower bounds
formed by �y�P����,�L� and �����!� .
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Figure 4. The number of tracks required by SEGA to route
with only driver doglegs is more pronounced than the lower
bounds implied by �y�P� ��I�,� � and �����%� .
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Figure 5. The lower bound required for routing without dog-
legs, �y�P� � , is significantly higher than the bounds with dog-
legs and driver doglegs, �y�P� ��,� � and �y�P� ��I�)� � , respectively. This
large difference in bounds shows that the Mapping Anomaly is
strongly present if doglegs are not permitted.
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