
CAD Algorithms and Performance of Malibu: An FPGA
with Time-Multiplexed Coarse-Grained Elements

by

David Grant

B.A.Sc. Computer Engineering, University of Waterloo, 2002

M.A.Sc. Electrical and Computer Engineering, University of Waterloo, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES
(Electrical and Computer Engineering)

The University Of British Columbia
(Vancouver)

August 2011

c© David Grant, 2011

Abstract

Modern Field-Programmable Gate Arrays (FPGAs) are used to implement a wide range of

ever-larger circuits, many of which have both coarse-grained and fine-grained components.

Past research into coarse-grained FPGAs optimized for such circuits have only demonstrated

a 10% density advantage. In contrast, time-multiplexing of fine-grained FPGAs has demon-

strated a 14x density improvement. This leaves an open question whether a time-multiplexed,

coarse-grained FPGA can provide a similar density advantage. Even more important is whether

the coarse-grained circuit structure can be exploited by Computer-Aided Design (CAD) tools

to significantly reduce compile times.

This thesis investigates a new type of FPGA in which coarse-grained, time-multiplexed

resources are added to a traditional FPGA. Through time-multiplexing, density and compile

time are improved. By retaining the fine-grained logic and routing resources, performance does

not suffer as much as in past attempts.

This thesis also presents two CAD flows, M-CAD and M-HOT, to compile Verilog for

this new FPGA. Both flows speed up compile times by more than 10x, which has not been

demonstrated with any other flow (even flows that sacrifice quality). They can also achieve a

circuit density greater than modern FPGAs, and can trade density for performance, something

most FPGA CAD flows cannot do. At maximum density, the M-HOT flow achieves a 26.1x

compile time speedup, 2.5x the density, and 0.5x the performance of a commercial FPGA and

CAD tool. At maximum performance, M-HOT achieves 1.0x density, and 0.7x performance.

ii

ABSTRACT

In contrast, M-CAD is a bit faster than M-HOT but achieves a lower quality result.

In M-CAD, there are situations where the placer needs temporal information from the

scheduler to make good decisions. Instead, M-HOT divides the circuit into heights to keep

the integrated placement, routing, and scheduling problem tractable, but compile time suffers

if there are too few heights. Although we show there is at most a theoretical 1.6x or 2.0x

clock frequency improvement still remaining in M-HOT or M-CAD, respectively, the amount

achievable may be far less. Future work should focus on improving the front-end synthesis, the

coarse/fine-grained interface, and the coarse/fine-grained partitioning to provide higher quality

input to the back-end CAD flow.

iii

Preface

[1] D. Grant and G. Lemieux. A spatial computing architecture for implementing com-
putational circuits. In Proc. Microsystems and Nanoelectronics Research Conference
(MNRC), pages 41–44, Oct. 2008.

[2] D. Grant, G. Smecher, G. G. Lemieux, and R. Francis. Rapid synthesis and simulation
of computational circuits in an MPPA. In Proc. Field-Programmable Technology (FPT),
pages 151–158, Dec. 2009.

[3] D. Grant, G. Smecher, G. G. Lemieux, and R. Francis. Rapid synthesis and simulation of
computational circuits in an MPPA. In Journal of Signal Process Systems, pages 1–17,
Dec. 2010.

[4] D. Grant, C. Wang, G. G. Lemieux. A CAD Framework for MALIBU: An FPGA with
Time-multiplexed Coarse-Grained Elements. In Proc. Field-Programmable Gate Arrays
(FPGA), pages 123–132, Feb. 2011.

Parts of this thesis have been previously published as [1,2,3,4]. In all cases, except where

mentioned below, I carried out the research and wrote manuscripts with input and editing from

Dr. Lemieux.

Parts of Chapter 3 have been published in [1,3,4]. The initial instruction encoding in Sec-

tion 3.5 was created by Dr. Lemieux. The minimum-width transistor Malibu block area esti-

mates (Table 3.1), and the memory size estimates (Table 3.6) were compiled by Chris Wang.

The original version of the architecture instruction summary in Table 3.2 was compiled by

Chris Wang, but has not been published. It has since been modified to present more informa-

tion.

iv

PREFACE

A brief summary of each of the sections in Chapter 4, excluding fine-grained synthesis, has

been published in [2], and the summary of the fine-grained synthesis was published in [4].

An earlier version of Chapter 5 was published in [2] and [3] (the coarse-grained parts)

and in [4] (the fine-grained parts). Rosemary Francis wrote the initial version of the coarse-

grained scheduler in Section 5.5. Graeme Smecher wrote two benchmark circuits (fft8 and

fft16), and did the preliminary work on the upper bound by hand-coding these circuits for

comparison. That comparison is not included in this thesis, but the continuation of this work is

in Chapter 5.6.2 and Chapter 6.6.2.

Parts of Chapter 6 have been published in [4].

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Tables . ix

List of Figures . xi

List of Abbreviations . xiii

Acknowledgments . xv

1 Introduction . 1
1.1 Motivation . 1
1.2 Statement and Contributions of Thesis . 6
1.3 Evaluation Metrics . 9
1.4 Comparison to Related Work . 11
1.5 Thesis Organization . 12

2 Background . 14
2.1 Overview . 14
2.2 Introduction to FPGA CAD . 14

2.2.1 Front-End Logic Synthesis . 16
2.2.2 Clustering . 17
2.2.3 Placement . 17
2.2.4 Routing . 19

2.3 Related Work . 21
2.3.1 Fine-Grained, Time-Multiplexed Architectures 22
2.3.2 Coarse-Grained Architectures . 27
2.3.3 CGRA and Fast CAD . 33

3 Malibu Architecture . 40

vi

TABLE OF CONTENTS

3.1 Overview . 40
3.2 The Malibu Architecture . 41
3.3 Benchmark Circuits . 52
3.4 Architectural Parameter Values . 54
3.5 Instruction Format . 58
3.6 Verification of Results . 60
3.7 CLB Area . 60

3.7.1 Area for Comparison to VPR/iFAR 62
3.7.2 Area for Comparison to QuartusII/StratixIII 62

3.8 Conclusions . 64

4 Front-End Synthesis . 66
4.1 Overview . 66
4.2 Circuit Representation . 68
4.3 Parsing and Elaboration . 69
4.4 Coarse-Grained Synthesis . 71
4.5 Fine-Grained Synthesis . 75
4.6 Benchmark Evaluation . 78

4.6.1 Bad Verilog Structures . 80
4.7 Conclusions . 87

5 M-CAD: An FPGA CAD Based Tool Flow . 89
5.1 Overview . 89
5.2 M-CAD Cluster . 90
5.3 M-CAD Place . 92
5.4 M-CAD Route . 96
5.5 M-CAD Schedule . 100
5.6 Experimental Results . 103

5.6.1 Frequency (Fmax) . 105
5.6.2 Frequency Upper Bound . 108
5.6.3 Area and Density . 113
5.6.4 Compile Time . 119
5.6.5 Synthesis Time for Very Large Circuits 121
5.6.6 Longest-Path Analysis . 124
5.6.7 Density Versus Performance Tradeoff 127

5.7 Conclusions . 128

6 M-HOT: A Height-Oriented Tool Flow . 131
6.1 Overview . 131
6.2 M-HOT Introduction . 132
6.3 M-HOT Cluster . 134
6.4 M-HOT Schedule . 134

6.4.1 Producer Cost . 137

vii

TABLE OF CONTENTS

6.4.2 Affinity Cost . 139
6.4.3 Parallel Cost . 140
6.4.4 Register Cost . 141
6.4.5 Penalty Cost . 142

6.5 M-HOT Route . 142
6.6 Experimental Results . 144

6.6.1 Frequency (Fmax) . 144
6.6.2 Frequency Upper Bound . 149
6.6.3 Area and Density . 152
6.6.4 Compile Time . 155
6.6.5 Compile Time for Very Large Circuits 159
6.6.6 Longest-Path Analysis . 160
6.6.7 Density Versus Performance Tradeoff 162

6.7 Comparison to Previous Work . 164
6.8 Conclusions . 167

7 Conclusions . 170
7.1 Thesis Conclusions . 170
7.2 Future Directions . 177

Bibliography . 179

Appendix A Scaling Existing FPGA CAD Tools . 187
A.1 Overview . 187
A.2 QuartusII . 187
A.3 VPR . 192
A.4 Conclusions . 195
A.5 Individual QuartusII Graphs . 197
A.6 Individual VPR Graphs . 201

Appendix B VPR Without “-fast” . 206

Appendix C Verilator Node Mapping . 208

Appendix D Area Versus Performance Graphs . 211

viii

List of Tables

Table 2.1 Summary of related architectures . 23

Table 3.1 Malibu units and instructions . 44
Table 3.2 Malibu ALU operations . 47
Table 3.3 Benchmark circuit list and StratixIII resource use 53
Table 3.4 Resources required at the smallest schedule length for Wf = 1 56
Table 3.5 Resource usage with fixed parameter values for Wf = 1 57
Table 3.6 Malibu memory area estimates . 61
Table 3.7 StratixII resource . 63
Table 3.8 StratixIII ALM area calculation . 65

Table 4.1 Front-end synthesis results . 77
Table 4.2 Bad Verilog structures used in benchmark circuits 81

Table 5.1 M-CAD frequency results . 106
Table 5.2 M-CAD Fmax speedup compared to VPR 108
Table 5.3 M-CAD frequency upper bound and actual Fmax 110
Table 5.4 M-CAD schedule length lower bound comparison for Wf = 0 111
Table 5.5 M-CAD high-effort schedule length comparison for Wf = 0 114
Table 5.6 M-CAD area and density values compared to QuartusII/StratixIII 115
Table 5.7 M-CAD area and density values compared to VPR/iFAR 117
Table 5.8 Malibu memory area estimates for a 10x density architecture 118
Table 5.9 M-CAD compile time and speedup versus QuartusII 120
Table 5.10 M-CAD compile time speedup versus VPR 121
Table 5.11 M-CAD Longest-path breakdown for maximum performance results 125

Table 6.1 M-HOT maximum frequency and comparison to QuartusII 145
Table 6.2 M-HOT Fmax speedup compared to VPR 146
Table 6.3 M-HOT Fmax speedup compared to M-CAD 148
Table 6.4 M-HOT frequency upper bound and actual Fmax 150
Table 6.5 M-HOT high-effort schedule length comparison for Wf = 0 151
Table 6.6 M-HOT area and density values compared to QuartusII/StratixIII 153
Table 6.7 M-HOT density improvement factor versus M-CAD 154
Table 6.8 M-HOT area and density values compared to VPR/iFAR 156

ix

LIST OF TABLES

Table 6.9 M-HOT compile time and speedup versus QuartusII 157
Table 6.10 M-HOT compile time speedup versus VPR 158
Table 6.11 M-HOT compile time speedup versus M-CAD 158
Table 6.12 M-HOT Longest-path breakdown for maximum performance results 161
Table 6.13 Total mumber of compute-and-move operations 163

Table 7.1 Summary of important results . 175

Table A.1 QuartusII results with fast front-end synthesis 190
Table A.2 M-CAD and M-HOT results compared to the fastest VPR compile time . . . 196

Table B.1 VPR versus VPR-fast results . 207

Table C.1 Verilator to Malibu node mapping . 208

x

List of Figures

Figure 2.1 A typical island-style FPGA . 15
Figure 2.2 Simulated annealing pseudocode . 20
Figure 2.3 The VEGA PE [40] . 24
Figure 2.4 The TSFPGA subarray [27] . 26
Figure 2.5 The DP-FPGA tile [21] . 27
Figure 2.6 The RaPiD architecture [26] . 29
Figure 2.7 The ADRES core and reconfigurable cell [57] 30
Figure 2.8 Initiation Interval (II) and Schedule Length (SL) 34

Figure 3.1 The Malibu architecture CLB . 41
Figure 3.2 The user clock cycle . 43
Figure 3.3 Malibu chip input/output logic . 50
Figure 3.4 The 81-bit Malibu instruction word . 58
Figure 3.5 StratixII EP2S60 die photo . 64

Figure 4.1 Three CAD flows: (a) Academic (traditional), (b) M-CAD, and (c) M-HOT 67
Figure 4.2 Example: Verilog source and Verilator output 69
Figure 4.3 Example: DFG after coarse-grained synthesis 74
Figure 4.4 Example: DFG after fine-grained synthesis 76
Figure 4.5 Using a bus to aggregate individual bits 83
Figure 4.6 Example of a look-up table creation . 86

Figure 5.1 Example: M-CAD clustering for two CLBs 93
Figure 5.2 Example: fine-grained routing output from VPR 98
Figure 5.3 Microbenchmark for testing coarse-grained route collisions 99
Figure 5.4 Main loop of the M-CAD scheduler . 101
Figure 5.5 Example: the final M-CAD code schedule 102
Figure 5.6 Example of bad placmement . 112
Figure 5.7 Synthesis time for very large circuits . 122
Figure 5.8 Synthesis rate (nodes per second) for very large circuits 122
Figure 5.9 Frequency versus area (number of CLBs) for the ethernet benchmark . . . 128
Figure 5.10 M-CAD Wf = 1 results summary. 129

Figure 6.1 Example: M-HOT clustering for two CLBs 133

xi

LIST OF FIGURES

Figure 6.2 Example: M-HOT top-level code and ALAP tree 135
Figure 6.3 Calculation of producer cost . 138
Figure 6.4 Calculation of register cost . 142
Figure 6.5 M-HOT compile time for very large circuits 159
Figure 6.6 Frequency versus area (number of CLBs) for the ethernet benchmark . . . 164
Figure 6.7 M-HOT Wf = 1 results summary. 167

Figure 7.1 Malibu Wf = 1 results summary. 175

Figure A.1 QuartusII compile time and frequency for various values of the placement
effort multiplier . 191

Figure A.2 VPR compile time and frequency versus inner num for all benchmarks . . . 194
Figure A.3 VPR compile time and frequency versus inner num for benchmarks which

build at inner num=0.01 . 194

xii

List of Abbreviations

AES Advanced Encryption Standard . 73

ALAP As-Late-As-Possible . 132

ALM Adaptive Logic Module .9

ASIC Application-Specific Integrated Circuit . 1

BLIF Berkley Logic Interchange Format . 75

CAD Computer-Aided Design . 1

CG Coarse-Grained . 41

CGI Coarse-Grained Input . 41

CGO Coarse-Grained Output . 41

CGRA Coarse-Grained Reconfigurable Array . 8

CLB Configurable Logic Block . 14

DFG Data Flow Graph . 8

FFT Fast Fourier Transform . 2

FG Fine-Grained . 41

FPGA Field-Programmable Gate Array . 1

HDL Hardware Description Language . 2

II Initiation Interval . 34

LUT Look-Up Table . 1

MPPA Massively Parallel Processor Array . 124

PE Processing Element . 22

SIMD Single Instruction, Multiple Data . 31

SL Schedule Length . 34

TSFPGA Time-Switched Field-Programmable Gate Array . 25

VLIW Very Large Instruction Word . 31

VPR Versatile Place-and-Route . 7

xiii

LIST OF ABBREVIATIONS

VWF Vector Waveform File . 60

Wf Fine-Grained Width . 41

xiv

Acknowledgments

I would first like to thank my supervisor, Dr. Guy Lemieux. Without his help, encouragement,

guidance, and insight, this work would not have been possible. Thanks also to Chris Wang,

Rosemary Francis, Zhiduo Liu, and all the members of the SoC lab for help and input.

I am grateful for the support of my family, Norm, Sue, James, Steve, and Bryan. To my

fiancé, Clara, I am grateful for your support and encouragement, I love you. And to all my

friends, thank you for being there when I needed you.

I would also like to thank Deming Chen, Russell Tessier, and Graeme Smecher for provid-

ing several benchmark circuits, as well as the authors and the many additional contributors to

the various open-source tools used in this research. Verilator: Wilson Snyder, Duane Galbi, and

Paul Wasson. OdinII: Peter Jamieson, Kenneth B. Kent, Farnaz Gharibian, and Lesley Shan-

non. VPR: Vaughn Betz, Jonathan Rose, and Alexander Marquardt. ABC: Robert Brayton and

Alan Mishchenko.

This research is supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC). Equipment donations by CMC Microsystems are gratefully acknowledged.

xv

Chapter 1

Introduction

1.1 Motivation

Modern Field-Programmable Gate Arrays (FPGAs) contain over 1 million Look-Up Tables

(LUTs), over 1,000 hard memory or multiplier blocks, and about 300 wires per row or col-

umn [7, 90]. In addition, they are continuing to grow according to Moore’s law, roughly dou-

bling in capacity every 18 to 24 months [80]. As a result, great demand is placed on FPGA

Computer-Aided Design (CAD) tools to synthesize ever-larger circuits without degrading re-

sult quality or increasing run-time.

Commercial FPGAs play three important roles. First, although modern FPGAs are on av-

erage four times slower than Application-Specific Integrated Circuits (ASICs) [45], in many

cases this is fast enough for the final circuit implementation, allowing FPGAs to be used in ap-

plications ranging from hand-held MP3 players [19] to the Large Hadron Collider (LHC) [16].

The ability to field-upgrade circuits to fix bugs or add new features is part of the attrac-

tion. Second, FPGAs are fast enough for emulation-based testing of a circuit intended for

an ASIC. This is especially useful for testing systems-on-a-chip which implement a processor

and run firmware. An estimated 90% of all ASIC designs are tested in FPGAs before fabrica-

1

CHAPTER 1. INTRODUCTION

tion [38]. Third, FPGAs are increasingly used to implement software applications which have

been mapped to hardware. For example, an embedded processor (and the associated software)

may be too slow for the intended application, and a high-performance processor may use too

much power. FPGAs fill this gap. In all cases, a fast FPGA CAD flow is critical for a rapid

product development cycle including design, simulation, and verification.

In these three roles, FPGAs are not just implementing fine-grained (bit-oriented) circuits.

Modern FPGA usage has expanded to implementing a wide range of circuits. The research

in this thesis is focused on the growing use of coarse-grained circuits. Although such cir-

cuits are dominated by word-wide signals, they may contain a small amount of fine-grained

signals, primarily for control. These coarse-grained circuits are increasingly implemented on

FPGAs for word-wide data processing and computation. For example, the aforementioned

MP3 player [19] uses FPGAs as a bridge between the embedded processor and the memory

and storage. In the LHC, FPGAs are used to compute real-time 32-bit Fast Fourier Trans-

forms (FFTs). Additional examples include fluid dynamics [96], video processing [2], financial

modeling [79], ray tracing [31], and nuclear simulation [28].

As with any circuit, a coarse-grained circuit can be specified at a behavioural level using

a Hardware Description Language (HDL) like Verilog or VHDL. This makes it easy to build

word-oriented circuits. Further, increasingly popular in industry are tools to automatically

build such circuits. Full-system hardware generators like SOPCBuilder [6] and EDK [91], and

automatic C-to-gates flows such as [3, 58, 75] generate large, word-oriented hardware circuits

from software specifications.

This thesis investigates a way to implement these new, large, word-oriented circuits more

efficiently than using a traditional FPGA. By “more efficiently”, we mean improving the com-

pile time of FPGA CAD tools, overcoming the strict capacity limit of FPGAs, and reducing

the silicon area required by the circuit. Saving time and area means a faster time-to-market and

lower costs for product development and maintenance.

2

CHAPTER 1. INTRODUCTION

Compile time is important for a rapid product development cycle, whether that is fixing

bugs or adding new features. Faster compile times mean less waiting time, reducing the person-

hours of a project and therefore reducing cost. It also reduces time-to-market, which can

increase revenue particularly in the rapidly evolving technology industry.

One reason that FPGA CAD tools are slow is that FPGAs are still bit-oriented devices.

FPGA synthesis involves decomposing a circuit into (potentially) millions of 2-input and 3-

input logic gates, technology mapping the gates into LUTs, clustering the LUTs into logic

blocks, and then placing and routing the clusters on the FPGA. This fine-grained approach can

take several hours or days for a large circuit. Given these long runtimes, vendors are turning

to other methods to increase CAD performance. Parallel compilation helps when powerful

computer systems are available, but the achieved speedup in commercial tools is still limited.

For example, QuartusII is up to 20% faster with four cores [5]. Incremental compilation [17]

also helps during the design phase, but only when small successive changes are made to remove

bugs and implement new features. A set of CAD tools that are always fast is more useful.

Circuit area is important because it translates directly into cost. Larger devices cost more, so

being able to fit circuits onto smaller devices, whether for testing or product deployment, means

cost savings. When mapping to an FPGA, every operation and communication in the circuit is

assigned to dedicated resources and interconnect. While this gives a fast implementation, it is

wasteful because the resources and interconnect are often not all used simultaneously.

Additionally, FPGAs have a strict capacity limit. FPGAs are fixed-density devices and

therefore have an upper bound on the number of gates that can be implemented. If a circuit

does not fit within this limit, the designer must buy a bigger device (if one exists and can be

procured), or partition the circuit into two or more FPGAs. Both of these solutions can be

expensive (new devices or engineering salaries), and will slow down product development.

Running into this obstacle is a significant problem for using FPGAs to emulate large ASICs

and for mapping large software applications into hardware.

3

CHAPTER 1. INTRODUCTION

Reducing compile time, reducing area, and overcoming the strict capacity limit are all

possible by converting the circuit to firmware and running it on an embedded processor, similar

to an embedded logic simulation. However, the resulting “circuit” would be very slow since

every operation would be time-multiplexed on a single processor. The circuit performance (or

speed, or user clock frequency) is important because it affects the usability of the synthesized

result. If the circuit is too slow, it may not be usable in a commercial product, for example if it

cannot meet real-time computational demands like decoding an MP3. If it is significantly slow,

it may not be usable for prototyping ASICs either. When addressing the compile time, area,

and capacity limit, the user clock frequency cannot be ignored.

To improve coarse-grained circuit mapping (addressing compile time, area, capacity limit,

and user clock frequency), this thesis proposes a new, FPGA-like architecture with coarse-

grained, time-multiplexed resources tightly coupled to traditional fine-grained FPGA re-

sources. We have called this architecture “Malibu”. The CAD tools in this thesis use the

time-multiplexed, coarse-grained elements to fold computation in space and reuse resources,

giving a performance/density tradeoff that depends on the amount of folding done. The only

requirement for this is additional memory to store operations, but additional memory is more

dense than having additional ALUs and dedicated interconnect for each operation.

The coarse-grained resources reduce the compile time by reducing the placement and rout-

ing problem size (e.g., no need to synthesize coarse-grained operations down to bits). By

time-multiplexing these coarse-grained elements and the coarse-grained interconnect, the area

cost of these large components can be amortized over many clock cycles (implementing a dif-

ferent part of the circuit each cycle). The improved density also allows larger circuits to be

mapped into smaller devices by trading off the maximum clock frequency.

In this thesis we show the Malibu architecture and CAD tools (M-HOT) can achieve an av-

erage (geomean) 26.1x improvement in compile time compared to a commercial FPGA CAD

tool (QuartusII v10.0). With this very fast compile time, we show a performance versus density

4

CHAPTER 1. INTRODUCTION

tradeoff on a fixed Malibu architecture ranging from the same density as a commercial FPGA

(StratixIII) with 70% of the performance (26.1x compile speedup, 0.996x density, 0.707x per-

formance) up to 2.5x the density with half the performance (26.1x compile speedup, 2.474x

density, 0.513x performance).

The main focus of this work is on very fast compile times. Existing commercial and aca-

demic FPGA CAD tools have options to speed up the compile time, but the speedup is limited.

In Appendix A we show that the compile time in QuartusII can be reduced by 15%, and in

VPR by 7% by disabling optimizations, turning off timing-driven placement, and reducing the

placement and routing effort levels. The Malibu approach is 26.1x faster than QuartusII and

8.4x faster than VPR; it is unlikely that compile times in existing tools can be further reduced

by parallelism or algorithm tuning alone. Other approaches like Ultra-Fast placement [66] and

various algorithms tested in [59] also reduce the compile times, but the Malibu approach is still

several times faster as explained in Section 2.3.3.

The Malibu architecture can also achieve a higher density than traditional FPGAs by sacri-

ficing performance (roughly 2.5x the density for half the performance). Similar density trade-

offs are possible with traditional FPGAs by varying the physical architecture and transistor

sizes. Kuon et al. [46] report an area range of 3.6x (implementing the same circuit on FPGAs

with different architecture parameters) and a circuit speed range of 2.6x. However, accessing

these tradeoffs requires fabricating a new FPGA device (time consuming and expensive). In

comparison, the advantage of the Malibu architecture is that the performance versus density

tradeoff is possible without changing the underlying architecture or device deisgn. All it re-

quires is a change to a compiler flag in the CAD tool. All of the results in this thesis were

generated using the same Malibu device architecture.

5

CHAPTER 1. INTRODUCTION

1.2 Statement and Contributions of Thesis

The purpose of this thesis is to investigate mapping coarse-grained circuits onto an FPGA-like

architecture comprised of fine-grained and time-multiplexed, coarse-grained resources. This

thesis presents both a new architecture designed for implementing coarse-grained circuits, and

the related CAD tools to synthesize circuits to the architecture.

There are three main contributions of this thesis: the Malibu architecture, the M-CAD flow,

and the M-HOT flow. The first contribution is a new FPGA-like architecture for implement-

ing coarse-grained circuits. This architecture is presented in Chapter 3. The Malibu archi-

tecture combines time-multiplexed, coarse-grained resources with the traditional fine-grained

resources of an FPGA. The coarse-grained resources are ideal for performing word-oriented

computation. The ALUs in Malibu are Verilog-specific and directly support common hard-

ware operations not found in typical ALUs; for example, bit concatenation where two signals

are joined together (ab[7:0] = {a[3:0],b[3:0]}) and unary logic reductions where

the individual bits of a signal are ANDed, ORed, or XORed together (an XOR reduction is

parity[0] = ˆa[7:0]). In addition, the fine-grained resources can quickly compute and

distribute the fine-grained control signals present in the circuit.

With the Malibu architecture, it is possible for CAD tools to fold a circuit in space and

trade circuit performance for density—something that is only recently becoming possible with

the latest academic and commercial FPGA CAD tools and devices.1 This allows the same

large circuit to run slowly on a small, inexpensive device, or run faster on a larger device. It

also allows very large circuits to be developed and tested at a slower speed on current devices,

with the intention of running such circuits at full-speed when larger devices eventually become

available. The specific Malibu architecture configuration used in this thesis is focused on per-

1Tabula’s synthesis flow can do this, but the Tabula architecture is only fine-grained, so everything is synthe-
sized to fine-grained resources. The Tabula architecture is also limited to eight folds. SPR [32] can also do this,
but it is solving a different problem than Malibu. SPR does not map circuits written in an HDL (it maps software
kernels), and SPR focuses on high-quality results, so it is slow. More information is in Section 2.3.

6

CHAPTER 1. INTRODUCTION

formance, and yet it is 2.5x more dense than a traditional FPGA. However, the main focus of

this work is on compile time, where the Malibu tools are 26.1x faster than FPGA CAD tools.

The second contribution is the M-CAD flow presented in Chapters 4 and 5. M-CAD can

compile the full synthesizable subset of Verilog2005 into a configuration bitstream for Malibu.

M-CAD builds on Verilator [71], as well as common FPGA CAD tools: Versatile Place-and-

Route (VPR) [13], ABC [18], and OdinII [39]. These FPGA tools are designed for fine-grained

logic, so they have been expanded, and new tools have been created, to add support for plac-

ing, routing, and scheduling the time-multiplexed coarse-grained logic. The significance of

this is simultaneously handling coarse-grained and fine-grained components (and achieving a

successful mapping solution). In addition, the tools presented in this thesis are a complete

Verilog-to-bitstream flow for mapping circuits to Malibu. For FPGAs in academia, a complete

flow is only recently becoming possible with the development of OdinII to provide front-end

synthesis for ABC and VPR. However, OdinII only supports a limited subset of Verilog. For

coarse-grained architectures in research, no such end-to-end tool flow exists in prior work.

Compared to QuartusII synthesis for a StratixIII FPGA, the M-CAD approach compile time

is, on average, 38.7x faster. The M-CAD flow can also trade density for performance on a fixed

architecture. At maximum performance it is roughly two-thirds the performance of a StratixIII

and just over half the density (38.7x compile speedup, 0.652x performance, 0.582x density).

At maximum density M-CAD is just under half the performance of a StratixIII and 2.5 times

the density (38.7x compile speedup, 0.429x performance, 2.474x density). M-CAD achieves a

very fast compile time and improved density (by sacrificing some performance) compared to a

commercial FPGA.

The third contribution is the M-HOT flow presented in Chapter 6. An analysis of the

M-CAD results showed the placement step accounted for 70% of the difference between the

achieved Fmax result and an upper bound on clock frequency. A common scenario is iden-

tified where placement could have been improved if the results of scheduling were known

7

CHAPTER 1. INTRODUCTION

beforehand, which is not possible in a segregated tool flow like M-CAD. To address this prob-

lem, M-HOT presents an integrated placement, routing, and scheduling approach. The algo-

rithms in M-HOT are based on a modulo graph embedding Coarse-Grained Reconfigurable

Array (CGRA) scheduler [62] which has been modified to add support for fine-grained re-

sources. By using 50% more compile time than M-CAD, M-HOT achieves an average of 10%

better frequency and 200% better density at maximum performance. Three benchmark circuits

(fft16, fft8, and me) do not perform as well in M-HOT due to a small circuit depth. Future work

could improve the compile time and quality of these benchmarks by detecting circuits with a

small depth and changing some annealing parameters.

Compared to QuartusII/StratixIII, the M-HOT compile time is, on average, 26.1x faster.

At maximum performance M-HOT achieves 70% of the performance of a commercial FPGA

(StratixIII) with the same density (26.1x compile speedup, 0.996x density, 0.707x perfor-

mance). At maximum density, M-HOT is about half the performance and 2.5x the density

(26.1x compile speedup, 2.474x density, 0.513x performance). This is significant because it

demonstrates an integrated placement, routing, and scheduling approach can be both fast and

achieve a high quality result for coarse-grained circuits.

Just as FPGAs perform very well with fine-grained circuits, the architecture and tools in

this thesis are focussed on performing well for coarse-grained circuits with some small amount

of fine-grained control logic. Entirely fine-grained circuits will not perform well on Malibu.

The CAD tool investigation in this thesis is focussed on the steps after front-end logic

synthesis, that is, the clustering, placement, routing, and scheduling. We use the Verilator

open-source tool to perform front-end logic synthesis (generate a Data Flow Graph (DFG)

from the source Verilog). Although Verilator produces an adequate result for our purposes, it

is not ideal because it does not handle both coarse-grained and fine-grained parts of the circuit

simultaneously. The results in this thesis suggest that future work should focus on a new front-

end synthesis tool that can process and optimize both the coarse-grained and fine-grained parts

8

CHAPTER 1. INTRODUCTION

of the circuit, in addition to the interface between them.

1.3 Evaluation Metrics

In this thesis, three metrics are used to measure the quality of the synthesis result and the

quality of the architecture. Recall from Section 1.1 that we are interested in reducing compile

time, reducing area, and overcoming the strict capacity limit of FPGAs, all while maintaining

good circuit performance. The three metrics we use to measure and evaluate these are:

• Compile Time – Also known as synthesis time, this is the elapsed time required to create

a Malibu bitstream from the Verilog source. In this thesis, all results were generated on

computers with identical specifications (dual-socket, quad-core 2.66 GHz Xeon X5355,

16 GB RAM, up to eight tasks per computer since the Malibu tools are single-threaded).

• Density – This is the number of logic operations per unit area. In Section 3.7.2 the

number of StratixIII Adaptive Logic Modules (ALMs) per Malibu CLB is computed,

and density comparisons are based on that ratio. A Malibu CLB contains both coarse-

grained and fine-grained resources.

• Circuit Performance – Also known as circuit speed or user clock speed, this is the

maximum user clock frequency of the synthesized circuit. In other words, it is the fastest

clock which can be used with the circuit and still have it function correctly. This is

measured in MHz.

The compile time is measured directly as the elapsed time from when the tools start to when

they finish. A 10x improvement (one order of magnitude) in compile time would be a signif-

icant result for FPGA CAD, although given already long CAD runtimes, any improvement is

desirable. Having an architecture that supports coarse-grained resources reduces the problem

size for the CAD. For example, if every operation can be expressed in 32-bit words instead of

9

CHAPTER 1. INTRODUCTION

single bits, the problem size is reduced by 32x. Of course, that is just the general idea and the

improvement, if any, varies by circuit. However, we will show this reduction is significant with

up to a 269x compile time improvement over FPGA CAD flows.

The density is the number of operations in the circuit divided by the number of Malibu

CLBs required to schedule the circuit. The silicon area of a Malibu CLB is used to normalize

the density and compare it to the density of a circuit in a StratixIII and in a VPR/iFAR architec-

ture. Any improvement in density is desirable because it means less silicon area, and thus, cost

savings. By improving density, Malibu can also be used as a platform for anticipatory circuit

development where large circuits can be developed and tested for FPGAs which do not yet ex-

ist. FPGA capacity has tracked, and continues to track, Moore’s Law [29, 80], so capacities of

devices in the near future can be predicted. Some circuit performance is lost through aggressive

time-multiplexing to achieve a high density. However, Malibu can achieve 2.5x the density of

modern FPGAs, with only a 50% loss in circuit performance (and a 26.1x faster compile time

than traditional FPGA CAD). If the Malibu architecture is reconfigured with more memory to

permit even more aggressive time-multiplexing, 10x the density of an FPGA is possible.

Circuit performance is calculated by dividing the system clock frequency (1 GHz) by the

number of timeslots used to schedule the circuit (known as the Schedule Length, or SL). The

overhead of time-multiplexing makes it difficult to match or exceed the performance of an

FPGA. We originally aimed to keep the final result within 1/10th that of a state-of-the-art

FPGA (one order of magnitude), which we estimated would be acceptable for testing circuits.

The results in this thesis show this is achieved. At maximum density for the Malibu architecture

(2.5x density of an FPGA) we achieve 50% of the performance of an FPGA. At maximum

performance, it is 70% of an FPGA.

In dealing with the above metrics, we have chosen to place power analysis outside the

scope of this thesis. A significant amount of work would be required to create a detailed power

model of the Malibu architecture and write the tools to perform power analysis. Instead, we

10

CHAPTER 1. INTRODUCTION

focus on obtaining the best possible density and performance results. Although we do not

address power in this thesis, the Mosaic research project has shown that power reductions are

possible in time-multiplexed, coarse-grained architectures [84].

1.4 Comparison to Related Work

This section presents a summary of related work to place the Malibu architecture and tools

in context with previous research. A complete discussion of the differences with previous

research is in Section 2.3.

The novelty of the Malibu architecture is in a unique combination of features to enable very

fast compile times while simultaneously improving silicon density and maintaining circuit per-

formance comparable to commercial FPGAs and CAD tools. Fast compile times are achieved

by including coarse-grained resources in the underlying Malibu architecture, and making the

Malibu CAD tools coarse-grained aware. This reduces the work the tools must do to map a

circuit onto the architecture. The coarse-grained resources also include Verilog-specific opera-

tions not found in typical ALUs which further reduces compile time and helps improve circuit

performance.

Previous work on fast FPGA CAD [59, 66] has looked at part of the synthesis flow (place-

ment and/or routing), but not the complete flow including front-end logic synthesis. We show

in Appendix A that front-end synthesis takes 3x longer, on average, than placement or routing,

so it is important to the overall flow. In this thesis we show a significant compile time reduction

for the entire flow, including front-end logic synthesis.

The Malibu architecture tightly couples time-multiplexed, coarse-grained resources with

traditional fine-grained FPGA resources. Time-multiplexing improves density by amortizing

the area cost of large coarse-grained ALUs over many clock cycles. The use of coarse-grained

ALUs also improves density by configuration bit-sharing, which reduces instruction mem-

ory size by expressing word-wide operations with only a few bits. The ALUs also include

11

CHAPTER 1. INTRODUCTION

Verilog-specific operations to improve performance. Fine-grained resources in the architecture

also improve performance by permitting quick computation and distribution of critical (usually

control) signals.

Time-multiplexing has been applied to fine-grained FPGA logic in research [15, 27, 40, 52]

and commercially by Tabula [37] to improve density. However, circuit performance tends to

suffer compared to an FPGA, or the CAD tools are slow. In this thesis, Malibu uses coarse-

grained resources to reduce the problem size and speed up the CAD. Malibu achieves very fast

compile times with circuit performance within 50% of an FPGA, and density improvements

similar to much of this past research.

Time-multiplexing has also been applied to CGRAs, both with [26, 83] and without [33,

57, 67, 69, 73] fine-grained resources, to accelerate software application kernels. The research

presented in this thesis builds upon previous work and extends it to show compile time and

density gains for coarse-grained circuits rather than software kernels.

Coarse-grained resources have been applied to FPGAs without time-multiplexing [21, 88,

94] to improve density, but with little (or no) improvement in compile times or performance

compared to traditional CAD tools and FPGAs. The main difference in this thesis is that

Malibu is primarily coarse-grained, and Malibu time-multiplexes the coarse-grained resources

to improve density and utilization. Malibu also shows improvements in density and compile

times, while maintaining circuit performance comparable to modern FPGAs.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 presents an introduction to FPGA CAD and a

background in related coarse-grained architectures, time-multiplexed architectures, and their

associated CAD tools. Chapter 3 presents the Malibu architecture and experimentally de-

termines typical architectural parameters. Chapter 4 presents the front-end synthesis which

prepares the coarse-grained and fine-grained parts of the input circuit for further processing.

12

CHAPTER 1. INTRODUCTION

Chapter 5 details the M-CAD flow for mapping circuits to Malibu, and tests the approach using

the evaluation metrics. Chapter 6 details the M-HOT flow, an alternative tool flow created to

achieve better quality results over M-CAD, and also tests it with the same experiments as were

done with M-CAD. Finally, Chapter 7 provides concluding remarks and directions for future

research.

13

Chapter 2

Background

2.1 Overview

This chapter beings with a review of FPGA CAD in Section 2.2, and then presents related

work in time-multiplexed architectures, coarse-grained architectures, and their associated CAD

approaches in Section 2.3.

2.2 Introduction to FPGA CAD

A typical island-style FPGA is shown in Figure 2.1. An FPGA is a 2D grid of Configurable

Logic Blocks (CLBs) connected by programmable interconnect. A CLB uses a number of

LUTs to implement logic; each LUT can be programmed to implement any Boolean expression

up to the number of inputs and outputs it has. For example, a 4x1 LUT has 4 inputs and 1

output. The interconnect uses programmable connection blocks and switch blocks to route or

steer signals and connect the CLBs together and to the outside world through the I/O pads.

The grey boxes in the figure are connection blocks; one horizontal wire can be programmed

to connect to many vertical wires, or vice versa. There are many more wires in a real FPGA

than shown in this figure. An FPGA with ten 4x1 LUTs in each CLB would typically have 22

14

CHAPTER 2. BACKGROUND

Switch Blocks

Logic Blocks

(CLBs)

Outputs

Inputs

CLB

4x1 LUTs

...
2

1

Channel Width

10

Connection BlocksI/O Pads

Configurable

Figure 2.1: A typical island-style FPGA.

inputs and 10 outputs in each CLB [12]. Depending on the size of the supported circuits, the

channel width could be anywhere from 10 to 300 wiring tracks.

To map logic circuits onto an FPGA, a CAD tool flow is required. The CAD tool flow

transforms an input, usually described in an HDL like Verilog or VHDL, into a bitstream suit-

able for the FPGA. The tool flow can be generally split into four parts: front-end synthesis

(including elaboration and technology mapping), clustering, placement, and routing. The en-

tire flow is called synthesis. The front-end synthesis phase is also known as logic synthesis

or technology-independent optimization. The back-end phase of clustering, placement, and

routing is collectively known as physical synthesis. There is some ambiguity about whether

technology mapping belongs in front-end or back-end synthesis since it performs technology-

dependent logic optimizations. We have placed it in front-end synthesis so that back-end syn-

thesis can assume the circuit only uses resources available on the targeted architecture (e.g.,

4x1 LUTs, flip-flops, and I/Os in Figure 2.1). In this thesis, the term synthesis (alone with

no modifiers) always refers to the complete flow including both front-end logic synthesis and

15

CHAPTER 2. BACKGROUND

back-end physical synthesis.

Commercial tools like Altera’s QuartusII [5] and Xilinx’s ISE [92] implement a complete

synthesis flow. Academic tools can also be used: for example OdinII (front-end synthesis),

ABC (technology mapping), T-VPack (clustering), and VPR (placement and routing) collec-

tively implement a complete flow. In Figure 2.1, the CAD tools would first do logic synthesis

on the circuit, then technology-map the circuit into 4x1 LUTs, then cluster the LUTs into

groups of ten per CLB, then place the CLBs on physical CLBs in the FPGA, and finally route

the required connections. These steps are briefly explained next.

2.2.1 Front-End Logic Synthesis

Front-end logic synthesis begins by parsing the input (HDL, schematic, sequential code), and

creating an unoptimized intermediate representation of the circuit. Part of this step is very

similar to what a software compiler would do (lexical analysis, preprocessing, parsing, etc.).

The circuit description can be hierarchical. Unlike software, hardware cannot perform a

function call, so all the instantiated modules must be elaborated (i.e., duplicated) to create a

flat representation. Once flattened, technology-independent optimizations are applied. Many

optimizations are the same as what a software compiler would perform (e.g., strength reduction,

dead code elimination, constant folding, logic reduction), but for circuits additional objectives

are required, like reducing the critical path (longest combinational path in the circuit).

The optimized code is then mapped to resources supported by the FPGA. This is where

front-end synthesis really diverges from software compilers. In the example FPGA in Fig-

ure 2.1 there are only four resources: inputs, outputs, LUTs, and flip-flops. Commercial FPGAs

include additional blocks like multipliers and memories, but the process of mapping is similar.

A technology-mapping algorithm like BTWMap [25] or ABC’s priority-based cut mapper [18]

can be used. The circuit is reduced to 2-input or 3-input gates, then a ranking system adds gates

to LUTs, limited by the 4-input, 1-output LUT constraint.

16

CHAPTER 2. BACKGROUND

2.2.2 Clustering

Clustering accepts a technology-mapped netlist (a netlist is a graph representation of a circuit)

and groups LUTs and flip-flops together into CLBs. The output is another netlist that contains

only CLBs and macro blocks like multipliers, if present.

Clustering reduces the problem size for placement (fewer objects to place) and for routing

(many nets become internal to the cluster). In Figure 2.1, each CLB can have up to ten LUTs

and ten flip-flops clustered into it. In FPGA CAD, clustering is important to reduce the runtime

of the placement step since VPR’s simulated annealing placement requires O(N1.33) time [68],

where N is the number of logic elements in the circuit to be placed.

The academic clustering tool T-VPack uses a greedy algorithm to do this, aiming to si-

multaneously keep the number of inputs per CLB low, as well as fill each CLB [12]. Fewer

inputs on a CLB means it is likely to route with fewer routing channels. The number of CLBs

translates directly to area and a reduced problem size for placement.

2.2.3 Placement

Placement takes the clustered netlist and an architecture description, and assigns the clustered

CLBs in the netlist to physical CLBs in the FPGA. Numerous placement approaches for FPGAs

are summarized in [86]. In this thesis, simulated annealing is used for placement in Chapter 5,

and for considering placement, routing, and scheduling together in Chapter 6. It is therefore

worthwhile to explain how annealing works in relation to FPGA placement, and explain VPR’s

annealing schedule which is widely regarded as one of the best.

Simulated annealing [43] is a heuristic approach to global optimization. It performs well

in large search spaces or when complex functions are required to describe the goodness (or

badness, a.k.a., cost) of a particular configuration of the search space. It uses a “synthetic

temperature” variable to control the acceptance rate of bad moves, and to determine when to

exit. Simulated annealing often begins with a random configuration of the search space and

17

CHAPTER 2. BACKGROUND

consists of two nested loops. The outer loop monitors the exit condition and decreases the

temperature in each iteration. The inner loop performs random swaps in the search space,

always accepting good moves, and accepting bad moves with a probability that decreases with

the temperature. A “bad move” is one that increases the cost of the current solution. Some bad

moves must be allowed to avoid getting stuck in a local minima. Near the end of annealing it

is desirable to reject all bad moves, and a final greedy pass of the inner loop is used to do this.

The rate at which the temperature is decreased is called the annealing schedule. With a

sufficiently large initial temperature, a sufficiently small cooldown rate, and with a sufficiently

long run-time, it has been proven [36] that simulated annealing will converge to the global

minimum (optimal) solution. For FPGA CAD, however, we only require a good solution to be

found within a reasonable amount of time.

A simulated annealing algorithm for FPGA placement is shown in Figure 2.2. This al-

gorithm uses VPR’s annealing schedule. It is used in this thesis for annealing steps in both

M-CAD and M-HOT. VPR computes the number of inner-loop iterations as 10× (Nblocks)
1.33,

which is from [74]. Nblocks is the number of CLBs plus I/O pads. The inner loop randomly

chooses two blocks to swap; the second block is also allowed to be an empty block location,

and is chosen to be near the first block within a distance, Dlimit . It then swaps them and com-

putes the delta cost. If negative (a good move), then the swap is accepted. If not (a bad move),

then the swap is only accepted if a function of the delta cost and temperature is less than a

randomly generated number between 0 and 1:

e
−delta cost
temperature < rand [0,1) (2.1)

The block selection is initially done over the entire chip, but as the temperature decreases,

the area from which the second block can be chosen is restricted according to a distance

18

CHAPTER 2. BACKGROUND

limit [13]:

Dnew
limit = Dold

limit · (1−0.44+Raccept) (2.2)

Where Raccept is the acceptance rate. VPR attempts to keep the acceptance rate as close

to 0.44 as possible [13] by using Dlimit to control the swap area and by changing the temper-

ature reduction factor (between 0.5 and 0.96) in each outer-loop iteration based on the current

acceptance rate. VPR exits when the temperature is below 0.005 · cost
Nnets

.

The delta cost of the current solution is computed by VPR as a tradeoff between a wiring

cost and a timing cost [53]:

delta cost = λ
∆Timing Cost

Prevous Timing Cost
+(1−λ)

∆Wiring Cost
Previous Wiring Cost

(2.3)

The wiring cost is based on a bounding box calculation for every net. The timing cost is based

on a timing analysis that uses the slack on each path to calculate a criticality for the path, and

then uses that criticality together with the delay information to compute the timing cost. The

details of these computations are in [53]. The parameter λ is used to weigh one more than the

other; by default, VPR uses λ = 0.9.

2.2.4 Routing

Once every CLB, block, and I/O pad has a location on the FPGA, the router determines how

to configure the interconnect resources to connect all the elements together. In the circuit, the

connections are represented as nets. Each net has exactly one source, and one or more sinks.

The number of sinks on each net is the fanout. In Figure 2.1 these nets are routed using the

wires, switch blocks, and connection blocks.

There are many routing options and approaches for FPGAs [47]. However, in this thesis,

the performance of the router on fine-grained nets is not critical because the time-multiplexed

pipelined routing network, which is used for the coarse-grained routing, is slow in comparison.

19

CHAPTER 2. BACKGROUND

1 function s imu la ted annea l ing (i n i t i a l t e m p e r a t u r e)
2 {
3 temperature = i n i t i a l t e m p e r a t u r e
4 n accept = 0
5 n t o t a l = 0
6 d i s t a n c e l i m i t = s ize o f the a r c h i t e c t u r e
7

8 i n n e r i t e r a t i o n s = 10 ∗ exp (n blocks , 1.33)
9

10 cost = compu te to ta l cos t ()
11

12 while (1) {
13

14 compute t iming () /∗ Compute the t im ing cost ∗ /
15

16 for (i=0; i< i n n e r i t e r a t i o n s ; i++) {
17 blk1 = choose block () /∗ Choose an e x i s t i n g block (e . g . , CLB) ∗ /
18 blk2 = choose block (blk1 , d i s t a n c e l i m i t) /∗ Choose a l o c a t i o n to swap with , the
19 ∗ l o c a t i o n re turned here may be empty ∗ /
20 swap (blk1 , b lk2) /∗ Swap them ∗ /
21

22 de l t a = compute cost (blk1 , b lk2) /∗ Compute the cost d i f f e r e n c e f o r the swap ∗ /
23 i f (de l t a <= 0) {
24 accept = true /∗ Always accept a good move ∗ /
25 } else {
26 e = exp (−de l t a / temperature) /∗ P r o b a l i s t i c a l l y accept a bad move ∗ /
27 accept = (e < rand ()) ? true : fa lse
28 }
29

30 n t o t a l++ ;
31 i f (accept) {
32 cost += de l t a /∗ Commit the accepted move∗ /
33 commit move (blk1 , b lk2)
34 n accept++ ;
35 } else {
36 swap (blk2 , b lk1) /∗ Undo swap ∗ /
37 }
38 }
39

40 accep t ra te = n accept / n t o t a l ; /∗ Compute accept ra te ∗ /
41 d i s t a n c e l i m i t ∗= (1 − 0.44 + accep t ra te) ; /∗ Compute new dis tance l i m i t ∗ /
42

43 i f (accep t ra te > 0.96) temperaure ∗= 0.5
44 else i f (accep t ra te > 0 .8) temperature ∗= 0.9
45 else i f (accep t ra te > 0.15) temperature ∗= 0.95
46 else temperature ∗= 0.8
47

48 i f (temperature < 0.005 ∗ cost / n nets) {
49 break ; /∗ E x i t c o n d i t i o n ∗ /
50 }
51 }
52 }

Figure 2.2: Simulated annealing pseudocode. The annealing schedule and exit condition
from timing-driven VPR [53] are used.

20

CHAPTER 2. BACKGROUND

Still, we would like the fine-grained router to be fast and produce quality results, so we use the

default VPR router.

The VPR router [11] is based on the PathFinder maze router [54]. It begins by routing

each net, ignoring all congestion and resource conflicts, so that each net starts with the shortest

possible route. It then iteratively rips-up every net and routes it again (rip-up and re-route), this

time using a cost on each resource to discourage over-use. As the resource use is changed, the

cost for the resource is updated using a combination of the current and past costs. Eventually,

nets with alternative routing solutions are forced off high-demand resources, leaving only those

nets which need them the most.

For a net with k sinks, the maze router is invoked k times to route the net. Routing is done

using an A* search, expanding the routing wavefront along the lowest cost resources first until

the first destination (one of the k sinks) is reached. The wavefront is generally then cleared,

and the entire current route becomes the starting point for a new wavefront expansion to find

the next sink. This is repeated until all k sinks are connected.

2.3 Related Work

The coarse-grained, time-multiplexed resources in Malibu are a departure from traditional

FPGA architectures. This section presents related work in three categories. First, fine-grained,

time-multiplexed architectures are presented. These architectures were among the first to

demonstrate the benefits of time multiplexing to save silicon area, and in some cases to re-

duce compile times. Second, coarse-grained architectures are presented. These architectures

leverage coarse-grained resources save silicon area and reduce compile times; however most

are designed for software (not circuits). Some of these architectures also use time-multiplexing

to maximize the use of large, coarse-grained ALUs. A few of these systems (e.g., RaPiD) also

include fine-grained resources to implement control signals which allows the architecture, as

a whole, to be decoupled from a controlling host processor and run independently. Third, re-

21

CHAPTER 2. BACKGROUND

lated CAD tools for coarse-grained synthesis and fast fine-grained synthesis are presented. The

CAD tools for Malibu are based partly on ideas from these tools.

Table 2.1 summarizes the features of the architectures presented in this section. It may be

useful to refer to this table while reading the following sections. The columns for fine-grained

resources and coarse-grained resources indicate whether such resources are available and what

they are used for (data and control, control only, or data only). The number of contexts indi-

cates how many operations may be time-multiplexed on the same resources (static means not

time-multiplexed). The table then specifies the type host processor coupled to the architec-

ture, whether global memory is used, and whether the architecture virtualizes resources. For

architectures with virtual resources, the input typically only needs to be compiled once for any

architecture size. Finally, the source language is given. Malibu is the only architecture to use

both coarse-grained and fine-grained resources for implementing a circuit.

2.3.1 Fine-Grained, Time-Multiplexed Architectures

The benefits of time-multiplexing in FPGAs were first demonstrated with Dharma [15].

Dharma used an input-to-output levelization of the circuit to compute a level for each node,

and required that all nodes with the same level be computed concurrently on the architecture.

The area improvements in this work, if any, are not clear; however, there was a reported 18%

improvement (reduction) in the critical path.

VEGA [40] extended this time-multiplexed work to allow the entire LUT-based FPGA to be

multiplexed on a single CLB (if desired). VEGA demonstrated a 7-14x density improvement

over commercial FPGAs of the same era (1995). Figure 2.3 shows the VEGA Processing

Element (PE). The PE can be used alone, or can form a 2D mesh with other PEs. VEGA

added a substantial amount of logic and memory around a 4x1 LUT and flip-flop for time-

multiplexing. Every clock cycle, a single LUT is evaluated in each PE by reading inputs from

the cache, evaluating those inputs with a LUT configuration from the logic instruction memory,

22

C
H

A
PT

E
R

2.
B

A
C

K
G

R
O

U
N

D

Table 2.1: Summary of related architectures. “AS” means application-specific, the value may change for a specific instance
of the architecture for a specific application. “–” means that the feature is not used on the architecture.

Fine-Grained Resources Coarse-Grained Resources
Host

Processor
Global

Memory
Virtual

Resources
Source

LanguageArchitecture Used Contexts Used Contexts

FPGA yes static – – – – – VHDL/Verilog

Dharma [15] yes ∞1 – – – – – Netlist
VEGA [40] yes ∞1 – – – – – Netlist
TSFPGA [27] yes ∞1 – – – – – Netlist
AFPGA [52] yes 2 – – – – – Netlist
Tabula [76] yes 8 – – – – – VHDL/Verilog

DP-FPGA [21] yes – yes static – – – Netlist
Ye and Rose [94] yes – yes static – – – Netlist
Wilton et al. [88] yes – yes static – – – Netlist

RaPiD [26] control only static yes mostly static2 risc – – C-like (RaPiD-C)
ADRES [57] – – yes 128 vliw yes – C
MorphoSys [69] – – yes 32 risc yes – C-like
PipeRench [33] –4 – yes 256 sparc yes yes C
Mosaic [83] control only AS3 yes AS3 – – – C-like (Macah)
WaveScalar [73] – – yes ∞1 – – yes C
TRIPS [67] – – yes ∞1 – – yes Assembly-like
SCORE [20] Architecture Dependent yes C-like

Malibu yes static yes 256 – – – Verilog
1Up to the amount of context memory available.
2RaPiD’s coarse-grained resources are mostly static but some are time-multiplexed. The number of contexts supported is unspecified.
3Mosaic is a family of architectures. These may be static or limited only by context memory.
4The PipeRench ALUs are built out of LUTs, but they are not user-programmable at the LUT level.

23

CHAPTER 2. BACKGROUND

NM
control

instruction
memory

NM

4LUT FF
memory

I/O

instruction

instruction

memory

Evaluate
control

Cache

I/O

unit

Logic Unit

Node

memory
Logic

Figure 2.3: The VEGA PE [40]. The PE is replicated in a 2D mesh to form a complete
system. The I/O unit includes a crossbar to route data between I/O units in adjacent
PEs.

and writing the result back to the cache. The node memory (NM) instruction memory and the

NM control execute pre-scheduled data transfers between the node memory and the cache. The

I/O unit transfers data between the I/O units in adjacent PEs, the local cache, and the outside

world. The number of configuration contexts supported by VEGA was only limited by the size

of the memories used for logic instructions, nodes, and NM instructions.

The goal of VEGA was to maximize the logic density. VEGA also noted a speedup in

compile time due to a reduction in routing complexity. However, the performance of mapped

circuits peaked at 391 kHz, which was approximately 100x slower than state-of-the-art FPGAs

in 1995. In this thesis, we time-multiplex the coarse-grained logic, not the fine-grained logic,

and show similar density gains for coarse-grained circuits. However, our coarse-grained circuit

speeds are only 2x slower on average compared to a state-of-the-art FPGA in 2010.

The Adaptive FPGA [52] (AFPGA) also used time-multiplexing to interleave two distinct

circuits (or two distinct parts of the same circuit with no dependencies) on the same FPGA

resources. AFPGA showed an 8-14% area improvement compared to FPGAs, but did not in-

24

CHAPTER 2. BACKGROUND

vestigate circuit performance or compile time. Based on the AFPGA architecture description,

the circuit performance should be relatively unchanged since it only added two-context mem-

ories to all the LUTs and routing resources. However, the AFPGA iterative mapping approach

will likely increase compile time compared to traditional FPGA CAD tools.

Time-Switched Field-Programmable Gate Array (TSFPGA) [27] also demonstrated den-

sity improvements by time-multiplexing fine-grained elements, but took a radically different

approach to the architecture building block. A TSFPGA subarray, shown in Figure 2.4a, in-

tegrates the interconnect with LUT memories. The subarrays are arranged into a 2D grid and

connected using pipelined registers. The network inputs (xin0-xin3, yin0-yin3) come from

other subarrays (not necessarily immediate neighbours) in the same row and column. These

inputs can be directed into an Array Element (AE), shown in Figure 2.4b, or into the cross-

bar and routed to another subarray. In each timestep (clock cycle) the crossbar reads a new

configuration from a context memory to route values. The results cited below use 64 routing

contexts.

Also in each timestep, the output mux in the AE selects one input from the network inputs or

the four AE LUT muxes, and directs it into the crossbar. Note that the four LUT muxes connect

directly to the output mux (they do not form a chain as might be inferred from Figure 2.4b).

Each of the four AE muxes has four configuration bits which are controlled by the subarray. It

may take up to four timesteps to load all four configuration bits, so having four muxes ensures

that one can always be ready with a value. The LUT memory connected to each of the four

muxes contains data for many 4x1 LUTs.

Using this system, TSFPGA demonstrated a 2x improvement in density without any loss

in circuit speed. The TSFPGA CAD tools also exhibited significant improvements in compile

time due to reduced problem complexity. In this thesis, we take a similar approach to the

coarse-grained element; inputs to the CLB may be directed to an ALU or may be routed.

However, we limit the inputs to come only from the four immediate neighbours to avoid long

25

CHAPTER 2. BACKGROUND

Crossbar

xout0

xout1

xout2

xout3

yo
u
t0

yo
u
t1

yo
u

t3

yo
u
t2

pipeline
registers

Timestep Context

Interconnect Memory

xin0

xin1

xin2

xin3

yin
0

yin
1

yin
2

yin
3

AE

AE

AE

AE

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

Timestep

in
0

in
1

in
2

in
3

From Crossbar Outputs

LUT Memory

Input Register

Timestep
Memory

Timestep
Compare

LUT Mux

Output MuxCrossbar
Input Select

out
To Crossbar Input

Network Inputs
to Subarray

(a) (b)

Figure 2.4: The TSFPGA subarray [27]. (a) The TSFPGA subarray, and (b) the subarray
Array Element (AE). The subarray is replicated in a 2D grid to form a complete
system. The xin0-xin3 inputs come from other subarrays in the same row. Similarly
for yin0-yin3 in the same column.

wires.

Tabula is a commercial vendor with a time-multiplexed fine-grained device (ABAX [76]),

and a set of CAD tools (Stylus [77]) to map circuits onto the device. Their tools synthesize

HDL and can trade density for performance, offering up to a 2.5x density improvement over

FPGAs, and comparable performance of 1.6 GHz divided by the number of configuration con-

texts, called “folds”. The device and tools support up to eight folds.

The architectures presented in this subsection are all fine-grained. On such an architecture,

just as on an FPGA, all coarse-grained operations are first decomposed into 2-input and 3-

input operations and then implemented in LUTs. This increases compile time, and may not

be the best use of configuration resources. This thesis investigates the use of coarse-grained

resources to more directly implement coarse-grained operations. By not synthesizing down to

fine-grained LUTs, compile time is significantly reduced (26.1x faster in this thesis compared

26

CHAPTER 2. BACKGROUND

1−bit wire

Control

Blok

Conn.
Logi

Blok

Blok

Connetion
Data

Data Swith Blok

Shift Blok

Control Swith Blok

4-bit bus

Figure 2.5: The DP-FPGA tile [21]. The tiles are replicated to form a 2D grid.

to QuartusII 10.0). Compared to modern FPGAs, this thesis also demonstrates a 2.5x density

improvement (similar to Tabula and TSFPGA), although with half the clock frequency. The

key advantage is the compile time reduction.

2.3.2 Coarse-Grained Architectures

DP-FPGA [21] (datapath-FPGA) has investigated using coarse-grained logic in an FPGA. By

separating the routing networks for coarse-grained data and fine-grained control, the coarse-

grained portions can save area by sharing configuration bits. The DP-FPGA tile is shown in

Figure 2.5, where the 4-bit buses made use of configuration bit-sharing. Similarly, interconnect

configuration-bit sharing and bus-based multiplexers were explored by Ye and Rose [94] using

an architecture layout like the FPGA in Figure 2.1, but with some of the wires in each track

converted to multi-bit buses. Their results show a 10% reduction in circuit area; however, the

paper did not discuss time-multiplexing, which this thesis shows can also reduce area.

Wilton et al. [88] also investigated adding coarse-grained features to an FPGA by orga-

nizing the traditional FPGA LUTs into word-wide blocks, where each LUT computed a bit

of the resulting word. These blocks were then connected using buses instead of individual

wires. Area savings of 6x to 426x are reported compared to previous product-term-based pro-

27

CHAPTER 2. BACKGROUND

grammable cores (which are reported as 35% more dense than FPGAs [93]). However, this

result is based on manually partitioning and mapping of each benchmark onto an architecture

with different (optimized) parameter values for each benchmark. The final circuit speed is also

not reported. As with DP-FPGA, the work by Wilton et al. did not explore time-multiplexing.

So far, the architectures presented in this section have added coarse-grained resources to

an FPGA to improve density. However, without perfect placement these resources will not be

100% utilized, so further density improvements may be available through time-multiplexing.

There has been a substantial amount of work done on coarse-grained architectures like

Coarse-Grained Reconfigurable Arrays (CGRAs). These architectures are built from the

ground up to be coarse-grained (they are not modifications of an FPGA). Also, they often

use time-multiplexing more aggressively. However, these coarse-grained architectures almost

exclusively deal with accelerating software “loop-kernels”. The coarse-grained reconfigurable

resources accelerate a portion of the software application, and the rest of the code is left for an

attached host microprocessor. While this is a valuable approach for accelerating time-critical

software, for our goal of mapping a complete circuit with similar density and performance as an

FPGA, many of these previous architectures are unusable or require significant modifications.

RaPiD [26, 30] is perhaps the most well-known CGRA. It is a reconfigurable array with

an attached RISC processor [26]. The high-level RaPiD architecture is shown in Figure 2.6a.

The Datapath Cell, shown in Figure 2.6b, consists of functional units to perform word-oriented

computation. Is replicated horizontally a number of times (depending on the target implemen-

tation) to form the complete Datapath block in Figure 2.6a. The Control Path Cell, shown

in Figure 2.6c, consists of fine-grained resources with optional inverters to compute control

signals for the datapath. It is also replicated horizontally to form the complete Control Path

block.

Most of the RaPiD resources are statically configured (configured once for each kernel),

but some are dynamic and changed every clock cycle by a Control Path Cell. The data for a

28

CHAPTER 2. BACKGROUND

Datapath

Memory
Interface

Stream
Generator

... ...

......

Control PathInstruction
Generator

External Memory External Sensors

FU2 FU1 FU2 FU1 FU2 FU1

BC
BCBC

BC
BCBC

Control Control Control

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

FU2
MUX1 MUX2 Control

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

FU1
MUX1

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

FU2
MUX1 MUX2 Control

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

FU1
MUX1

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

FU2
MUX1 MUX2 Control

O
p
t
I
n
v

O
p
t
I
n
v

O
p
t
I
n
v

FU1
MUX1

BC

3-LUT

BC
BC
BC
BC
BC

ConfigDelay

(a)

(b)

(c)

Figure 2.6: The RaPiD architecture [26]. (a) The architecture block diagram, (b) the
Datapath Cell, replicated horizontally to create the complete Datapath block, and
(c) the Control Path Cell, also replicated horizontally to create the Control Path
block. The “OptInv” block is an inverter with a bypass. The “BC” block is a a bus
connector which may be connected or disconnected.

29

CHAPTER 2. BACKGROUND

Register File

FU FU FU FU FU FU

Reconfigurable Matrix

VLIW Processor

ProgramFetch
InstructionDispatch
InstructionDecode

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

FU

mux mux mux

reg reg reg

pred src1 src2

dst1pred_dst1 pred_dst2

Conf.
RAM RF

From other RCs

To other RCs

(a) (b)

Figure 2.7: The ADRES core and reconfigurable cell [57]. (a) One possible configuration
of the ADRES core, and (b) the ADRES Reconfigurable Cell (RC) consisting of a
Functional Unit (FU) and Register File (RF).

RaPiD computation is streamed in and out of external memory using the Stream Generator,

and the instructions for the computation are provided by the Instruction Generator. The fine-

grained resources in RaPiD can be used to implement virtually any control structure, like state

machines, so the architecture as a whole can function without external control from a host

processor. However, RaPiD assumes that “the RaPiD datapaths will be integrated closely with

a RISC engine on the same chip” [26]. The RISC processor is used to control the overall flow

of the computation as well as perform unstructured computations (computation that involves

branches or which does not have a regular or repeating pattern). However, the RaPiD authors

note that most RaPiD applications do not execute any RISC instructions.

ADRES [57] is similar to RaPiD in that computation is directed through ALUs and reg-

isters, and a host processor (a VLIW processor in this case) oversees the entire operation.

ADRES, however, organizes computation into a 2D array of Functional Units (FUs) and Re-

configurable Cells (RCs), where each RC consists of a FU and a Register File (RF), as shown

in Figure 2.7. All communication with the host processor is done through the global register

30

CHAPTER 2. BACKGROUND

file of the Very Large Instruction Word (VLIW) processor. In each Reconfigurable Cell (Fig-

ure 2.7b), a configuration RAM changes the mux, FU, and RF configuration inputs each clock

cycle. The RC inputs can come from any other RC in the same row or column in a single clock

cycle, which limits the size of the array and the maximum clock frequency. The coarse-grained

resources in Malibu are similar to an ADRES RC, but they are allowed to communicate only

with their immediate neighbours in one clock cycle (longer distance communication is done

over multiple clock cycles); this ensures that Malibu can scale to a much larger architecture

size.

MorphoSys [69] uses an architecture layout similar to ADRES, but with a Single Instruc-

tion, Multiple Data (SIMD) execution model. A context memory is used to reconfigure the

fabric every clock cycle, supporting up to 32 different contexts. A RISC processor is used to

oversee the reconfigurable fabric operation, execute code which is not part of a reconfigurable

fabric kernel, and initiate data transfers to the fabric. Unlike ADRES, the processor does not

share memory with the reconfigurable fabric. Instead, a DMA engine is used to stream data

in and out of the fabric. The SIMD model used by MorphoSys means it cannot be used to

implement a circuit.

Mosaic [83] is a family of CGRA architectures which includes both coarse-grained and

fine-grained resources. Each Mosaic PE has four 32-bit functional units to implement data-

path computation, and two 3x1 LUTs to implement control path logic. The PE also contains

memories and register files to support time-multiplexing and data storage. As with most of

the architectures in this section, Mosaic implements software loop kernels. In this thesis, we

are interested in implementing coarse-grained circuits, and Malibu (this thesis) implements a

complete Verilog CAD flow. Malibu also includes Verilog-specific operators in the ALU to

make the circuit mapping more efficient.

PipeRench [33] is also a processor-controlled CGRA, but it is designed to be a coprocessor

that can run independently from the main processor [34]. PipeRench supports multiple con-

31

CHAPTER 2. BACKGROUND

current pipelined loop kernels, or more usually, multiple independent computations in a single

“modulo” loop kernel where the tail wraps around to use the same physical resources as the

head, all without the intervention of the main processor. The PipeRench architecture layout

is similar to ADRES in Figure 2.7a, except that PipeRench calls each row of ALUs a stripe,

and communication between ALUs is done through an interconnection network between each

stripe.

PipeRench was significant because it was the first to support virtualized resources. The

CAD tools compile the input using abstract “Pipe-Stage” resources, and only need to compile

the input once. The Pipe-Stages are then dynamically scheduled on any and all available phys-

ical stages at runtime. This allows a kernel to run slowly on a small PipeRench architecture,

or more quickly on a larger architecture. Similarly, WaveScalar [73] uses “waves” to virtual-

ize and reuse existing hardware resources, TRIPS [67] uses “frames”, and SCORE [20] uses

“Compute Pages”.

WaveScalar and TRIPS are designed to be standalone application-specific processors.

Both implement one or more complete applications, usually computational or DSP in nature.

WaveScalar is similar to PipeRench in that it uses interconnected ALUs to implement an ap-

plication. TRIPS is more granular and uses four 16-core out-of-order processors which are

partitioned at runtime to execute a stream of frames from a given application.

SCORE differs from these architectures with virtual resources (PipeRench, WaveScalar,

and TRIPS) because it is not an architecture. SCORE is a model for implementing virtu-

alized streaming computation on reconfigurable resources. It requires that the programmer

manually partition the computation into streams, which are implemented on Compute Pages

(reconfigurable resources) and Configurable Memory Blocks, or on a microprocessor. Most of

the architectures in this section could implement a SCORE execution model; Malibu could as

well.

Many of the architectures presented in this section use a host processor (ADRES, RaPiD,

32

CHAPTER 2. BACKGROUND

PipeRench, MorphoSys). The processor is used to control computation and provide support for

any unstructured computation which does not fit, or map nicely, onto the reconfigurable logic.

Relying on the host processor to execute code is a sequential bottleneck that can slow down the

implementation dramatically. Using the processor to control the configurable resources also

means that it must regularly communicate with every reconfigurable resource in a reasonable

amount of time, which can further limit the size of the CGRA and the performance. In this

thesis we do not use a host processor, allowing Malibu to be a full replacement for an FPGA.

Even though the architectures presented in this section are not ideal for implementing

coarse-grained circuits, they were valuable in both the creation of the CAD tools, and in pro-

viding insight into the design of the configurable resources for Malibu. Malibu distinguishes

itself from previous approaches, such as those in this section, by: closely coupling the fine-

grained and time-multiplexed, course-grained resources through an integrated interface in each

CLB; using a time-multiplexed ALU which supports HDL operations like bit concatenation,

unary logic reduction, and automatic truncation of results; implementing circuits (specified in

Verilog), not software kernels; and providing a very fast compile time.

2.3.3 CGRA and Fast CAD

CGRA CAD approaches are well-documented in the literature (e.g., [32, 49, 50, 56, 95]),

but ultimately these approaches have one of two drawbacks making them unusable for our

purposes. First, they uses algorithms which assume the underlying architecture supports a

global memory or has a host processor. Malibu has neither of these. Second, they depend on

algorithms which do not scale as the problem size increases, which can result in long compile

times as the CGRA architecture grows in size. Part of our motivation for bringing coarse-

grained resources to an FPGA is to reduce the synthesis problem size and thus decrease the

compile time for ever-larger FPGAs, so the algorithms used must scale.

Lee et al. [49] present a CGRA compilation approach that splits the mapping problem

33

CHAPTER 2. BACKGROUND

0

Iteration SL

II
1

II
2

Instructions

Clock Cycle

Figure 2.8: Initiation Interval (II) and Schedule Length (SL). In a modulo schedule, the
same instruction sequence can be started in a new interval before previous intervals
have finished. The waiting time before subsequent iterations can be started is the
II. For the work in this thesis, SL equals the II, and the SL must be minimized.

into PEs, lines, and planes, and avoids 2D placement entirely. Reducing problem complexity

like this is important for mapping to Malibu where the problem would be equivalent to 3D

placement. However, these tools assume the existence of a global memory and a host processor.

Similarly, the graph-based CGRA mapping approach by Yoon et al. [95] will not scale up

to large architecture sizes due to the NP-complete graph algorithms used. It is important to

avoid such algorithms to achieve a fast compile time with large problem sizes.

A CGRA scheduler based on modulo graph embedding is presented by Park et al. [62,

63]. This scheduler breaks the scheduling problem into heights, scheduling the most critical

(highest) heights first and working down a tree of ALAP arrival times. It repeatedly decreases

the Initiation Interval (II) and re-runs the scheduler until the smallest II is found (the fastest

recurrence), but places no restriction on the Schedule Length (SL). The difference between the

II and SL is illustrated in Figure 2.8. The M-HOT scheduler is based on this approach, but we

have made significant changes and additions. In particular, since II is the same as the SL in

Malibu, we must minimize the SL (discussed next). M-HOT also runs scheduling only once,

increasing the schedule length as necessary. This avoids multiple invocations of the algorithm

to find a good quality solution. A description of all the differences is presented in Chapter 6.

Malibu attempts to minimize the SL for three reasons. First, a smaller SL means that each

34

CHAPTER 2. BACKGROUND

CLB in the architecture can have less instruction memory. This reduces area and improves

density. Second, reducing II to less than the SL does not improve the latency (input to output

delay). Only minimizing the SL improves circuit latency. Third, compiling with an II<SL

in Malibu is only valid on multi-cycle paths (combinational logic paths that are allowed to

span more than one clock cycle), or on circuits which are strictly feed-forward (no cycles or

feedback paths). Multi-cycle paths can be retimed into single-cycle circuits, and strictly feed-

forward circuits are an interesting special case that we do not optimize for in this work. In this

thesis, we assume that the II is equal to the SL.

Affinity [44, 62, 85] is a technique in CGRA scheduling used to place nodes with common

descendants close together to minimize future routing costs. The work in this thesis uses the

zero-based affinity definition from [62], which is described in Section 6.4.2.

The edge-centric modulo scheduler proposed by Park et al. [64] looks very promising for

CGRAs, but will require some work before it can be used. It eliminates placement entirely

by moving the placement decisions into the router. Hence, the computation on a path from a

source to a sink will always be done in the processing elements visited by the route. Therefore,

a router which can consider both congestion of routing and compute resources can perform the

function of a placer. This approach depends on placing modulo paths first to reduce resource

strain later. However, circuits have a large number of such paths (they are the output of every

flip-flop, register, and memory), which may negate any gains of this approach.

Convergent scheduling [50] uses independent subroutines that each implement a heuristic

to address a different mapping constraint, such as critical path reduction or load balancing. This

approach is generic and applicable to any algorithm or architecture. However it is necessary to

run many of the subroutines more than once to achieve a high-quality results. This may result

in lengthy compile times.

The modulo scheduling mapping algorithm proposed in [56] is a modification of the

DRESC tool [55]. The algorithm starts with a minimum II, and uses simulated annealing

35

CHAPTER 2. BACKGROUND

to perform scheduling, increasing the II until a valid schedule is found. Like DRESC, the run-

time of this approach is prohibitive. However, the dynamic schedule length implemented in

this thesis in Chapter 6 was inspired by this work.

SPR [32] is an architecture-independent CGRA mapping tool for the Mosaic family of

architectures [83]. Like Malibu, SPR can trade density for performance by leveraging time-

multiplexing in coarse-grained resources. However, the focus of SPR is on achieving a high

quality result with the smallest II for virtually any CGRA architecture specification. SPR often

achieves an II that is less than ten. Our focus differs slightly in that we consider compile time

to be of paramount importance, so the SPR iterative mapping approach is not usable for our

work. We are also attempting to minimize the SL, not the II, for reasons discussed earlier in

this section. However, the completeness and quality of solutions offered by SPR are worth

investigating if the Malibu architecture could be expressed as an SPR architecture, and input

circuits mapped to the SPR format.

Clustered VLIW architectures can also be viewed as spatial architectures, and many ideas

from instruction scheduling tools [61, 65] can be adapted to CGRAs. In particular, list schedul-

ing [24] is the most common instruction scheduling approach. It was used in this thesis for

the same task (assigning instructions to coarse-grained timeslots in the Malibu architecture,

see Section 5.5) after adding support for routing resources, communication delays, and fine-

grained resources.

The Plasma/Teramac [8] system was a research project by HP Labs to build a circuit simu-

lation platform with very fast synthesis speed. The platform used the Plasma FPGA [9], which

was a custom-designed FPGA with far too many routing resources [51]. The idea was to over-

design the hardware to achieve O(n) placement and routing in the CAD tools. The whole

Teramac system used 1,728 Plasma FPGAs to implement a 1 million gate circuit. It required 2

hours to place and route on computers of the day (1995). The work presented in this thesis can

synthesize 1.6 million gates in about an hour on modern computer hardware, but it produces a

36

CHAPTER 2. BACKGROUND

far more dense solution (requiring a single FPGA-sized device, not 1,728 of them).

The Ultra-Fast placement work by Sankar and Rose [66] demonstrates up to a 25x improve-

ment in placement time compared to VPR with the “-fast” option (referred to as “VPR-fast”)

and achieves the same quality result as VPR-fast. The Ultra-Fast placer works by dividing the

circuit into a number of levels and placing each level separately with a simulated annealer. This

is similar to the approach described by Park in [63] for coarse-grained synthesis, but pre-dates

it by seven years.

The Ultra-Fast placer is not timing-driven, nor is the version of VPR it was compared to. In

this thesis, our algorithms, and modern VPR, are all timing-driven. Timing-driven placement

requires 2.5x more time but improves the final circuit speed by 42% [53]. Our own testing in

Appendix A shows that VPR routing takes approximately the same amount of time as timing-

driven VPR-fast placement. However, front-end synthesis takes about 3x longer than routing.

Even if Ultra-Fast placement could be reduced to take zero time, the overall CAD flow runtime

would only be 20% faster. In this thesis, compared to the timing-driven VPR-fast flow and an

iFAR architecture, the entire Malibu M-HOT flow shows an 8.4x compile time improvement

with a 1.7x improvement in density. However, this also comes with a 2.8x performance (Fmax)

degradation.

Various FPGA placement and routing algorithms were tested together by Mulpuri and

Hauck [59] to quantify the runtime and quality of results of the placement and routing steps

in a CAD flow (excluding front-end synthesis). As with the Ultra-Fast placer, the version of

VPR used by Mulpuri and Hauck was also not timing-driven. Comparing the original VPR

(inner num=10, PathFinder router) to a version of VPR with a inner num down to 1 (same

as VPR-fast) and a simple router, they report a 5x compile time speedup with a 2.5x quality

reduction (2.5x increase in the critical path) using the MCNC benchmark circuits. Independent

testing by Wrighton et al. [89] using the same MCNC benchmarks measured VPR-fast as 9x

faster than the original VPR, with a 4% smaller critical path (larger Fmax) and a 27% increase

37

CHAPTER 2. BACKGROUND

in channel width (which means more area). Our own VPR testing in Appendix B with the

benchmarks used in this thesis is closer to these latter results, finding a 3.6x faster compile

time using VPR-fast (although this comparison uses timing-driven VPR and VPR-fast) with a

7% smaller critical path, but with a 5% increase in channel width. The Malibu results in this

thesis are compared to a timing-driven VPR-fast, not the original VPR. The Malibu M-HOT

tools are 8.4x faster than a complete VPR-based CAD flow (including front-end synthesis)

that includes timing-driven VPR-fast, with a 1.7x density improvement and a 2.8x reduction

in Fmax. Comparing these results to the CAD tools in [59], the Malibu CAD tools are much

faster and produce more dense results (less area), but have a similar quality degradation on the

performance.

Malibu demonstrates improved compilation times and densities with a quality degradation

comparable to previous fast FPGA CAD work. This previous work also excludes front-end

synthesis and is not timing driven, which are both important features in modern CAD flows. For

these reasons, we do not compare the results in this thesis directly to the Ultra-Fast placement

work or other fast FPGA algorithms.

Fast CAD is not isolated to academic research. Modern commercial FPGA CAD tools

also include options to reduce compilation time by sacrificing both area and performance.

The commercial QuartusII tool used for comparison in this thesis includes such options. To

investigate how fast QuartusII can go, we include a supplementary experiment in Appendix A

where we have attempted to reduce compile time as much as possible by changing compilation

configuration parameters to reduce compilation effort. Total compilation time is decreased by

about 15% with a 13% reduction in Fmax. In this thesis there is an average 26.1x decrease in

compile time (M-HOT) with an average 50% reduction in Fmax (M-HOT, maximum density).

The Malibu approach offers significantly faster compile times.

Appendix A also investigates speeding up the academic VPR tool, which is also used for

comparison in this thesis. By reducing placement and routing effort, we demonstrate a 7%

38

CHAPTER 2. BACKGROUND

reduction in total compile time (including front-end synthesis) and a 25% reduction in Fmax.

Again, compared to the results in this thesis, the Malibu approach is significantly faster.

39

Chapter 3

Malibu Architecture

3.1 Overview

This chapter presents the Malibu architecture and describes how to implement a circuit us-

ing the coarse-grained and fine-grained resources available in the architecture. In Malibu,

the word-wide operations from the source Verilog are mapped to the time-multiplexed ALUs,

while the fine-grained logic, usually control logic, is extracted and mapped to the LUTs in the

architecture. Before the details of the CAD flow can be presented in Chapters 4–6, the target

architecture and the coarse-grained/fine-grained interface will be explained in this chapter.

The remainder of this chapter is organized as follows. In Section 3.2 the Malibu architecture

is presented. Next, in Section 3.3, 21 benchmark circuits are introduced to evaluate the Malibu

architecture and tools (for this and in later chapters). Then an experiment is done in Section 3.4

to determine architectural parameter settings for the Malibu architecture. Section 3.5 derives

the instruction word encoding which is used in Section 3.7 to calculate the area of a Malibu

CLB. Section 3.6 explains how a simulator was used to verify the benchmark results. Finally,

concluding remarks about the architecture are in Section 3.8.

40

CHAPTER 3. MALIBU ARCHITECTURE

4x1
LUT

4x1
LUT

S

E

W

N

input

output
connection block

CGO

FG

CG

additional
inputs

T
o

 N
,S

,E
,WR

F
ro

m
 N

,S
,E

,W

32 bit buses

1−bit wires

width

A
L

U

C
G

I

connection block

XBar

additional outputs

block

switch

Wf=3

32

Wf=3

Figure 3.1: The Malibu architecture CLB. The coarse-grained (CG) part is added to a
traditional FPGA CLB. Note the instruction memory and all control/address inputs
have been omitted from this diagram.

3.2 The Malibu Architecture

The Malibu architecture CLB is shown in Figure 3.1. It starts with a standard Fine-Grained

(FG) FPGA, as shown in Figure 2.1, and adds a time-multiplexed Coarse-Grained (CG) pro-

cessing element to the CLB. The CG connects to the fine-grained components through Coarse-

Grained Inputs (CGIs) and Coarse-Grained Outputs (CGOs). The Fine-Grained Width (Wf)

parameter determines the width of the CG/FG interface. There are nCGI CGIs, where each one

aggregates a bundle of Wf signals from the fine-grained (FG) resources as an input to the ALU;

the upper 32−Wf bits of the CGIs are set to zero when used by the ALU. There are nCGO

CGOs, where each CGO latches the Wf least significant bits produced by a specific instruc-

41

CHAPTER 3. MALIBU ARCHITECTURE

tion, providing them to the LUTs or FPGA routing resources. When Wf = 0, the fine-grained

resources (all traditional LUTs and interconnect) are excluded from the architecture, and the

tools map the entire circuit to the CGs.

The CG contains an ALU for 32-bit computation. In addition to the two data inputs, the

ALU uses a third input, width, to truncate (in other words, zero extend) the ALU results to

a specified width. Many signals in a circuit are not exactly 32-bits wide and truncating these

signals recreates the intended behaviour of the original Verilog. The exact use of the width

field is discussed later in this section.

The CG also contains a local R memory which serves four purposes: i) storing intermediate

results (simulating a wire), ii) preserving values between user clock cycles (simulating a reg-

ister), iii) storing large 32-bit constants, and iv) storing data from user-instantiated memories.

The CG also contains four neighbour memories, collectively referred to as NSEW, for storing

results from the North, South, East, and West neighbouring CLBs. The crossbar (XBar) in the

CG is discussed later in this section. Not shown in Figure 3.1 is an instruction memory and an

instruction decoder which provides control signals to all the components.

Each CG is time-multiplexed; it always executes one instruction per system clock cycle

from the instruction memory (not shown in Figure 3.1). All communication is explicitly

pipelined and scheduled. As illustrated in Figure 3.2, the system clock differs from the user

clock. On the active user clock edge, the instructions start executing, one per system clock

cycle. Each CG contains a schedule with exactly SL instructions (the schedule length). At the

end of the SL instructions, the CG pauses for the next user clock edge before starting over.

One complete pass of the SL is required for each user clock cycle. We anticipate that a 1 GHz

system clock can be achieved in 65nm technology using custom layout techniques. Therefore,

the maximum achievable user clock frequency (the Fmax) is 1
SL ·1 GHz.

The FG is a traditional FPGA CLB with the flip-flops removed, and with extra inputs and

outputs to interface with the CG. The fine-grained resources are not time-multiplexed so that

42

CHAPTER 3. MALIBU ARCHITECTURE

Start of User Cycle

System Clock

User Clock

Malibu does not use

the falling edge of the

user clock

Schedule Length (SL, number of cycles)

Start of Next User Cycle

user clock

Optional

pause for next

OPx,y,0OPx,y,0 OPx,y,1 OPx,y,2CLBx,y CG OPx,y,SL−1

Figure 3.2: The user clock cycle.

they can be used to quickly distribute and compute combinational values. The state of any

fine-grained flip-flop is stored in either the R or an NSEW memory and transfered to a CGO

latch at the beginning of each user clock cycle so the value is stable for the duration of the user

cycle. This was done to simplify the tools by having all signals/values which retain their value

between user clock cycles stored in a coarse-grained memory.

The FPGA interconnect wires are directional and span only a single CLB in length. This

is partly for simplicity, and partly due to the increased size of the CLB with the coarse-grained

resources added. We also assume that the connection blocks and input/output blocks are fully-

populated to simplify the mapping process. It is possible to change the architecture file passed

to VPR for fine-grained routing (see Section 5.4) to accommodate more complex wire or con-

nection block configurations. We save exploring the tradeoffs between such configurations as

future work.

A complete list of the components in a Malibu CLB is shown in Table 3.1, including the es-

timated area using VPR’s units of minimum-width transistor area (T). There is no area devoted

to control-flow instructions in Malibu (like jump or branch) for three reasons:

1. There is no concept of “jumping over” part of a circuit in a real circuit. A synthesis tool

will implement a conditional statement—whether for an FPGA, ASIC, or Malibu—by

43

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.1: Malibu units and instructions.

Unit Operators ALU Instructions Area (T)

Multiply × MULS, MULU 35,000

Arithmetic Arithmetic: +,– ADD, SUB 1,995
Comparison: <, ≤, =, 6= LT, LTS, LEQ, LEQS, EQ, NEQ

Memory LOAD, STORE

Logic Bitwise: &, |,∧,∼ AND, OR, XOR, NOT 3,208
Ternary: ?: MUX

Move MOV
Sign extend EXTS

Reductions: &, |,∧ REDAND, REDOR, REDXOR

Interconnect 4x4 Crossbar, CGIs, CGOs 5,482
CG muxes

BarrelShift concat,�,� CONCAT, BSL, BSR, LSL, LSR 1,791

FG 16 4-LUTs, LUT I/O 19,455

FG Connection and Switch Blocks 17,519

Total, Including Multiply 82,7391

Total, No Multiply 47,7391

1This combined area is less than the sum of each block because of redundancy removal
when combined.

creating the logic for all possible branches, and then creating a multiplexer to select the

appropriate result. In a circuit all such paths are evaluated simultaneously because they

are just logic components and wires. Since Malibu is designed for implementing circuits,

it uses this same behaviour.

2. Malibu saves space in the instruction word by not storing write addresses or passing them

to the register files (R,N,S,E,W). Instead, it generates write-addresses internally using a

scheme that depends on perfect knowledge of which instructions are executed. This is

discussed later in this section. Because of this, instructions cannot be skipped.

3. Malibu avoids synchronization between CGs by assuming the entire architecture can be

statically and deterministically scheduled. If CGs were allowed to skip over code, addi-

44

CHAPTER 3. MALIBU ARCHITECTURE

tional hardware would be needed to synchronize the CGs, and additional effort would be

required to create a valid schedule.

The area estimate in Table 3.1 for the Arithmetic, Logic, and BarrelShift blocks is from a

manual gate-level design of each part, and the multiplier block is from [22]. For each block, the

number of basic components (gates, muxes, etc.) were counted and converted into minimum-

width transistors. For example, an OR gate requires 3 NMOS and 3 PMOS transistors, and a

PMOS requires 1.5x the area of an NMOS, so the entire OR gate requires 7.5 T.

The area estimate for the interconnect and the FG is from a modified version of

transcount [14], which reports the minimum-width transistors directly. The tool was modi-

fied several ways to compute the area of the Interconnect block:

• The crossbar and related CG muxes were modeled and added.

• The CG/FG interface logic and CGI/CGO registers were added using nCGI = 16 and

nCGO = 4. These values are from the experiment in Section 3.4.

• The channel width area was added, based on a channel width of 120, computed by VPR.

This value is also from Section 3.4.

The tool was also modified according to modifications made to the FG Block:

• The flip-flops in the FG were removed.

• Additional LUT inputs from the CGOs and LUT outputs to the CGIs were added.

• Additional CLB inputs and outputs directly to the CGOs and CGIs were added.

The combined area for the blocks is slightly less than the sum of individual unit areas due to

redundancy removal when combined. The acronym MALIBU, an extension of ALU, originates

from the name of these groups or units. Malibu comprises a total of 27 operations. Multiply

45

CHAPTER 3. MALIBU ARCHITECTURE

and comparison operations have both signed and unsigned variations. The signed version of

an instruction ends with “S”, and all other instructions are either unsigned or rely on two’s

complement for proper sign behaviour.

Table 3.2 lists each instruction supported by the ALU, and gives details of each operation.

For the operands, src1 is always a memory location (R, N, S, E, or W), or a CGI, and src2 can

be either a memory location, a CGI, or a signed 12-bit immediate value. Section 3.5 gives the

precise instruction encoding.

Each instruction in the Malibu architecture executes in a single 1 GHz system clock cycle,

except the LOAD and STORE instructions which require an extra cycle to index the R memory.

Industry has demonstrated a 32x32 multiply in a single 1 GHz clock cycle in 65nm CMOS [78],

so we believe that using a single-cycle ALU in Malibu at 1 GHz is reasonable.

Because a Verilog circuit often contains multi-bit signals which are less than 32-bits in

width, the 32-bit ALU in each CG must generate results with the proper number of bits. Hence,

the ALU must truncate the output result to the desired width, shown in the “output width”

column in Table 3.2, by forcing the upper 32−width bits to zero. The width is encoded in the

instruction and is a separate input to the ALU as shown in Figure 3.1. When the ALU operation

commences, it assumes the input operands are already of the correct width, and properly sign

extended. This allows the input widths to be left unspecified, saving instruction bits. The CAD

tools ensure the correct width of these inputs are provided by the upstream operations which

appropriately choose their output width. If the upstream operation width does not match the

desired input width, the tools will automatically insert zero-extend operations (EXT, which is

mapped to a MOV instruction, see the bottom of Table 3.2) or sign-extend operations (EXTS) as

necessary.

For some operations, the width field in the instruction encoding is used for a different

purpose, and the output-width is implied:

46

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.2: Malibu ALU operations.

Output
Mnemonic Operands Operation Output Width (bits)

ADD src1,src2 src1 + src2 width
AND src1,src2 src1 AND src2 width
BSL src1,src2 { 32-width{0}, src1[width-src2-1:0], 32

src1[width-1:width-src2] }
BSR src1,src2 { 32-width{0}, src1[src2-1:0], src1[width-1:src2] } 32

CONCAT src1,src2 {src1[32-width:0], src2[width-1:0]} 32
EQ src1,src2 src1 == src2 1

EXTS src2 {32-width{src2[width-1]}, src2[width-1:0]} 32
LEQ src1,src2 src1 <= src2 1
LEQS src1,src2 src1 <= src2 1
LOAD src2 R[64 + src2] –
LT src1,src2 src1 < src2 1

LTS src1,src2 src1 < src2 1
LSL src1,src2 src1 << src2 width
LSR src1,src2 src1 >> src2 width
MOV src2 src2 width
MULU src1,src2 src1 * src2 width
MULS src1,src2 src1 * src2 width
MUX src1,src2 CGI[width] ? src1 : src2 32
NEQ src1,src2 src1 != src2 1
NOT src2 ˜src2 width
OR src1,src2 src1 OR src2 width

REDAND src2 src2[width-1] AND src2[width-2] ... AND src2[0] 1
REDOR src2 src2[width-1] OR src2[width-2] ... OR src2[0] 1
REDXOR src2 src2[width-1] XOR src2[width-2] ... XOR src2[0] 1
STORE src1,src2 R[64 + src2]← src1 –
SUB src1,src2 src1 - src2 width
XOR src1,src2 src1 XOR src2 width

Mnemonics mapped to other Operations Conditions

CONST src2 MOV src2 src2 is immediate
EXT src2 MOV src2
GT src1,src2 LEQ src2, src1 src2 is a register

Rx← LEQ src1, src2 ; NOT Rx src2 is immediate
GTS src1,src2 Same as GT but using LTES
GTE src1,src2 Same as GT but using LE

GTES src1,src2 Same as GT but using LTS
REDNOT src2 EQ src2, #0

Note: src1 is always a register. src2 can be a register or a signed 12-bit immediate value.

47

CHAPTER 3. MALIBU ARCHITECTURE

• For BSL and BSR, width is used to specify the input width so the barrel shift can be done

for the proper number of bits.

• For CONCAT, width is used to specify the number of bits to concatenate from the LSB

input. The remaining (32−width) bits are taken from the lower bits of the MSB input.

• For EXTS, width is used to specify the number of bits in the input to sign extend.

• For MUX, width is used to specify which CGI to read the conditional input from. This

multiplexer, which is not shown in Figure 3.1, is part of the ALU and has been included

in all area calculations.

• For the reduction operations (REDAND, REDOR, REDXOR) width is used to specify the

number of input bits to reduce.

The result of any instruction (except LOAD and STORE) can be written to one or more of

the R, N, S, E, W memory, and a CGO register. Each of these memories operate synchronously

using a single write port and up to three read ports. The instruction format (see Section 3.5)

contains a write enable flag for each memory. To save space in the instruction word, the write

address (write offset) for each destination memory is omitted and only the write enable is

specified. The memory itself tracks which addresses are in use, and writes new data to the

first unused address. The CAD tools use the same protocol to determine write-addresses and

properly encode read-addresses in other instructions. All the operands and routing inputs in the

instruction word include a last read flag to indicate to the hardware when a particular address

can be marked as available.

All common Verilog operations can be easily mapped to the instructions in Table 3.2. For

example, adding two 3-bit unsigned values into a 4-bit unsigned value in Verilog, written as o

= a + b, can be expressed using 32-bit ALU operations in C language as:

o = ((a&0x7) + (b&0x7)) & 0xf

48

CHAPTER 3. MALIBU ARCHITECTURE

It could be implemented on Malibu using the following instructions, assuming a is in R0

and b is in R1:

R2 ← AND R0, #0x7 (width=3)

R3 ← AND R1, #0x7 (width=3)

R4 ← ADD R2, R3 (width=4)

However, we apply optimizations during front-end synthesis to detect certain conditions. In

this example, the first two operations are unnecessary except when the operation that generates

a (or b) is wider than three bits. The width of that operation would not be 3-bits only if it also

fans out to another operation which requires more than 3-bits, or if that instruction has a 32-bit

implied output (CONCAT, MUX, EXTS, BSL, BSR). In these two cases, the fourth bit of a (or

b, or both) must not be propagated into the ADD instruction; it must be truncated by an AND

operation like above, or by an EXT operation which is what the synthesis tool would actually

insert (or an EXTS operation if the numbers were signed). It does not matter if bits higher than

the fourth propagate into the ADD instruction because the output is truncated to four bits, these

higher bits would be immediately discarded. In all other cases, there is no truncation required

and the front-end synthesizer would reduce the entire expression to a single operation, which

also truncates the output to four bits:

R4 ← ADD R0, R1 (width=4)

To avoid introducing another memory block in the CG, all user-instantiated memory blocks

are packed into offsets 64 to 127 in R. A user-instantiated memory is created by declaring an

array in Verilog. Special LOAD and STORE instructions are used to access the memory data in

R, and require one extra system cycle to perform the indexing. In this thesis, R has been sized

to accommodate the user-memories in the benchmark circuits. However, if a user memory

would exceed the space available in R, an error is reported. The problem of splitting a large

user memory across multiple CG to avoid this error is left for future work.

49

CHAPTER 3. MALIBU ARCHITECTURE

input

output

user clock

from CG

to CG

data

data
write enable

system clock

O

I

Figure 3.3: Malibu chip input/output logic. Input is captured once every user clock cycle
and output is set immediately on write.

Figure 3.1 also shows a 4x4 routing crossbar (XBar). The crossbar is entirely combina-

tional and writes values to the outgoing NSEW memories located in the four cardinal neigh-

bours by taking values from the local incoming NSEW and R memories. Although there are 5

sources, the crossbar can be built with 4:1 muxes because each mux never accepts its own out-

put direction as an input source. The crossbar routes coarse-grained signals concurrently with

computation, and keeps CG communication off the FG routing resources. The ALU cannot

write to the same NSEW memory as the crossbar in the same clock cycle. The CAD detects

this condition and writes the ALU result to R instead, then schedules a transfer from R to the

target NSEW in the next available cycle. However, the ALU-to-NSEW links are used often, so

the ability of the ALU to write to NSEW directly is important for performance.

This coarse-grained routing architecture was chosen because it is simple and scalable to

large array sizes. There are no long wires and there is no need to have a globally low-skew

clock. Since each CG only needs to communicate with its four immediate neighbours in a sin-

gle system clock cycle, a locally low-skew clock is sufficient. Alternate routing architectures

are possible, for example, links which span multiple CLBs can be used to speed up data trans-

fers, but this requires additional resources in each CLB to steer data into the right outgoing

links and read data from the proper input links. Because of the complexity of such architecture

exploration, it is left for future work and this thesis focuses on the CAD tools instead.

Chip input and output is accomplished using CLBs around the periphery of the architecture.

Each CLB on the periphery has one CG neighbour channel that is not connected to another

50

CHAPTER 3. MALIBU ARCHITECTURE

CLB; for example CLBs along the top of the architecture have the N channel connected to I/O

instead of a non-existent north neighbour. The CLBs in the corners have two unused channels,

but only one is used for I/O to avoid creating a special case. The memory normally associated

with the channel is replaced with an external I/O logic block shown in Figure 3.3 and the

read/write address is not used (the I/O block contains only one value). The I/O provides an

input value when the channel is read, and new inputs from off-chip are latched once per user

clock cycle. This means the same input can be read as many times as necessary over the

duration of the user cycle. When the channel is written, the output is latched immediately. The

tools map circuit inputs and outputs to use these channels, and enforce the single input/output

limitation in each CLB located on the periphery. For circuits that require more inputs we relax

this constraint and report a warning, which would be an error in a commercial setting because

a resource constraint is violated.

The schedule is pre-determined, making the entire architecture deterministic. It is the re-

sponsibility of the Malibu tools to schedule the code in each CG (controlling all of the mem-

ories, ALU, crossbar, and muxes), and to program each LUT, connection block, and switch

block, so that data is always in the correct place at the correct time. Non-deterministic delays,

such as waiting for input data from an external device, must be handled at the user-circuit level.

One limitation of this architecture is the assumption of a single user clock domain. For

coarse-grained circuits created by a software-oriented programmer or generated by a C-to-

gates flow, this is not necessarily a restriction; both will likely use a single clock and primarily

use coarse-grained resources, making this type of architecture a natural fit. Nevertheless, it is

important to address multiple clock domains in future work for coarse-grained circuits which

require it.

Compared to previous architectures, Malibu is new in that it combines time-multiplexed,

coarse-grained resources with traditional fine-grained FPGA resources. The coarse-grained

resources reduce compile time and improve density, while the fine-grained resources provide a

51

CHAPTER 3. MALIBU ARCHITECTURE

fast mechanism to distribute control signals and improve the user-clock frequency of the final

result. The Malibu architecture also uses an ALU that has specific support for HDL operations

like bit concatenation and bit reduction. For the details presented in this chapter, please keep

in mind this architecture is intended to be a starting point for many optimizations which have

not yet been implemented, and to drive the creation of the CAD tools. The emphasis in this

thesis is about understanding the CAD system for better synthesizing word-oriented circuits.

A detailed architectural exploration is left for future work.

3.3 Benchmark Circuits

To evaluate the Malibu architecture and tools in this thesis, several Verilog benchmarks are

used:

• The chem, dir, honda, mcm, pr, and wang benchmarks [72] are dataflow– and DSP-style

combinational (non-pipelined) computational circuits described in behavioural Verilog.

• me is the motion estimation algorithm described in [35], written by the author. A block

of 16x16 pixels is swept against a 32x32-pixel reference image, searching for the dis-

placement which produces the lowest sum of absolute differences (SAD).

• fft8 and fft16 are 8- and 16-point complex FFTs respectively, implemented using a radix-

2, decimation-in-time decomposition. These were written by Graeme Smecher.

• jpeg enc is a JPEG encoder from [81].

• The other benchmarks are the 11 largest (in Quartus ALM count) from the IWLS 2005

benchmark set [23], excluding the circuits with a top-level entity name of the form

“sXXXXX”. These excluded circuits contain only 2-input logic gates and single-bit wires.

They appear to be the gate-level output of another synthesis tool since all the internal

52

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.3: Benchmark circuit list and StratixIII resource use. QuartusII synthesis used
the default settings.

QuartusII/StratixIII

Memory (bits)

Circuit ALMs 18×18 Registers M9K M144K MLAB

C
oa

rs
e-

G
ra

in
ed

O
nl

y
(C

G
-o

nl
y)

fft16 6,412 84 10,232 0 0 0
me 5,148 0 8,066 0 0 0

chem 3,526 175 0 0 0 0
fft8 2,075 28 3,842 0 0 0

honda 1,216 52 0 0 0 0
mcm 1,057 56 0 0 0 0
wang 797 24 0 0 0 0

pr 646 18 0 0 0 0

G
oo

d
C

ir
cu

its
(G

oo
d)

ac97 ctrl 1,254 0 2,199 0 0 0
aes core 1,154 0 540 0 0 0

dir 1,150 8 600 0 0 0
spi 488 0 229 0 0 0

pci master 137 0 138 0 0 0

Im
pa

ir
ed

C
ir

cu
its

(I
m

pa
ir

ed
)

ethernet 6,868 0 10,553 0 0 0
wb conmax 5,349 0 1,090 0 0 0

dma 1,714 0 1,756 0 0 1,536
tv80 850 0 347 0 0 0

jpeg enc 791 64 1,476 0 0 0
systemcaes 716 0 675 0 0 0

des 298 0 1,986 0 0 0
systemcdes 237 0 190 0 0 0

nodes and nets are named with a sequential number. Such pre-synthesized single-bit cir-

cuits are not the type of circuit we expect to efficiently support; they require no coarse-

grained resources and there is no opportunity to extract word-oriented operations from

the Verilog source. It may be possible to recover the coarse-grained features of such

circuits with an intelligent high-level analysis algorithm, but that is outside the scope of

this thesis. However, we have ensured that our tools can successfully map such circuits.

To get an idea of the size of these benchmarks, Table 3.3 shows the ALM count generated

using QuartusII 10.0 targeting a StratixIII (EP3SL340F1760C2) FPGA. These benchmarks are

further discussed in Section 4.6 after the front-end synthesis has been presented in Chapter 4.

53

CHAPTER 3. MALIBU ARCHITECTURE

After the results in Chapters 5 and 6 were generated, an investigation of each benchmark

was done to determine why it mapped well (or poorly) to the Malibu architecture. As a result,

the benchmarks have been categorized into one of three groups:

• CG-only – Coarse-grained only circuits. These are circuits with no fine-grained signals

at all, and thus will not make use of the fine-grained resources in Malibu. These circuits

map well (good performance, good density, good compile time) to the Malibu architec-

ture.

• Good – Coarse-grained circuits with a small amount of fine-grained control logic (maps

well onto Malibu), or circuits that use programming constructs which map well onto

Malibu.

• Impaired – These circuits use Verilog structures which do not map well to Malibu. These

circuits are written in a style which is not efficiently supported by either our front-end

synthesis, the back-end mapping flow (M-CAD and M-HOT), or the Malibu architecture,

or some combination thereof. It may be possible to improve the mapping results of these

circuits by rewriting the Verilog into another style, improving the CAD tools, improving

the architecture, or some combination of these approaches.

These three groups, the benchmark circuits, and the Verilog structures which map poorly

onto Malibu are discussed further in Section 4.6.

3.4 Architectural Parameter Values

The Malibu architecture was introduced in Section 3.2, but the architectural parameter values

were not specified. These parameters must be completely specified to calculate the area and

evaluate density. In this section we perform an experiment to choose a channel width, the

number of LUTs per CLB, the size and number of the CGI and CGO structures, and the size

54

CHAPTER 3. MALIBU ARCHITECTURE

of the R, N, S, E, W, and instruction memories. The tools are first run in an exploratory mode,

allowing the number of resources to float, so that the natural demand for each resource can

be determined. Then, the tools are run in regular mode, where architecture constraints are

enforced, to see the impact on the benchmarks.

Table 3.4 shows the resource usage results of the M-CAD flow run in exploratory mode

for Wf = 1. For each benchmark, the architecture array size was kept square and swept from

3x3 to 48x48 CLBs. The result with the smallest schedule length (SL) is shown. The smallest

schedule length represents the fastest user circuit
(

F = 1 GHz
SL

)
. In the case of a tie, the smallest

array size is reported. The architecture parameter values chosen from this data will allow the

maximum speed of the circuits to be realized.

At the bottom of Table 3.4 are fixed values chosen for the architectural parameters. In

addition, the largest user memory in the benchmarks is 2 kbit. Since R is also used to implement

user memories, we add 64 more entries (x32 bits wide) to R for a total of 128 enties. The upper

64 entries are only accessible with the special LOAD and STORE instructions. As previously

mentioned, splitting large user memories across multiple CLBs is left for future work.

The benchmarks constrained by these architectural restrictions are bolded along with the

specific values that exceed the fixed parameter values. The results for the remaining (non-

bolded) benchmarks will not change under the fixed parameters. To see the impact of these

restrictions, Table 3.5 shows the results for the benchmarks after being synthesized with re-

stricted fixed parameter values. The results that are unchanged are not shown. Note that in

Table 3.5 the channel width is always reported as 120 because VPR was invoked with a fixed

channel width and not allowed to search for the smallest channel width.

For the ethernet, wb conmax, dma, and tv80 benchmarks, the major constraint was the

channel width. In these cases, to successfully build the benchmark with the fixed parameters

the tools had to select a larger array. The ethernet benchmark went from 10x10 CLBs to 20x20,

and the other three increased as well. In doing so, the maximum number of LUTs per CLB

55

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.4: Resources required at the smallest schedule length for Wf = 1. Bolded results
exceed the fixed architectural parameter value specified at the bottom of the table.

FG Resources per CLB CG Resources per CLB

Circuit SL f loat CLBs CW LUTs CGI CGO R N S E W

C
G

-o
nl

y

fft16 22 16x16 0 0 0 0 10 3 3 2 3
me 18 20x20 0 0 0 0 6 2 2 1 2

chem 25 8x8 0 0 0 0 6 2 2 2 2
fft8 14 16x16 0 0 0 0 5 2 2 2 2

honda 22 6x6 0 0 0 0 8 1 2 1 1
mcm 14 6x6 0 0 0 0 2 2 2 1 1
wang 12 4x4 0 0 0 0 6 1 2 1 1

pr 12 4x4 0 0 0 0 5 2 1 1 1

G
oo

d

ac97 ctrl 25 12x12 74 11 12 2 8 4 5 2 2
aes core 40 8x8 26 5 3 2 21 4 5 2 2

dir 37 6x6 36 5 4 4 4 5 5 3 3
spi 31 6x6 12 2 3 2 2 2 2 2 2

pci master 34 4x4 30 9 12 5 6 1 1 1 1

Im
pa

ir
ed

ethernet 61 10x10 200 28 16 4 17 4 3 2 2
wb conmax 51 20x20 208 16 10 3 12 10 10 4 5

dma 98 16x16 164 14 9 5 12 4 5 2 2
tv80 109 20x20 160 13 11 5 28 3 4 2 2

jpeg enc 193 40x40 10 2 3 2 257 23 23 2 2
systemcaes 65 48x48 14 1 3 1 65 5 3 2 2

des 191 28x28 96 13 10 5 6 2 2 1 1
systemcdes 46 20x20 26 5 5 6 4 3 2 2 1

Arch Value: 256 120 16 16 4 64 16 16 16 16
(+64)1

CW: Fine-grained channel width.
1+64 Entries for user-instantiated memory mapped to R.

was reduced, as was the usage of the R, N, S, E, and W resources. This is expected given the

increase in the number of resources available in the increased array size. For the wb conmax

and dma benchmarks there is a further interesting result; the schedule length of the solution

is unchanged despite the circuit being forced to spread out on a larger array to stay within

resource usage constraints. The tools use a criticality measurement to prioritize placement of

the critical path. For these benchmarks, and all the circuits in Table 3.5 with SL f loat
SL f ixed

≥ 1.00, the

post-scheduling critical path is not lengthened when architectural restrictions are enforced.

The jpeg enc and systemcaes circuits show a similar critical-path result but without any

56

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.5: Resource usage with fixed parameter values for Wf = 1. SL f loat is from Ta-
ble 3.4.

SL f loat
SL f ixed

FG Resources per CLB CG Resources per CLB

Circuit SL f ixed CLBs CW LUTs CGI CGO R N S E W

G
oo

d pci master 34 1.00 4x4 120 11 12 4 6 1 1 1 1

Im
pa

ir
ed

ethernet 84 0.73 20x20 120 10 16 4 8 4 6 2 2
wb conmax 51 1.00 48x48 120 7 5 4 4 5 5 4 4

dma 98 1.00 20x20 120 7 12 4 5 4 3 3 3
tv80 204 0.53 40x40 120 6 8 4 6 3 3 2 2

jpeg enc 190 1.02 40x40 120 3 16 1 1 2 2 2 2
systemcaes 65 1.00 48x48 120 1 3 2 14 5 2 2 2

des 191 1.00 28x28 120 13 10 4 6 2 2 1 1
systemcdes 46 1.00 20x20 120 5 5 4 3 3 2 2 1

Arch Value: 256 120 16 16 4 64 16 16 16 16
(+64)

change in the array size. In exploratory mode there is no penalty for bunching up computation

on a single CLB, because no constraints are violated, so jpeg enc was free to use 257 entries

in one of the R memories. Each instruction takes one cycle to compute and write a result back

to R. However, it also takes one cycle to compute and write a result to a neighbour memory

(N,S,E, or W). So, with restrictions on R, both jpeg enc and systemcaes end up distributing

the computation among several CLBs; each CLB does a portion of the computation (without

exceeding the R memory limit) and passes the result to the next CLB. Doing this achieves the

same critical-path length (or smaller for jpeg enc), with the same array size, but with a more

even distribution of resource use. The schedule length reduction in jpeg enc is a little unex-

pected, but not impossible given that placement is done with a heuristic (simulated annealing).

Given enough time, or enough repeated trials, the placer on the unconstrained architecture

might also find this solution. Also, since the difference in this case is small (3 out of 190 time-

slots), there is no concern that the heuristics are converging poorly (e.g., by getting easily stuck

in a local minima).

57

CHAPTER 3. MALIBU ARCHITECTURE

3 1

reg lr

src1

5

offset

12

lr

offset

6

6

5

10 200

1 26

offset

src2/imm

reg

1 3

imm
lr

30

dst mask

N S E R

5

W

40

routing
CGO

3

10 10 101

rege
w

w
e off

41 50 60 70 81

Nsrc Ssrc Esrc Wsrc

40

opcode width

Figure 3.4: The 81-bit Malibu instruction word.

The remaining three benchmarks, des, systemcdes, and pci master fit within the resource

constraints by relocating a few coarse-grain to fine-grain interface registers (CGI/CGOs) to an-

other CLB. Since the fine-grained routing network is fast, there is no penalty for this alternative

solution, and the schedule-length results are unchanged.

3.5 Instruction Format

Now that all necessary parameters have a fixed value, it is possible to calculate an instruction

encoding, shown in Figure 3.4. This encoding is required to estimate the silicon area of the

instruction memory.

Each CG instruction has been encoded into 81 bits, including all of the source addresses,

all required flags, and crossbar control. In contrast, there are well over 1,000 configuration bits

in a traditional VPR-style CLB.1 However, after time-multiplexing, the CG requires SL× 81

bits. If the user requests a small array for a large circuit, upwards of 1024 instructions per CLB

might be required. However, as demonstrated in Section 3.4, only 256 instructions per CLB

are needed to achieve the maximum-frequency results across all of the benchmark circuits.

A long-term goal is to significantly reduce this value through optimizations in the front-end

synthesis, architecture, and CAD steps presented in this thesis.

The parts of the instruction word are as follows:

1Ten 6-LUTs require 640 bits, the 60 LUT inputs require at least 5 bits each, plus bits needed to configure
flip-flops and all of the interconnect.

58

CHAPTER 3. MALIBU ARCHITECTURE

• opcode (5 bits) – Encodes the 27 different operations.

• width (5 bits) – Specifies the output width for automatic truncation.

• src1 (10 bits) – The first source operand is always a memory/register file or a CGI. Three

bits are required to select the input memory/register file or CGI, and six bits to specify

the address (offset) within the input. The largest input is the R memory with 64 entries,

so the offset must be large enough to encode any of the 64 addresses in R.2 The final bit

is the last read flag to indicate when an addresses is not needed in the memory anymore.

• src2/imm (13 bits) – The first bit indicates whether src2 is a memory source or is imme-

diate data. If it is memory, then it requires the same additional 10 bits as src1. If it is

immediate, then all 12 remaining bits are sign extended to 32 bits and used as the second

operand.3

• dst mask (5 bits) – The destination mask is a single bit for each output memory (R, N, S,

E, W) to indicate whether the data produced by the ALU should be written to the next

available memory offset.

• CGO (3 bits) – The first bit is write-enable, and the next two indicate to which CGO

offset to write.

• Nsrc, Ssrc, Esrc, Wsrc (each 10 bits) – Similar to src1, but with a write-enable bit. If

enabled, it specifies the source location of the value to write to the north (south, east,

west) neighbour channel.

• For LOAD and STORE instructions, the base offset of the user-memory within the R

memory is a 6 bit value which is encoded into the dst mask and CGO fields. The upper
2Note that R actually has 128 entries, but the upper 64 entries are reserved for user-defined memories and are

only accessed by the LOAD and STORE instructions.
3An early version of the architecture used 13 bits for both src1 and src2/imm fields. Although src2/imm can

be made smaller, we chose to keep it at 13 bits to save re-running all of the experimental results.

59

CHAPTER 3. MALIBU ARCHITECTURE

four bits are stored in the N, S, E, and W bits in the dst mask field, and the lower two

bits are stored in the offset of the CGO field. The dst mask:R bit is 1 for LOAD and 0 for

STORE. The CGO:we bit is always set to 0 to disable writing to the CGOs.

3.6 Verification of Results

A cycle-accurate simulator for Malibu has been developed to verify the CAD flow synthesis

results on the Malibu architecture. As input, the simulator uses the bitstream created by the

Malibu CAD tools (M-CAD or M-HOT) and a stimulus waveform in the QuartusII 9.x Vector

Waveform File (VWF) format. We have created a stimulus input for every benchmark circuit.

As output, the simulator creates a waveform also in the VWF format.

QuartusII was also used to synthesize and simulate each circuit for the largest StratixIII

FPGA. The same stimulus VWF inputs were used in the QuartusII 9.x simulator to create a

repertoire of known-good output waveform results. All the results in this thesis for Wf = 0

have been checked against the known-good results and verified to be correct.

The simulator does not implement the fine-grained resources, so these results were not

verified through simulation. Instead, several small benchmarks were created to exercise the

capabilities of the fine-grained resources, and the results were verified manually. We are con-

fident that the fine-grained results are also functionally correct.

3.7 CLB Area

The area of a Malibu architecture CLB is the sum of the hardware blocks and the memories:

area = #CLBs× (area blocks+area memories) (3.1)

The area of area blocks is the total area from Table 3.1. For all results in this thesis, one in

60

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.6: Malibu memory area estimates.

SRAM µm2 eDRAM µm2 Flash µm2

Memory Specification Area Per Bit Area Per Bit Area Per Bit

NSEW 32x16, 3R1W 5,430 10.615 – – – –
R 32x128, 3R1W 27,244 6.651 – – – –

Instr. 81x256, 1RW 20,717 0.999 6,013 0.290 1,421 0.0686

five CLB columns contain a multiplier, so the average per CLB is:

area blocks =
4
5
·47,739+

1
5
·82,739 = 54,739T (3.2)

VPR/iFAR sets the area of one minimum-width transistor (1T) for logic at ≈0.5µm2 in

65nm:

area blocks = 54,739×0.5 = 27,369.5µm2 (3.3)

The value of area memories (the R, NSEW, and instruction memories) is found by using

the CACTI memory modelling tool [60] as shown in the SRAM columns in Table 3.6. The

NSEW and R memories need very fast read and write access, so they are implemented in

SRAM. The instruction memory is primarily read-only and accessed sequentially, allowing it

to be pipelined. It may be implementable in SRAM, eDRAM, or flash. To be consistent with

the StratixIII FPGA, we also implement it in SRAM.

Using the CACTI SRAM results, the area required for the memory is:

area memories = 4×5,430+27,244+20,717 = 69,681µm2 (3.4)

Therefore the total area for a Malibu CLB array is:

area = #CLBs× (27,369.5+69,681) = #CLBs×97,050.5µm2 (3.5)

61

CHAPTER 3. MALIBU ARCHITECTURE

As a sanity-check, a 32-bit ARM core in 65nm with a 32-bit ALU which includes a 32-bit

multiplier and no cache is approximately the same size, 0.1 mm2 [10].

There are other memory technologies like eDRAM and flash which are smaller than SRAM.

Although they are slower, they may be usable as the instruction memory since it can be ac-

cessed sequentially in a pipelined fashion. Table 3.6 also shows alternative memory config-

urations for the instruction memory which may further reduce the area of a Malibu CLB and

improve density. These instruction memory areas were estimated using technology parameters

for eDRAM [41] and flash [48]. However, additional work is required to verify these estimates

and whether they can be used in Malibu.

3.7.1 Area for Comparison to VPR/iFAR

To convert back to VPR minimum-width transistor-area (T), the same conversion factor of

1T≈0.5µm2 in 65nm is used:

area = #CLBs×194,101T (3.6)

This value is used in Chapters 5 and 6 to compute the area of various sized architectures

after the CAD tools have been explained.

3.7.2 Area for Comparison to QuartusII/StratixIII

To compare the area of a Malibu array to a StratixIII FPGA, the area of the Malibu CLB is

converted into equivalent ALMs. To do this, the area of a StratixIII ALM is needed. We

estimate this ALM area using the following procedure:

1. The size (and area) of the StratixII components are measured on an enlarged die photo

of an EP2S60 device shown in Figure 3.5.

2. These measured areas of the EP2S60 are then scaled up to the EP2S180 using the ratios

62

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.7: StratixII resources.

EP2S60 EP2S180 Ratio

L
og

ic

ALM 24,176 71,760 2.97
M512 329 930 2.83
M4K 255 768 3.01

18×18 144 384 2.67

MRAM 2 9 4.5

I/O 718 1,170 1.63

die size unknown ≈600 mm2

in Table 3.7. We convert to the EP2S180 because we have a good estimate of the physical

size of that device, 600mm2 (David Lewis, private communication).

3. The scaled areas for the EP2S180 are then scaled down to a physical area based on a

600mm2 device size, keeping the same core aspect ratio.

4. The physical area for the logic (that is, the core area excluding the MRAMs and periphery

I/O) is divided by the number of ALMs in the EP2S180.

5. Since the StratixII was fabricated in 90nm, and the StratixIII in 65nm, the result is di-

vided by 2 to convert to 65nm.

6. Since the StratixII and StratixIII use the same ALM, this area-estimate result is similar

for the StratixIII.

The details of these calculations are shown in Table 3.8. Overall, this gives us an approx-

imate StratixIII ALM area of 2,674µm2 (or 26,740µm2 per LAB). Using the estimated CLB

area computed previously in this section, the number of StratixIII ALMs per Malibu CLB is

97,050.5
2,674 ≈ 36.3. This means that each Malibu CLB is the same silicon area as 36.3 StratixIII

ALMs (or nearly 4 LABs). If one Malibu CLB implements the same user logic as 36.3 ALMs,

the architecture density would be the same. The area/density comparisons in Chapters 5 and 6

63

CHAPTER 3. MALIBU ARCHITECTURE

30
.5

 m
m

30
.5

 m
m

24 mm 24 mm
158 mm

20.5 mm20.5 mm

199 mm

17
.5

 m
m

17
.5

 m
m

10
8

m
m

14
3

m
m

LOGIC

INPUTS / OUTPUTS

MRAM MRAM

Figure 3.5: StratixII EP2S60 die photo. Dimensions are for a full-page blowup of the
figure (not actual chip dimensions). Photo courtesy of Mike Hutton/Altera.

compute the number of Equivalent StratixIII ALMs (eALMs) by multiplying the number of

Malibu CLBs by 36.3. Doing this allows the Malibu area and density to be compared directly

to QuartusII/StratixIII.

3.8 Conclusions

This chapter has presented the Malibu architecture and computed the area of a Malibu CLB.

The CAD tools (presented in Chapters 4–6) were used to determine architectural parameter

values. This constrained some benchmark circuits, mostly the Impaired circuits, leading to

larger Malibu array sizes for a successful synthesis. The tools were able to work around these

fixed restrictions and find a successful synthesis solution for all the benchmarks.

64

CHAPTER 3. MALIBU ARCHITECTURE

Table 3.8: StratixIII ALM area calculation.

Width Height Area Aspect
Item (mm) (mm) (mm2) Ratio

Enlarged
EP2S60
(From
Fig-
ure 3.5)

MRAM1 24.0 30.5 732.0
MRAM2 24.0 30.5 732.0
Core (excluding I/O) 158.0 107.5 16985.0 1.47
Chip 199.0 143.0 28457.0
I/O (Chip - Core) 41.0 35.5
Logic Only (Core - MRAMs) 15521.0

Enlarged
Estimated
EP2S180

Logic Only (3x EP2S60 Logic) 46563.0
MRAM (4.5x EP2S60 MRAMs) 6588.0
Core (Logic + MRAMs, same aspect

ratio as EP2S60) 279.5 190.2 53151.0 1.47

Chip (Core + I/O width and height) 320.5 225.7 72325.5

Physical
(Scaled to
600mm2)
EP2S180

Chip (Scaled to 600mm2) 28.6 21.0 600.0
Core (Same aspect ratio as EP2S60) 25.4 17.3 438.0 1.47
MRAMs 54.3
Logic (Core - MRAMs) 383.7

Per ALM (Logic / 71,760) 0.005348
Per ALM in 65nm (converted from 90nm) 0.002674

= 2,674µm2

Once the architecture parameter values were fixed, the area of the Malibu CLB was com-

puted, and was determined to be 70% memory (by silicon area). Using alternate technologies

like eDRAM or flash could reduce the memory area, leading to further density gains. However,

that work is outside the scope of this thesis.

Finally, the Malibu CLB area was expressed in minimum-width transistors for comparisons

to VPR/iFAR, and in equivalent ALMs for comparisons to QuartusII/StratixIII in Chapters 4–6.

65

Chapter 4

Front-End Synthesis

4.1 Overview

Mapping a circuit onto a hybrid time-multiplexed coarse-grained/fine-grained architecture is

an unexplored problem, and there is little in the literature to directly guide the creation of

such a CAD tool. Regardless of the approach taken, however, the first step must be the same:

the Verilog source (or VHDL) must be parsed, elaborated, optimized, and expressed in some

intermediate format for the tools to continue processing. This is called front-end synthesis.

Figure 4.1a shows an academic FPGA CAD tool flow. In this flow, the commercial tool

QuartusII is used to perform front-end synthesis. The OdinII [39] academic tool is being

developed for front-end synthesis, but it currently only implements a subset of Verilog, and

thus cannot be used to synthesize the benchmarks presented in Section 3.3. The remainder of

the academic flow uses T-VPack and VPR, which have become the de facto tools for academic

FPGA clustering, placement, and routing.

To map circuits into a hybrid time-multiplexed coarse-grained/fine-grained architecture

such as Malibu, a new tool flow is needed. This thesis presents two such flows: Malibu-CAD

(M-CAD) and Malibu-HOT (M-HOT). These two flows are shown in Figures 4.1b and 4.1c,

66

CHAPTER 4. FRONT-END SYNTHESIS

T−VPack

VPR Place

VPR Route

output

Quartus II

Verilog

(a)

mapped blif

clustered netlist

placement

Fine−
Grained

Parse

Odin II

ABC

VPR Route

routing

output

DFG

blif

Verilog

mapped blif

netlist

RTL Verilog

Coarse−
Grained

Fine−Grained

DFG

DFG

Parse

Odin II

ABC

blif

Verilog

mapped blif

RTL Verilog

Coarse−
Grained

Fine−Grained

DFG

netlist

VPR Route

routing

output

DFG

Merge

(c)(b)

 M−CAD Cluster

M−CAD Route

M−CAD Schedule

M−HOT Cluster

DFG DFGSynthesis
Front−End

M−CAD Place M−HOT Schedule

Front−End
Synthesis

Front−End
Synthesis

M−CAD M−HOT

Figure 4.1: Three CAD flows: (a) Academic (traditional), (b) M-CAD, and (c) M-HOT.
M-CAD follows the traditional place-then-route flow. M-HOT does placement,
routing, and scheduling simultaneously in the same tool.

respectively. Both flows start with the same front-end synthesis step which is primarily based

on the Verilator open source tool and is the subject of this chapter. Verilator is a Verilog to C++

synthesis tool that can parse, elaborate, and optimize the full synthesizable subset of Verilog

2005 at a coarse-grained level (that is, it preserves coarse-grained entities). This makes it a

very capable front-end tool to generate input for the back-end synthesis flows, M-CAD and

M-HOT.

However, since the Malibu architecture also has fine-grained resources, a second approach

is needed to synthesize fine-grained logic and signals on to these resources. The fine-grained

width threshold (Wf) is an architectural parameter used to separate the coarse-grained and

fine-grained components. To simplify synthesis, all nodes and edges wider than Wf are imple-

mented on coarse-grained resources, and nodes and edges of width Wf or smaller are flagged

for fine-grained synthesis. The front-end synthesis flow generates an OdinII-compatible Ver-

ilog description of all the fine-grained components, and then OdinII and ABC are used for

fine-grained synthesis. When both coarse-grained and fine-grained synthesis are done, either

67

CHAPTER 4. FRONT-END SYNTHESIS

the M-CAD or M-HOT flow is invoked. The M-CAD flow follows the same order of operations

as a traditional FPGA CAD flow and is discussed Chapter 5. The M-HOT (Height-Oriented

Tool) flow performs placement, routing, and scheduling simultaneously and is discussed in

Chapter 6. Generally, the M-CAD flow runs a bit faster, while the M-HOT flow produces

better quality results.

For a coarse-grained architecture, the front-end synthesis problem is somewhat the same

as in fine-grained FPGA CAD, except that we do not wish to reduce the circuit to a gate level.

Coarse-grained operations must remain intact to make use of the coarse-grained resources in

Malibu. A secondary requirement is that, for good performance, the synthesis must extract and

preserve as much parallelism as possible from the source circuit.

4.2 Circuit Representation

The Malibu CAD tools use a Data Flow Graph (DFG) representation of the circuit. Each graph

node is a circuit operation and each graph edge is a communication event. Figure 4.2a gives an

example Verilog specification of a circuit which operates as follows. On a rising clock edge,

the circuit assigns a value to register t1. The circuit also determines if a equals b and c equals

d. If they do, it assigns the next register value t1 to the output x; otherwise it assigns c XOR

d. The schematic of this circuit is shown in Figure 4.2b.

The DFG representation of this circuit is shown in Figure 4.2c. This was generated using a

modified version of Verilator, which is discussed in the next section. Each node has a unique

identifier, a type, an output width (the number outside the bottom of each node), a set of ordered

sources starting at 0 (the numbers outside the top of each node), and a set of unordered sinks.

For each sink, there is also a delay in system clock cycles which is not shown in the figure

because it is calculated during placement.

68

CHAPTER 4. FRONT-END SYNTHESIS

1 module top (c lk , a , b , c , d , x) ;
2 input c l k ;
3 input [3 : 0] a , b , c , d ;
4 output [3 : 0] x ;
5 reg [3 : 0] t1 ;
6 wire [3 : 0] t2 ;
7 wire c1 , c2 ;
8

9 assign c1 = (a == b) ? 1 ’b1 : 1 ’b0 ;
10 assign c2 = (c == d) ? 1 ’b1 : 1 ’b0 ;
11 assign t2 = c ˆ d ;
12 assign x = (c1 & c2) ? t1 : t2 ;
13

14 always @(posedge c l k) begin
15 t1 <= a + b ;
16 end
17 endmodule

(a)

+

a

b
=

=
c

d

4

4

4

4

a

b

1

0

4

4

4
4

4

x
4

c

4d

t2

t2

c1

c2

t1

4

0

a

1 2 3

b c d

ADD

4 5 6 7

8 9

XOREQ EQ

ASSIGNDLY

t1

COND

ASSIGNW

x

AND

0 0 0 0

0 0

0

0

0

0

1 1 1 1

1

1 1

1

4 4 4 4

44

4

4

4

4

VAR:IN VAR:IN VAR:IN VAR:IN

VAR:OUT

VAR:REG

2
1

10

11

12

13

(b) (c)

Figure 4.2: Example: Verilog source and Verilator output. (a) Verilog source for the
circuit example used throughout this thesis, (b) a schematic representation of the
circuit, and (c) the Verilator DFG output.

4.3 Parsing and Elaboration

The first step in front-end synthesis is to turn the source Verilog into a DFG representation of

the circuit for further processing. Verilator [71] is used to parse the Verilog input and perform

several optimizations. We do not use commercial tools like QuartusII for this because, even

though the circuit is presumably coarse-grained at some point during the internal processing,

there is no way to access these intermediate structures, and the output is a bit-oriented circuit.

Verilator is a compiled-code simulation tool. It normally synthesizes a circuit to a sequen-

69

CHAPTER 4. FRONT-END SYNTHESIS

tial language (C++), which in turn is compiled and executed on a desktop computer. Hence,

if Verilator is allowed to run to completion, it will remove all the parallelism from the cir-

cuit. This is not desirable for Malibu, so Verilator was modified to stop and output a DFG

after coarse-grained optimizations are applied but before it begins to serialize the graph. The

optimizations that Verilator applies are:

• Module elaboration – Instantiated modules are included and duplicated as needed to

create a single, flattened coarse-grained circuit with no hierarchy.

• Dead code elimination – Unused parts of the circuit are discarded.

• Constant folding – Operations with constant inputs are pre-calculated and the result is

inserted as a constant input.

• “Free” hardware operation removal – Operations like bit selection (accessing a slice of

a bus) are converted into shift and mask instructions. Unfortunately, Verilator performs

this conversion for fine-grained logic too, so we rely on OdinII to re-discover the origi-

nal operations when synthesizing the fine-grained parts of the circuit (which it does by

detecting the shift and mask instructions). No parallelization or other information is lost

by doing this, it only takes additional processing time.

These optimizations are done at the word-level, whereas FPGA CAD tools first convert

the circuit to bit-level Boolean expressions, then apply logic optimizations. While the latter is

effective for logic optimization purposes, it loses all the coarse-grained information.

Using Verilator in this manner works well, and the output is a high-quality DFG for many

circuits. However, since Verilator is not a full-scale commercial-quality synthesis tool designed

to perform full synthesis of parallel logic, it performs poorly in some cases (see Section 4.6).

In one case (wb conmax), the size of the fine-grained part of the circuit produced by Verilator

is the same as the entire circuit when synthesized by QuartusII. This may be because some

70

CHAPTER 4. FRONT-END SYNTHESIS

optimizations are unavailable at the word-level, or because those optimizations have not been

fully developed or implemented yet.

Figure 4.2c shows the Verilator DFG output. Verilator uses a verbose set of node types

which must be mapped to the 27 instructions in the Malibu architecture. Notice that wires (c1

and c2) have already been synthesized away, and the constants used by the ternary operators

are optimized out. Also notice that the register (t1) remains because it is required to preserve

the proper clock-edge behaviour. The entire DFG is coarse-grained except for node 9 which

does a computation on fine-grained logic to control the conditional assignment in node 11.

In Figure 4.2c, there are some nodes which are not self-explanatory:

• ASSIGNDLY is a delayed assignment to a variable that only takes effect at the end of the

current clock cycle.

• ASSIGNW is a non-delayed assignment to a variable that takes effect immediately.

• COND is a two-input multiplexer with a control signal. If the value on input 2 is zero,

then input 0 is passed to the output, else input 1 is passed.

• VAR:REG is a register. It outputs a constant value for the duration of a user clock cycle.

The value may change only at the end of a user clock cycle.

A complete list of the Verilator nodes, and their mappings to Malibu, can be found in Ap-

pendix C.

4.4 Coarse-Grained Synthesis

In addition to the 27 Malibu ALU operations in Table 3.1, our output circuit representation

uses five other nodes to store information about the circuit:

• INPUT and OUTPUT – These nodes are for circuit I/O and are used by the placer to

71

CHAPTER 4. FRONT-END SYNTHESIS

allocate the appropriate input/output resources in CLBs around the periphery of the ar-

chitecture. They are not executed by the ALU and do not appear in the final schedule.

• CGO and CGI – These nodes are the gateway between the coarse-grained and fine-grained

operations. Nodes in the fanout cone of a CGO node are considered fine-grained down

to the next CGI node. The placer uses these nodes to help track the CGI/CGO resource

usage. They are not executed by the ALU and do not appear in the final schedule.

• CONST – This node provides a constant input to the circuit. Constants which are larger

than 12-bits (too large to fold into the 12-bit immediate field of an instruction) are left in

the circuit. The scheduler duplicates these nodes after placement (so that a CONST node

never fans out to a node outside a CLB), and then implements the constant by allocating

a dedicated offset in the relevant R memories for each constant value. We assume that

when a bitstream is loaded into the Malibu architecture that these initial values in the R

memory will be loaded as well.

Most of the nodes from Verilator are trivially converted to the 27 Malibu ALU operations

and the above five placeholder nodes. For example, a COND node is replaced by a MUX op-

eration. A complete listing of all such mappings is included in Appendix C. Even nodes like

CONCAT, which would otherwise map into a series of masks and shifts, are directly supported.

However, there are some non-trivial transformations required to legalize the DFG for the Mal-

ibu architecture:

• Verilator maps multiple writes to a single variable (a register, wire, or variable in the

source Verilog) to a series of sequential IF statements which overwrite the same variable.

While this is good for execution on a sequential processor (which is exactly why Verilator

does it), this is not implementable in hardware. These assignments are detected and

mapped to a binary decision tree that feeds a single write operation. This also allows

72

CHAPTER 4. FRONT-END SYNTHESIS

the computation of the written value to be (potentially) distributed among CLBs while

having one instance of the final value. Since this conversion adds logic to the circuit, it

could increase the critical path by the depth of the decision tree (dlog2e of the number

of writes), or could cause some other path to become critical, reducing the maximum

achievable use clock frequency.

• User-instantiated memories, represented as array operations in the DFG, are mapped to

R memory locations. The clustering tool ensures all operations ot the same user memory

reside in the same CLB.

• To keep memory usage low, multi-port ROMs in the user circuit are time-multiplexed

rather than replicated. In most of the benchmarks a single ROM is independently ac-

cessed by only two or three reads. However, an extreme example is the Advanced En-

cryption Standard (AES) benchmark, aes core, which uses a 256 byte substitution box

(s-box) that is instantiated 20 times. It is good behaviour for Verilator to time-multiplex

this memory because the C++ program it would normally create can read from the same

memory as often as necessary. However, this is problematic for Malibu because the 20

separate LOAD operations are required to be in the same CLB to read from the same

memory. It would be better to use a heuristic in Verilator to determine when to replicate

and when to time-multiplex such memories, but we have not implemented that feature.

• Signals declared with the Verilog reg keyword will cause a register to be inserted in the

DFG (if Verilator does not optimize it away). For these signals, the DFG node fanning

out to a register (VAR:REG) is flagged as registered. If the node also fans out to a non-

register it is duplicated first, and only one is marked as registered. All registers are then

removed and replaced with wires leaving the node with the registered flag. This flag

causes special treatment in the scheduler to recreate the expected clock-edge register

behaviour.

73

CHAPTER 4. FRONT-END SYNTHESIS

0

a

1 2 3

b c d

ADD

4 5 6 7

XOREQ EQ

0 0 0 01 1 1 1

1 1

4 4 4 4

INPUT INPUT INPUT INPUT

44

11

9

AND

0 1

1

1

0

CGO CGO

CGI

0

0

4

2
1

x

OUTPUT

MUX

13

11

14 15

16

1 module fg (n14 , n15 , n16) ;
2 input n14 , n15 ;
3 output n16 ;
4 wire n9 ;
5

6 assign n9 = n14 & n15 ;
7 assign n16 = n9 ;
8 endmodule

(a) (b)

Figure 4.3: Example: DFG after coarse-grained synthesis. (a) The DFG, and (b) the
generated RTL Verilog for fine-grained synthesis.

• Any constants less than or equal to 12 bits wide are folded directly into the instructions

it feeds as an immediate operand.

• Nodes and edges of width ≤Wf are considered fine-grained and marked to use the FG

resources. CGO and CGI nodes are inserted around all such fine-grained logic.

Figure 4.3a shows the circuit after these transformations have been applied. The ASSIGN

nodes have all been removed. Node 4 (ADD) is redrawn as a box to indicate it is registered;

this means the output should only become available at the beginning of the next user cycle. The

74

CHAPTER 4. FRONT-END SYNTHESIS

VAR:REG node has been removed, and the VAR:IN and VAR:OUT nodes have been replaced.

Finally, the fine-grained logic has been detected (using Wf = 1) and the appropriate CGO and

CGI nodes have been inserted.

If there is no fine-grained logic in the circuit, or Wf has been set to 0, then fine-grained

synthesis is skipped, and front-end synthesis is now complete. However, additional steps are

required to process the fine-grained components, as described in the next section.

4.5 Fine-Grained Synthesis

The fine-grained parts of the circuit (DFG nodes and edges with width Wf or smaller) are writ-

ten out from Verilator as OdinII-compatible RTL Verilog, synthesized to LUTs using OdinII

and ABC, then merged back into the coarse-grained DFG for clustering. By using RTL Ver-

ilog, even multi-bit operations can be easily written (for cases when Wf > 1). OdinII elaborates

the design to single-bit operations, and ABC cleans up any dangling logic (e.g., from an add

operation where the carry bit is discarded) and technology-maps the logic to LUTs.

Figure 4.3b shows the RTL Verilog generated for the fine-grained part of the circuit in

Figure 4.3a. The CGO and CGI nodes are used as inputs and outputs. In this example, the

resulting fine-grained synthesis will return a single LUT.

After fine-grained synthesis, the LUTs are merged back with the coarse-grained operations

to form a complete DFG, shown in Figure 4.4. To perform the merge, all nodes between the

CGO and CGI nodes are deleted. Then, the Berkley Logic Interchange Format (BLIF) file

output of ABC is used to create a new LUT node for each tech-mapped LUT, and the truth

table data is attached to the node. The names of the CGO and CGI signals are not changed by

OdinII or ABC, so input/output matching can be easily done. However, it is possible that some

fine-grained logic will be optimized away, leaving some CGO nodes with no fanout (e.g., if a

Boolean algebra reduction determines that a signal will have a constant value, all logic driving

that signal will be removed). Thus, after merging, the dead-code elimination optimization is

75

CHAPTER 4. FRONT-END SYNTHESIS

out10

0 0

0 1

1 0

1 1

0

0

0

1

0

a

1 2 3

b c d

ADD

4 5 6 7

XOREQ EQ

0 0 0 01 1 1 1

1 1

4 4 4 4

INPUT INPUT INPUT INPUT

4

11

0 1

1

1

0

CGO CGO

CGI

LUT

14 15

17

16

0

0

4

2
1

x

OUTPUT

MUX

11

4

13

Figure 4.4: Example: DFG after fine-grained synthesis. Node 9 has been replaced by a
LUT node which contains a truth table.

run again to delete any dangling logic.

Placing LUTs in CLBs is integrated with the placement tool and is done concurrently with

placement of the CG nodes. The number of CGI and CGO interfaces needed in a CLB will

change while performing CG placement, depending where nodes around the LUT are placed

and the availability of CGI and CGO resources. For this reason, LUT placement must be

considered concurrently with CG operation placement.

76

C
H

A
PT

E
R

4.
FR

O
N

T-E
N

D
SY

N
T

H
E

SIS

Table 4.1: Front-end synthesis results.

QuartusII for QuartusII Malibu Front-End Synthesis

StratixIII for VPR % Nodes Nodes in DFG

Circuit ALMs 18× 4-LUTs Nodes Nets %r 1b 2b 4b Wf = 0 Wf = 1 Wf = 2 Wf = 4

C
G

-o
nl

y

fft16 6,412 84 17,006 2,120 2,236 29 0 0 0 2,120 – – –
me 5,148 0 14,388 5,954 7,020 14 0 0 0 5,954 – – –

chem 3,526 175 36,143 568 714 0 0 0 0 568 – – –
fft8 2,075 28 5,248 800 836 29 0 0 0 800 – – –

honda 1,216 52 3,795 249 293 0 0 0 0 249 – – –
mcm 1,057 56 3,067 232 288 0 0 0 0 232 – – –
wang 797 24 2,275 134 152 0 0 0 0 134 – – –

pr 646 18 1,893 176 194 0 0 0 0 176 – – –

G
oo

d

ac97 ctrl 1,254 0 3,538 4,911 6,097 8 47 10 6 4,911 3,187 3,033 2,936
aes core 1,154 0 5,021 3,380 3,970 1 8 1 8 3,380 2,191 2,229 2,209

dir 1,150 8 6,620 884 1,190 6 22 3 16 884 884 846 616
spi 488 0 987 664 856 6 37 4 9 664 505 504 469

pci master 137 0 325 957 1,342 8 71 3 16 957 728 716 563

Im
pa

ir
ed

ethernet 6,868 0 19,626 9,693 13,686 15 61 4 6 9,693 7,528 7,219 6,574
wb conmax 5,349 0 16,098 17,917 23,558 2 40 8 22 17,917 13,566 13,782 8,017

dma 1,714 0 5,071 18,514 23,650 6 41 3 9 18,514 14,018 14,241 8,284
tv80 850 0 2,330 12,186 16,027 2 44 4 25 12,186 9,227 9,374 5,453

jpeg enc 791 64 2,836 4,486 5,882 11 13 0 11 4,486 4,197 4,197 4,580
systemcaes 716 0 2,181 3,043 3,799 0 23 8 26 3,043 2,570 2,545 2,352

des 298 0 865 4,114 5,497 0 34 0 2 4,114 3,856 3,856 3,829
systemcdes 237 0 650 1,688 2,131 0 24 1 4 1,688 1,922 1,905 1,939

18×: Number of 18×18 multipliers required.
%r: Percent of nodes which are registered (output of a register).

%Nodes: Percent of nodes which output a one-bit (1b), two-bit (2b), and three- or
four-bit (4b) value.

77

CHAPTER 4. FRONT-END SYNTHESIS

4.6 Benchmark Evaluation

Table 4.1 presents the results of front-end synthesis with QuartusII and Malibu. The first two

QuartusII columns (ALM count and the number of 18×18 multipliers required) are for syn-

thesis to a StratixIII FPGA. A complete list of the resources required for each benchmark on

a StratixIII is in Table 3.3. The StratixIII ALM is most commonly thought of as a 6-input,

2-output lookup table (a 6x2 LUT), but is reconfigurable into different modes ranging from

two 4-LUTs to some 8-input functions [4].

The third QuartusII column, the number of 4-LUTs, is taken from the QuartusII-generated

BLIF for VPR. VPR only accepts a BLIF file as input. Unfortunately, we were unable to use

QuartusII to produce a BLIF with hard multiplier blocks, so the 4-LUT BLIF for VPR uses

LUTs exclusively.

Comparing the ALMs to the 4-LUTs, the results are mostly as expected: fewer ALMs than

4-LUTs are required, and benchmarks with multipliers use many more 4-LUTs.

The Malibu results in Table 4.1 are from the front-end logic synthesis described in this

chapter (before clustering, placement, routing, or scheduling has been done). The “%r” column

is the percent of nodes which are registered; this value is important in Chapter 6 for the M-HOT

approach where all registered nodes are at height = 0. A large number of registered nodes

means the M-HOT scheduler may do a disproportionate amount of work at height = 0, and

thus may run slowly. The “%Nodes” columns are the percent of nodes which output a one-bit

(1b), two-bit (2b), and three- or four-bit (4b) value. The fine-grained resources implement the

1b nodes when Wf = 1, the 1b and 2b nodes when Wf = 2, and the 1b, 2b, and 4b nodes when

Wf = 4.

For most of the coarse-grained benchmarks (CG-only), the number of Malibu nodes is less

than the QuartusII ALM count. This is expected because each node can have up to 64-bits

of input and 32-bits of output, whereas an ALM is at most an 8-input, 2-output operation.

78

CHAPTER 4. FRONT-END SYNTHESIS

A node versus ALM comparison is not ideal, but it does give a sense for the relative size of

each circuit, and for the number of entities the CAD tools must process. The Malibu front-end

synthesis is operating as expected for these coarse-grained circuits. The exception is the me

benchmark where QuartusII is able to better-optimize the result to give a circuit with fewer

ALMs than nodes. This suggests that there are additional optimizations that are not being

applied by Verilator during front-end synthesis.

For the Good circuits, the Malibu node count is 3-6x higher than the ALM count. This

makes sense because of the one-bit node percentages (the 1b column in Table 4.1). In this

table, all nodes are being mapped to CG operations, so circuits with one-bit operations are using

unnecessary resources. It is possible to reduce the node count considerably after mapping to

LUTs because a LUT can collapse many Boolean expressions into a single step (the LUT). The

last four columns in Table 4.1 show a decreasing node count as more Malibu CG operations

are migrated to the LUTs (as Wf is increased). For these results, fine-grained synthesis is

performed. For the Good circuits, the Malibu node count is reduced to almost half. The

Wf = 0 and Wf = 1 node counts for the dir benchmark are the same because there are a number

of COND operations which have a single one-bit computation for the conditional input in the

benchmark. When Wf = 1, that single node is implemented in a single LUT, giving the same

node count.

The significant increase from ALMs to nodes for the pci master benchmark is caused by

a user-instantiated look-up table created with a case statement. Section 4.6.1 describes four

Verilog structures, including this one, which map poorly to the Malibu architecture. For the

pci master benchmark, it uses about 200 more nodes than necessary. We are not modifying the

benchmark circuits in this thesis, so we leave this result as-is. However, fixing this would also

bring pci master down near the same 2x range versus the ALM count.

For most of the Impaired circuits, QuartusII is able to generate a much smaller ALM count

compared to the Verilator node count. This is true even when the different values for Wf are

79

CHAPTER 4. FRONT-END SYNTHESIS

considered in Table 4.1. The des, dma, and tv80 benchmarks have a node count over 10x the

ALM count. These same circuits also have the longest schedule lengths in Table 3.4, which

means they have the lowest user clock speeds. The primary reason is that these benchmarks use

Verilog structures which do not map well to coarse-grained architectures, as is explained in the

next section. This further suggests the need for improvements to the front-end logic synthesis

in future work.

4.6.1 Bad Verilog Structures

We have identified four bad Verilog structures that should be avoided when designing circuits

for Malibu. Even though Verilog is a general language, skilled designers often write Verilog

code to target a specific technology (e.g., a specific FPGA with specific resources). This ap-

proach would be needed for Malibu as well; the designer would need to learn to avoid the

Verilog structures presented in this section.

To help alleviate the impact of these structures, we have implemented a technique to do

parallel evaluation of case statements while preserving the priority final-assignment order as

required by Verilog semantics. This helps for some situations in cases 3 and 4 below (case

LUTs and serial cases), but it is not an ideal solution. The four bad structures are explained

below and their usage by the benchmark circuits is summarized in Table 4.2 under the following

headings:

1. Bit-Level Coarse Ops – Specifying coarse operations at the bit level. The type of opera-

tion is given (e.g., <<) followed by two values (X, Y), where X is the number of instances

of that type of operation, and Y is the largest output-width of that operation.

2. Bit Aggregating – Using a bus to aggregate individual bits. Three numbers are specified:

“Xs, Yrd, Zwr”. X is the total number buses used to aggregate individual bits, Y is the

number of reads from such signals, and Z is the number of writes to such signals.

80

CHAPTER 4. FRONT-END SYNTHESIS

Table 4.2: Bad Verilog structures used in benchmark circuits.

Bad Construct

Circuit Bit-Level Coarse Ops Bit Aggregating Case LUT Serial Case

C
G

-o
nl

y

fft16 – – – –
me – – – –

chem – – – –
fft8 – – – –

honda – – – –
mcm – – – –
wang – – – –

pr – – – –

G
oo

d

ac97 ctrl – 3s, 12rd, 0wr – 10 (10)
aes core – – 512 (256) –

dir – – – –
spi – – – –

pci master – – 15 (15) –

Im
pa

ir
ed

ethernet << (2, 10) 15s, 55rd, 56wr 10 (10) 16 (8)
wb conmax – 15s, 124rd, 48wr 8 (8) 120 (16)

dma – 54s, 707rd, 208wr 247 (16) 146 (9)
tv80 see footnote1 1s, 15rd, 0wr 8 (8) 720 (256)

jpeg enc see footnote2 1s, 64rd, 64wr 4200 (4096) –
systemcaes – 13s, 204rd, 56wr 16 (12) –

des – 38s, 1778rd, 1058wr – 512 (64)
systemcdes – 8s, 896rd, 384wr 12 (5) 512 (64)

Note: The notation used in this table is explained in Section 4.6.1.
1An 8bit adder/subtracter is built from 1bit adders with a carry chain. An 8-bit shift/rotate
left and right are individually specified at the bit level.

2One third of this circuit (by node count) is a 16-bit divider specified at the bit-level. How-
ever, since Malibu does not have a divide instruction, this operation cannot be simplified.

3. Case LUT – Creating a look-up table with a case statement or logic. Two numbers are

specified: “X (Y)”. X is the total number of items in all case statements used to declare

memories, and Y is the size of the largest memory.

4. Serial Case – Sequential evaluation of parallel cases. Again, two numbers are specified:

“X (Y)”. X is the total number of items in all serial case statements, and Y is the size of

the largest serial case chain.

81

CHAPTER 4. FRONT-END SYNTHESIS

Specifying Coarse Operations at the Bit Level

High-level operations like add (+), subtract (-), multiply (*), and shift (<< and >>) should be

used to create adders, subtracters, etc. When designing for performance or area on an FPGA

or ASIC it is sometimes beneficial to construct a wide adder out of full adders and manually

create carry-chains, for example. However, specifying an adder in this way is wasteful on a

coarse architecture and leads to longer compile times and reduced performance. Automatically

detecting such manually-specified coarse structures is a challenging problem because of the

vast number of ways an adder, for example, could be built from fine-grained components. It is

further complicated because the tools do not know what the original intention of the designer

was; something that may look like an adder, except for a wire or two, may not actually be an

adder. Therefore, properly specifying coarse constructs for coarse-grained architectures should

be a circuit design-style change. In this thesis, we have not modified any of the benchmark

circuits.

Using a Bus to Aggregate Individual Bits

Verilator generates shift-right (LSRI) and mask (ANDI with a constant) operations to read

individual bits of a multi-bit signal, and generates a sequence of concatenation (CONCAT)

operations to combine individual bit-writes into a group to form a multi-bit signal. Figure 4.5

illustrates these with an example from the dma benchmark. Neither of these structures are ideal

for a coarse architecture, as will be discussed next.

Each read from the dma irq signal in Figure 4.5 generates shift and mask instructions,

even for reads from the same bit. In the dma benchmark, there are three reads for each bit of

this signal, for a total of 24 shift and 24 mask instructions (only two are shown in Figure 4.5).

The tools could perform common subexpression elimination to reduce the amount of logic

by scanning the descendants of a signal for identical LSRI and ANDI instructions. Even

better would be to modify Verilator to not generate such nodes in the first place. Neither of

82

CHAPTER 4. FRONT-END SYNTHESIS

ANDI #1

LSRI #7

dma_irq[7]

8

1

CONCAT

CONCAT

1 7

1

dma_irq[6]

dma_irq[7]

CONCAT

dma_irq[5]

8

8
8 8

8

8

ANDI #1

dma_irq[7]

8

1

8

1

ANDI #1

8

1

LSRI #7 LSRI #6

ANDI #1

dma_irq[6]

LSRI #6

dma_irq[6]

reading the
same bit

1 5

6

dma_irq[7:0]

Figure 4.5: Using a bus to aggregate individual bits. Example of a bad structure from
the dma benchmark. An 8-bit signal is used to store independent bits causing a
concatenation sequence for writing, and individual LSRI and ANDI operations for
reading.

these options have been explored because the focus of the thesis is on back-end synthesis.

An alternate solution would be hardware support for a bit extraction operation in the CGO

registers. This would eliminate the shift and mask operations completely.

To aggregate the multi-bit signal, a single concatenation chain is used, which can unneces-

sarily increase the critical path of the circuit by the number of bits in the signal (eight in the

case for dma irq). It is possible to improve this case in the tools by turning the chain into a

tree using the same n−1 CONCAT operations, but with a depth of dlog2(n)e instead of n. This

optimization has been done because it is similar to the multiple-parallel-case logic presented

later in this section.

83

CHAPTER 4. FRONT-END SYNTHESIS

An additional problem with this read and write behaviour that cannot easily be solved by the

tools is the potential for a large fanout; dma irq fans out to 24 operations in the dma bench-

mark. This causes delay and congestion when scheduling since not all 24 of these instructions

can be scheduled in the timeslot immediately following the final CONCAT, so additional delay

is inevitable. A smarter algorithm could, for example, realise that the lower bits of dma irq

are computed early, and thus do not need to go through the entire CONCAT before being sep-

arated again. However, the large fanout still creates congestion, putting pressure on resources

that that could be used by other paths. A smart CAD algorithm or a circuit design-style change

is what is needed to avoid this situation.

The ideal solution from a coarse-grained synthesis point of view for aggregating individual

bits is to not declare individual bits as a multi-bit signal at all. Instead, they should be declared

as individual signals (e.g., wire dma irq0, dma irq1, ...) with a final concatenation

if a multi-bit aggregation is ever needed. Doing this automatically is challenging and would

require careful graph analysis algorithms which are beyond the scope of this thesis. Doing

this at design time places more work on the circuit designer but should produce a better result

than relying on the tools to discover the parallelism. Either approach eliminates the concate-

nation chains and the shift-and-mask logic around the actual variable. Both also eliminate the

fanout-congestion and allow the tools to potentially put each bit in a different CLB, increasing

parallelism.

Creating a Look-Up Table with a Case Statement or Logic

For a coarse-grained architecture, a look-up table should be declared as an array (e.g., wire

[31:0] lut data[0:63] for a 64x32bit memory), and should be initialized with a Ver-

ilog initial block. Figure 4.6a shows a snippet of Verilog code from the dma benchmark

which creates a look-up table using a case statement. Figure 4.6b shows code with the same

functionality, but re-written to use a memory. Figures 4.6c and 4.6d are the DFGs generated

84

CHAPTER 4. FRONT-END SYNTHESIS

by Verilator from the two pieces of code. Using a case statement to specify a LUT creates a

chain of conditional evaluations, one for each table entry, which must be evaluated in order

according to Verilog case-statement semantics. This can increase the critical path (and thus the

schedule length) by the number of entries in the lookup table.

A tool could automatically convert look-up tables specified in case statements to memories

by scanning the DFG for a specific pattern (CONST nodes feeding chained MUX nodes in this

case). The conditional input to to each MUX could also be checked, but it is complicated if

the programmer has used don’t-care conditions (e.g., 4’b0x1x). A general approach for

automatic conversion to cover all cases would be challenging to create, so such conversion is

not explored in this thesis. However, because some benchmark circuits contain large look-

up tables (e.g., the aes core benchmark with a 256-entry look-up table, which adds 256 to

the schedule length), we have added an optimization to automatically convert the sequential

evaluation chain into a tree. This reduces the maximum depth from n to dlog2(n)e, where n is

the number of case entries.

The ideal solution for a coarse-grained architecture is for the circuit designer to specify a

look-up table as shown in Figure 4.6b. This removes any guesswork from the tools, removes

the need for a decision-chain or a decision-tree, and allows for direct synthesis into a coarse-

grained-compatible structure (a memory).

Sequential Evaluation of Parallel Cases

When a case statement is declared, Verilator synthesizes a chain of conditional evaluations

which, according to Verilog semantics, must be evaluated in order. This sequential chain can

lengthen the critical path. Unlike the look-up table case in the previous subsection, the entire

case statement cannot be optimized into data storage. Some synthesis tools (e.g., Synopsis)

support ways of annotating the source Verilog to aid the synthesis tools. Verilator does not

support this feature and lacks support for a full-parallel-case, so it always evaluates case state-

85

CHAPTER 4. FRONT-END SYNTHESIS

1 always @(c0dmabs)
2 begin
3 case (c0dmabs [1 9 : 1 6])
4 ’ b0000 : c0dmamsk = ’ b0000 ;
5 ’ b0001 : c0dmamsk = ’ b0001 ;
6 ’ b0010 : c0dmamsk = ’ b0011 ;
7 ’ b0011 : c0dmamsk = ’ b0111 ;
8 defaul t : c0dmamsk = ’ b1111 ;
9 endcase

10 end

1 wire [3 : 0] dmamsk [3 : 0] ;
2 wire [3 : 0] c0dmabs19 ;
3 i n i t i a l begin
4 dmamsk [0] <= ’ b0000 ;
5 dmamsk [1] <= ’ b0001 ;
6 dmamsk [2] <= ’ b0011 ;
7 dmamsk [3] <= ’ b0111 ;
8 end
9

10 assign c0dmabs19 = c0dmabs [1 9 : 1 6] ;
11 always @(c0dmabs)
12 c0dmamsk = (c0dmabs19 <= ’ d4)
13 ? dmamsk [c0dmabs19] : ’ b1111 ;

(a) (b)

MUX

MUX

LSRI #15

ANDI #15

LSRI #15

ANDI #15

LSRI #15

ANDI #15LSRI #15

ANDI #15

LSRI #15

ANDI #15

c0dmamsk

MUX

MUX

CONST #0

CONST #7

CONST #3

CMPI #0

CONST #1CMPI #1

CMPI #2

CMPI #3

c0dmabs

CONST #15

dmamsk

LOAD
LTEI #4

CONST #15

MUX

c0dmamsk

c0dmabs

(c)

(d)

Figure 4.6: Example of a look-up table creation. (a) Verilog code for a lookup table
from the dma benchmark (lookup table created with a case statement). (b) The
same lookup table rewritten to use a memory. (c) Synthesized DFG for the code
in (a). (d) Synthesized DFG for the code in (b). The memory-based lookup table
synthesizes to fewer nodes, requires less instruction memory, and executes faster.

86

CHAPTER 4. FRONT-END SYNTHESIS

ments sequentially.

Instead of a sequential chain of comparisons, a binary decision tree can be used which only

requires dlog2(n)e depth. This decision tree is essentially an n-input multiplexer. The code to

generate such a tree has been implemented and is used in all the results presented in this thesis.

The conditional inputs to each MUX instruction are used to form the select inputs at each level

of the decision tree, ensuring that the highest priority signals (the ones declared first) takes

precedence over the others in the case of multiple case matches.

The tv80 benchmark has a 256-case instruction decoder, which lengthens the critical path

(and thus the schedule length) by 256, causing it to be over 400 timeslots. Using this deci-

sion tree transformation reduces the critical path contribution of the case statement to only

log2(256) = 8 timeslots. This shifts the critical path to a different part of the circuit, reducing

the overall schedule length to 204.

4.7 Conclusions

This chapter has presented the common front-end synthesis approach for the M-CAD (Chap-

ter 5) and M-HOT (Chapter 6) flows. While this is not a commercial-quality synthesis solution,

it provides the features required for Malibu CAD, namely, it creates a coarse-grained DFG, it

applies coarse-grained optimizations, and it allows the fine-grained parts of the circuit to be

separated, synthesized, and merged.

An analysis of the benchmarks circuits used in this thesis lead to three classifications: CG-

only, Good, and Impaired. In the Impaired circuits, four bad circuit design structures were iden-

tified which significantly contribute to the poor mapping onto Malibu (long schedule lengths,

and larger area). The node-inflation shown in this chapter is a significant limitation in Malibu

which contributes to the poor results. However, as demonstrated by the CG-only and Good

benchmarks, it is possible to design circuits for the coarse-grained Malibu architecture with-

out using these bad structures. The results of front-end synthesis for the CG-only and Good

87

CHAPTER 4. FRONT-END SYNTHESIS

benchmarks show the Malibu/Verilator solution is working well and gives node counts which

are smaller than the QuartusII ALM count for the CG-only circuits.

There are many optimizations and improvements to coarse-grained front-end synthesis

which can be investigated as future work. The automation of the conversion of the bad

structures into Malibu-compatible ones will require careful and intelligent graph analysis tech-

niques.

Next, in Chapters 5 and 6, we present back-end synthesis, and explore mapping the DFG

output of front-end synthesis onto the Malibu architecture.

88

Chapter 5

M-CAD: An FPGA CAD Based Tool Flow

5.1 Overview

As a starting point for coarse-grained synthesis, the M-CAD flow is based on a well-studied

fine-grained flow for mapping circuits to FPGAs—the VPR academic FPGA CAD tool flow—

which is augmented to add support for word-oriented resources.

The tool flow begins with front-end synthesis as described in Chapter 4. Once the DFG has

been constructed, the objective of M-CAD is to assign each coarse-grained node in the DFG to

a timeslot in a CLB where it will be executed, assign each fine-grained node to a LUT within

a CLB, and to route all edges (communication) over both the coarse-grained and fine-grained

routing resources to connect the nodes. As with a traditional FPGA CAD flow, M-CAD is

divided into several steps for clustering, placement, routing, and a step called scheduling to

order the time-multiplexed operations over time. All steps are timing-driven, which means

minimizing the schedule length for the time-multiplexed coarse-grained operations.

Compared with traditional FPGA synthesis, significant time can be saved by using and

maintaining the coarse-grained elements in the circuit rather than decomposing all the oper-

ations down to 2-input gates. For example, a large circuit may have ≈ 1 million logic gates

89

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

which must be placed and routed. If these were all expressed as higher-level 32-bit operations

(like add, subtract, etc.), a significant reduction in the number of operations can be achieved.

For example, a single 32-bit add contains 32 full adders, where each full adder contains a

3-input XOR and three 2-input NAND gates. For a single 32-bit multiply, an even greater

number of small gates are required. Not all operations in every circuit can be expressed as a

high-level operation, but these examples show the potential. Avoiding synthesis from high-

level operations down to gates saves time in two ways: i) reduced time to generate the DFG

from the Verilog, and ii) reduced time to process (optimize, place, route, etc.) the circuit due

to a reduced problem size.

The tool flow requires two inputs: the Verilog description of the circuit, and an architecture

file. The parameter values from Table 3.5 are used to create the architecture file. These values

act as constraints in the tool flow.

The remainder of this chapter is organized as follows. Sections 5.1–5.5 explain the M-

CAD flow and show how it maps circuits onto the Malibu architecture. Section 5.6 presents

experimental results and compares these to results from QuartusII and VPR with respect to

density, compile time, and performance. Section 5.7 provides concluding remarks about M-

CAD.

5.2 M-CAD Cluster

The first step after front-end synthesis is clustering. The clustering tool groups CG operations

into clusters for each CLB to speed up placement. It also always groups some operations into

the same cluster as follows:

• CGO nodes are placed in the same cluster as the source. This is because a fine-grained

value should enter the fine-grained resources in the same CLB as the coarse-grained

operation which produced the value. It would be inefficient to transfer this value over the

90

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

coarse-grained routing resources to another CLB, only to have it enter the fine-grained

resources at that point.

• CGI nodes are replicated, with one copy placed in the same cluster as each sink. Similar

to the reasoning above for CGO nodes, a coarse-grained instruction which uses a fine-

grained value should have that fine-grained value routed directly to, and available in,

the same CLB. The nodes are replicated because the signal could transfer back to the

coarse-grained resources in several CLBs.

• All LOAD and STOREmemory operations for the same user-memory must be in the same

cluster.

The goal is to balance the number of operations in each cluster and to reduce the amount of

communication by absorbing as many nets as possible into clusters. A partitioning algorithm

can achieve exactly this, so M-CAD uses hMETIS [42], a well-known hypergraph (circuit) par-

titioning tool, to partition the graph using recursive bisection. To guide hMETIS in balancing

the clusters, all nodes in the DFG are assigned a weight of 1, except the five placeholder nodes

(CONST, CGO, CGI, INPUT, and OUTPUT) which are assigned a weight of 0. These latter

nodes can be placed in any CLB for free, but they are subject to other constraints:

• CONST is replicated after placement for each CLB that needs it, so it does not matter

where it is clustered.

• CGO and CGI are attached to their sources or sinks with high edge weights to ensure

they are not separated. Similarly, related LOAD and STORE nodes are connected with

high edge weights to ensure all operations involving for the same user memory reside

in the same CLB. However, LOAD and STORE nodes (not edges) are assigned a (node)

weight of 1 because they require an ALU cycle. The choice to use high edge weights to

keep nodes together is an implementation decision; it makes it easier to export the graph,

91

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

run hMETIS, and then import the cluster information back into the DFG if the hMETIS

input and output exactly match what is in the DFG.

• INPUT and OUTPUT are limited to one of each per cluster.

The tool can cluster code to varying degrees to target any number of CLBs, allowing a

tradeoff between area (number of CLBs) and performance (frequency). By default, the cluster-

ing tool creates twice as many clusters as CLBs to give the placement tool some freedom. This

method of clustering does not capture the time-multiplexed nature of the problem, and indeed,

it would be challenging to do so without embedding a placement and scheduling tool inside the

clustering algorithm (which we tried, and it was slow, as expected).

Our own testing has shown that, for Malibu, twice the number of clusters gives good qual-

ity results. Additional clusters increases the runtime significantly (the placer uses simulated

annealing) and only decreases the overall schedule length by a cycle or two as the number of

clusters approaches the situation where no clustering is being done.

Continuing the example from Figure 4.4, Figure 5.1 shows a possible clustering with only

four clusters for two CLBs. This clustering violates the I/O restriction of one external input

(the INPUT nodes) per CLB, so we shall assume that the architecture can support two inputs

per CLB for corner CLBs. In this example there are only six operations which would be

considered when balancing the number of operations per cluster (two EQs, ADD, XOR, LUT,

and MUX). Note that the CGO nodes remain in the same cluster as their sources, and the CGI

node is in the same cluster as the sink.

5.3 M-CAD Place

The placement tool takes the clustering information in the DFG and assigns the clusters to

CLBs. The goal is to keep the critical path small. The tool uses VPR’s timing-driven simulated

annealing placement algorithm [53] with two changes to the cost function. First, a different

92

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

0

a

1 2 3

b c d

ADD

4 5 6 7

XOREQ EQ

INPUT INPUT INPUT INPUT

CGO CGO

CGI

LUT

Cluster 1 Cluster 2

Cluster 4

Cluster 3

x

OUTPUT

MUX

00

0
0000

00
0

11

0

1

1

00

14 15

17

16

11

13

Figure 5.1: Example: M-CAD clustering for two CLBs. This is not an optimal clustering,
and it is not even a valid clustering if the inputs per CLB are restricted to one. It
was chosen to keep the example simple.

definition of “delay” is used in the cost function to handle both the fine-grained and coarse-

grained operations being placed. Second, a parameter penalty discourages illegal placements.

To simplify placer delay estimates, all delays are expressed as integers. In the coarse-

grained pipelined routing network in Malibu, the delay between two nodes is equal to the Man-

hattan distance (rectilinear distance), not a propagation delay along a wire as in conventional

CAD. Time-multiplexing introduces an additional complication not found in regular FPGAs:

two nodes within the same CG may be scheduled in timeslots far apart, causing additional de-

93

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

lay not modeled by the number of hops. Unfortunately this additional delay is not known until

scheduling is complete, so at this stage we assume it is zero. Because of the feed-forward flow

of information in the FPGA CAD approach, there is no opportunity to pass scheduling infor-

mation back into an earlier stage of the tool flow. This effectively means we assume nodes are

scheduled in consecutive timeslots in the same CLB. This is not a bad assumption because the

scheduler tries to do exactly that. However, if there are two or more instructions that are ready

to be scheduled at the same time, the ones which are not scheduled will incur this additional

delay (again, only known after scheduling).

We used a simple one-net circuit in VPR with the iFAR architecture file1 named

n10k04l04.fc15.area1delay1.cmos65nmos to determine that a fine-grained signal travels just

over 10 CLBs in one system clock cycle of 1.0 ns. Therefore, any FG signal traversing 10

CLBs or fewer has a delay of 1, 11-20 CLBs has a delay of 2, etc. The placer can thus estimate

the fine-grained delays quite easily. The scheduling tool (Section 5.5) uses the actual delays

from the VPR routing solution to make scheduling decisions (to ensure all fine-grained sig-

nals arrive before the consumer nodes are scheduled), so an estimate of the fine-grained delays

during placement is sufficient.

The delay in clock cycles between two nodes i and j is:

delay(i, j) =

1 i, j are coarse-grained and placed in same CG

mh(i, j) i, j are coarse-grained and not in the same CG⌈
mh(i, j)

10

⌉
otherwise (fine-grained)

(5.1)

Where mh(i, j) is the Manhattan distance (or rectilinear distance) between the CLBs for

nodes i and j. For two nodes in the same CG, the ALU must execute an instruction in one

timeslot to produce the value consumed by the next node in a subsequent timeslot, so the

1In this architecture, the length four wires are changed to length one to over-compensate for adding the coarse-
grained resources to each CLB, this is explained in Section 5.4.

94

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

delay is at least one timeslot. As previously discussed, any additional delay due to nodes

being assigned to timeslots far apart is unknown until scheduling is complete, so it is assumed

to be zero. For adjacent CGs, this value is written to one of the NSEW memory locations

so it is available in the adjacent CG in the next timeslot. For distant communication, the

minimum delay (in cycles) is the Manhattan distance between the CLBs, but it may be longer

depending on the availability of routing resources due to congestion. Again, this additional

delay is unknown and cannot be known until after scheduling, so it is assumed to be zero.

The delay(i, j) in Equation 5.1 is used with a slack and criticality computation to calculate

the timing cost of the circuit, which is part of the placement cost function. These are shown in

Equations 5.2–5.5. The slack, criticality, and timing cost computations are the same those in

VPR’s timing-driven placement algorithm [53]:

slack(i, j) = Trequired(j)−Tarrival(i)−delay(i, j) (5.2)

criticality(i, j) = 1− slack(i, j)
Dmax

(5.3)

timing cost(i, j) = delay(i, j) · criticality(i, j)criticality exponent (5.4)

timing cost = ∑
∀i, j∈circuit

timing cost(i, j) (5.5)

Where Trequired(j) is the latest possible arrival time for the signals at node j, Tarrival(i) is the

arrival time of the signals at node i, and Dmax is the critical path delay. Trequired(j), Tarrival(i),

and Dmax are all calculated using delay(i, j) [53], so they are in the same integer delay units as

previous described.

In addition to a timing cost, the VPR placement cost function uses a wiring cost. In Malibu,

the wiring cost is the same as the delay because every length of wire means one additional cycle

delay. The final placement cost function is similar to VPR’s (Equation 2.3), but with the wiring

95

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

cost and λ removed:

∆C =
∆timing cost

previous timing cost
+ penalty (5.6)

The placer allows illegal placements to be considered. The penalty parameter adds a fixed

cost of 1,000 each time one of the following violations occurs:

• the memory size is exceeded,

• unavailable CG or FG resources are used,

• too many CGI/CGO registers are used,

• too many CLBs are used, or

• too few CLBs are used (only if the tools are forcing a specific number of CLBs).

The fixed cost for too few CLBs is used to generate the performance versus area graphs as

in Figure 5.9 and in Appendix D.

Returning to the clustering example in Figure 5.1, if the target architecture has two CLBs,

then the placer may put clusters 1 and 3 in CLB0, and clusters 2 and 4 in CLB1 to balance the

operations per CLB and also minimize the critical path. Other configurations are also possible.

In Figure 5.1, the numbers on each edge are the delays as computed by the placer.

At the end of placement, if required, multiple small, user-instantiated memories are packed

into the single R memory such that they do not overlap. The LOAD and STORE instructions are

updated to reflect the required address offsets. The problem of splitting a large user memory

across multiple CG is left for future work.

5.4 M-CAD Route

After placement, the coarse-grained and fine-grained signals are each routed using different

methods. Fine-grained routing is done with VPR’s PathFinder router as described below.

96

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Coarse-grained routing is describe later in this section. M-CAD creates three files necessary to

invoke VPR:

• netlist file – A netlist is created for the entire circuit. VPR requires a complete netlist with

no dangling logic, so it is not possible to write only the fine-grained parts of the circuit.

Each coarse-grained signal is also written to the netlist, but written as a single wire

marked DNR (do-not-route). VPR was modified to ignore signals marked DNR. VPR

uses these coarse-grained signals for timing and criticality information, but it otherwise

ignores them.

• architecture file – An architecture file is created based on the 65nm iFAR [82] architec-

ture (n10k04l04.fc15.area1delay1.cmos65nm). The length-four wires in the architecture

were changed to length-one wires without changing the delay characteristics. This was

done to over-compensate for the area of a CLB (with both the FG and CG components)

being roughly four times larger (2x longer tile) than a Stratix III LAB. Also, the number

of LUTs per CLB was changed from 10 to 16 to match the architecture parameter value

from Table 3.4. The placement of the CLB pins was also changed to only the top or right

of the CLB to mimic overhead routing (routing on a different metal layer in the physical

device).

• placement file – A placement file is created with the information from the placer.

Figure 5.2 shows the routing output of VPR for the example circuit in Figure 5.1 with

clusters 1 and 3 in CLB0 and clusters 2 and 4 in CLB1. The output shows the placement of

the coarse-grained inputs and outputs, but they are not routed (they were marked DNR). This

example is drawn with a channel-width of four (with only two wiring tracks used). Normally,

there would be 120 wires between these blocks. The two routes shown represent node 15 in

CLB1 from Figure 5.1 communicating with node 17 in CLB0, and node 17 in CLB0 commu-

nicating to node 16 back in CLB1.

97

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

.clb

clb0 clb1

.clb x

b

a c

d

Figure 5.2: Example: fine-grained routing output from VPR.

The scheduler (in Section 5.5) reads the delay information from VPR and records the delay

of each fine-grained link in the DFG. In this example, the delay of all the signals is 1.

The coarse-grained routing problem is different from traditional FPGA CAD because the

Malibu coarse-grained routing network is time-multiplexed, so temporal as well as spatial deci-

sions must be made. The spatial routing is done using a simple horizontal-then-vertical routing

strategy where routes are created in the x-direction first (horizontal), and then in the y-direction

(vertical). The router follows existing routes from the same source as far as possible before

branching the route towards the new destination CG.

The temporal routing decisions are made during scheduling. When the endpoint of a route

is to be scheduled, the scheduler follows each hop of the route, checking that the necessary

CG resources are available. If a conflict arises, the route is held in place for as many timeslots

as necessary until the resources are available at the next hop. Since the entire coarse-grained

routing network is pipelined, holding a route in place just means marking the register where the

routed value is currently stored as unavailable for additional clock cycles. For the Fmax results

in Section 5.6.1, it was never necessary to hold a value to avoid a routing conflict for any circuit.

In practise, we have never seen a value held more than two cycles, except with targeted micro-

benchmarks to exercise that specific condition. One such test is shown in Figure 5.3; the routes

98

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

INPUT INPUT

CLB0 CLB2

ADD

CLB4

CLB4

OUTPUT

CLB0 CLB1 CLB2

CLB4

CLB0 CLB1 CLB2

CLB4

CLB0 CLB1 CLB2

CLB4

Timeslot 2

Timeslot 1

Timeslot 0
CLB0: W0 → E0

CLB2: E0 → W0

CLB1: W0 → S0

(value stored in CLB4:N0)

CLB1: hold CLB1:W0

CLB1: E0 → S1

(needs S resoure,

but it is busy)

(value stored in CLB4:N1)

a b

(value stored in CLB1:W0)

(value stored in CLB1:E0)

Figure 5.3: Microbenchmark for testing coarse-grained route collisions.

a and b from CLB0 and CLB2, respectively, collide in CLB1 and both need the S resource. In

this case, route a proceeds first because of the order the scheduler visited the routes, and route

b is held in CLB1:W at address 0 for an extra timeslot. Each node has a criticality so that the

most critical nodes (and routes) are scheduled first. In the case of ties, like in this example, the

outcome is deterministic and the smallest node IDs are scheduled first; the processing queue is

populated in node-order in the scheduler. When the S resource becomes available in timeslot

2, route b can proceed.

The Malibu architecture was created with a single 32-bit link between neighbouring proces-

sors. The 32-bit links were selected to match the ALU width. The very rare need for hold slots

suggest that these time-multiplexed links provide ample routing resources. Future architecture

99

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

work can look at reducing the area-overhead of these links, for example, by using 16-bit links

and communicating 32-bit data in a pipelined fashion over two cycles.

5.5 M-CAD Schedule

The M-CAD schedule tool orchestrates the overall execution of code and movement of data

to reproduce the behaviour of the original circuit. It assigns each instruction to a timeslot

in a CG, it assigns each coarse-grained route-hop to a timeslot (resolving all routing collisions

along the way), and it ensures all values are produced/consumed at the appropriate times on the

(not-time-multiplexed) fine-grained resources. At this point all fine-grained nodes have been

placed in a LUT and routed across the fine-grained resources, so perfect delay information is

available.

The scheduling algorithm is a variation of list scheduling. The main loop of the tool is

shown in Figure 5.4. It begins at timeslot = 0 and assigns as many operations as it can across

all CGs in that timeslot. It then iterates over the sinks of the scheduled operations and uses

the routing delay information to compute the minimum timeslot in which those sinks may be

scheduled. It then moves on to the second timeslot, and so on. This timeslot-oriented approach

ensures the scheduler is fast and is always making forward progress. NOP instructions are

inserted in all timeslots that do not contain a circuit node after scheduling.

When fine-grained sinks are encountered, the scheduler propagates delay information down

the fanout-cone of the fine-grained sink until it reaches coarse-grained nodes. This is essen-

tially the same process as for coarse-grained sinks, except the scheduler does not need to find

a timeslot for fine-grained nodes (the fine-grained resources are not time-multiplexed, and

have already been assigned to a LUT in a CLB). The scheduler uses the fine-grained delay

information (from the VPR routing solution) to compute the earliest timeslot in which these

coarse-grained nodes (which depend on a fine-grained value) may be scheduled.

At each timeslot, nodes are considered in order of criticality as computed during placement.

100

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

1 ready queue = a l l nodes f lagged ” end of cyc le ” or nodes wi th no parent
2 for (t i m e s l o t = 0 ; ;) {
3 i f (is empty (ready queue)) {
4 i f (is empty (next queue)) {
5 r e t u r n ; /∗ Schedul ing complete ∗ /
6 } else {
7 /∗ Swap queues , increase to next t i m e s l o t ∗ /
8 ready queue = next queue
9 t i m e s l o t++

10 continue
11 }
12 }
13

14 /∗ Find a schedulable node ∗ /
15 node = dequeue (ready queue)
16 i f (! i s schedu lab le (node) {
17 enqueue (next queue , node)
18 continue /∗ Restar t loop ∗ /
19 }
20

21 /∗ Create routes , record scheduled t i m e s l o t ∗ /
22 schedule routes (node)
23 node . t i m e s l o t = t i m e s l o t
24

25 /∗ Increment sched . count i n a l l ch i l d ren , enqueue any t h a t are now schedulable ∗ /
26 foreach (node . c h i l d r e n as c h i l d) {
27 i f (c h i l d . width > Wf) {
28 /∗ Coarse−grained c h i l d ∗ /
29 c h i l d . parents scheduled ++
30 i f (c h i l d . parents scheduled == c h i l d . pa ren ts len) {
31 enqueue (next queue , c h i l d)
32 }
33 } else {
34 /∗ Fine−grained c h i l d ∗ /
35 process fg fanou t cone (c h i l d)
36 }
37 }
38 }

Figure 5.4: Main loop of the M-CAD scheduler.

This simple ordering reduces the final SL and thus increases the Fmax by an average of 10%

(recall Fmax =
1 GHz

SL) across all the benchmarks used in this thesis.

The is schedulable(node) function checks whether node is schedulable in the current

timeslot. It may be scheduled in timeslot if:

• The timeslot is empty in the CG’s ALU.

• All source signals have arrived in time.

• All internal CG resources required by the operation are available.

101

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Timeslot CLB0 CLB1
One
user

cycle

0 EQ N0,W0→ CGO0 EQ N0,E0→ CGO0
1 NOP XOR N0,E0→ R0
2 ADD N0,W0→ E0 MUX W0,R0,CGI0→ E0

Figure 5.5: Example: the final M-CAD code schedule. This is the output for the input
given in Figure 4.2. Note that E0 in CLB0 is the same as W0 in CLB1.

• All routing resources required by the output of the operation (fine-grained and coarse-

grained) are available for the first-hop of the route.

The schedule routes(node) function assigns route-hops to timeslots. When a routing con-

flict arises, the value is held for as many timeslots as necessary for a free timeslot to be found in

the next hop (as described in Section 5.4). When each route arrives at the destination CLB(s),

the destination node(s) in the DFG are marked with the arrival timeslot(s); those nodes cannot

be scheduled before their respective arrival timeslot.

The process fg fanout cone(node) function increments the parents scheduled at-

tribute for all coarse-grained nodes on leaves of the fine-grained fanout cone rooted at node

node. For those coarse-grained leaf nodes, it also enqueues the ones which have all of its par-

ents scheduled into the next queue. Finally, it updates the earliest timeslot that those nodes

may be scheduled using the fine-grained delay information from routing.

At the end of scheduling, accesses to the NSEW and R memories are assigned specific

offsets using a greedy approach. At this point, the CG operations and FG LUTs for each CLB

are packed into a single output bitstream.

Figure 5.5 shows the final scheduling for the example started in Figure 4.2. Notice how the

register behaviour of the ADD instruction is produced; the MUX instruction reads the W0 input

in the same timeslot as the ADD writes it, so it ends up reading the value written in the previous

iteration of the schedule shown in Figure 5.5. The new value in W0 will be used in the next

user cycle.

102

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

During scheduling the ADD instruction would have been considered for timeslot = 1 in

CLB0. However, since it is registered, the scheduler requires that all the child nodes (the MUX

in this example) be scheduled so that a newly written value does not get used in the current

cycle. This is how the proper register behaviour is produced, and this is what forces the ADD

into timeslot 2. In CLB1, it is possible to swap the EQ and XOR, but the scheduler considers

nodes in order of criticality, and the EQ instruction is part of a longer combinational chain

(including a LUT), so it will always be considered first.

Not shown in Figure 5.5 is the fine-grained information that is part of the bitstream. One

of the LUTs in CLB0 will have the truth-table from Figure 4.4, and the switch blocks and I/O

blocks will be configured to connect CGO0 in CLB0 and CGO0 and CLB1 to the input of that

LUT, and configured to connect the output of the LUT to CGI0 in CLB1 where it is used by

the MUX instruction.

5.6 Experimental Results

In this section, the M-CAD flow is evaluated on the Malibu architecture. For base-

line comparison, all the benchmarks were synthesized with QuartusII 10.0 for a StratixIII

(EP3SL340F1760C2) FPGA as described in Section 3.3, and with VPR 5.0 using 65nm

iFAR [82] architecture parameters (n10k04l04.fc15.area1delay1.cmos65nm—the same archi-

tecture M-CAD uses, but without the length-four wire change). The ten 4-LUT iFAR architec-

ture was selected for area efficiency, and modified to place the CLB pins only on the top or right

of the CLB to mimic overhead routing. A channel width of 100 was used, as recommended by

the architecture file. The VPR “-fast” option was used to generate all the VPR results presented

in this thesis.

All of the results in this section use the architecture configuration in Table 3.5. Since the

tools can trade circuit performance for density, it is possible to use a single fixed architecture

to target results for maximum performance, for maximum density, or anywhere in between.

103

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

We limit the discussion to these two extremes and present the maximum frequency results (and

the density at maximum performance), and the maximum density results (and the frequency at

maximum density).

For these two data points, maximum performance and maximum density, the fine-grained

signal threshold (Wf) is tested at Wf = 0,1, and 4. This is done to investigate the performance

and density tradeoffs from adding the fine-grained resources. At Wf = 0, all of the fine-grained

resources are excluded from the architecture (and the area of each CLB is adjusted appropri-

ately). At Wf = 1, only one-bit signals are implemented on the fine-grained resources, and at

Wf = 4 all four-bit signals (or smaller) are implemented on the fine-grained resources.

The results are separated into the CG-only, Good, and Impaired circuit categories as defined

in Section 3.3. The analysis in this section focuses on the CG-only and Good circuits because

they represent the types of circuits which would primarily be used on the coarse-grained Malibu

architecture. For the Impaired benchmarks, it is only important for the tools to successfully

synthesize the circuit; these benchmarks are included to demonstrate that this is being done.

We begin in Section 5.6.1 by examining the quality of synthesis measured by the maxi-

mum frequency (Fmax), and compare that to traditional FPGA CAD tools. This is extended in

Section 5.6.2 by investigating an upper bound on the frequency. Next, in Section 5.6.3, we

evaluate the maximum density of each benchmark, and compare the frequency achieved at that

density with the Fmax. The M-CAD compile time is investigated in Section 5.6.4 and compared

with other tools, along with tests using very large synthetic circuits up to ≈ 1.6 million gates

in Section 5.6.5. Then, Section 5.6.6 looks at a breakdown of the longest paths in the circuits

to get ideas for future research directions. Finally, in Section 5.6.7 we look at the M-CAD

synthesis ability to trade area for performance.

104

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

5.6.1 Frequency (Fmax)

Table 5.1 shows the frequency (Fmax) across all circuits for QuartusII, VPR, and M-CAD. For

M-CAD there is data at both the maximum frequency and the maximum density. To reduce

noise, the frequency is the fastest result of ten synthesis trials. For QuartusII, one synthesis

trial is a complete compilation from Verilog to bitstream, for VPR it is a compilation from the

QuartusII-generated BLIF to the routing output, and for M-CAD it is the back-end synthesis

(clustering, placement, routing, and scheduling) since the front-end synthesis always gives the

same result for the same circuit. Incidentally, the M-CAD data for the maximum performance

at Wf = 1 is the same as the schedule length data from Tables 3.4 and 3.5 converted to frequency

by assuming a 1 GHz system clock, i.e., Fmax =
1000
SL .

For the CG-only benchmarks, there are no signals small enough to use the fine-grained

resources when Wf ≥ 1, so the results for Wf ≥ 1 results are the same as Wf = 0. At maximum

performance, the geometric mean of the Fmax results in Table 5.1 show that the CG-only circuits

on Malibu are higher than the QuartusII/StratixIII implementation by almost 50%. This is an

excellent result which shows performance gains are possible for coarse-grained circuits, which

is what the Malibu architecture was designed for. At maximum density, the frequency is about

80% that of the FPGA. This is also an excellent result because, as will be shown later, the

density (at this point) exceeds that of an FPGA by almost 5x.

For the Good benchmarks, the fine-grained resource requirements in the benchmark circuits

cause the performance to drop compared to the CG-only benchmarks; these fine-grained signals

are being computed on the coarse-grained resources and distributed using the coarse-grained

pipelined routing network, which is slow. The addition of the fine-grained resources in the

architecture at Wf = 4 almost doubles the Fmax compared to Wf = 0 at maximum performance,

and triples it at maximum density. Since many circuits do have some fine-grained control logic,

this indicates that including fine-grained resources in the Malibu architecture is beneficial.

105

C
H

A
PT

E
R

5.
M

-C
A

D
:A

N
FPG

A
C

A
D

B
A

SE
D

TO
O

L
FL

O
W

Table 5.1: M-CAD frequency results. Entries with a “–” are for coarse-grained benchmarks and the same as the Wf = 0
value. The “vs.QII” columns are the frequency speedup (M-CAD MHz / QuartusII MHz).

M-CAD Maximum Performance M-CAD Maximum Density

QuartusII VPR Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Circuit MHz MHz MHz vs.QII MHz vs.QII MHz vs.QII MHz vs.QII MHz vs.QII MHz vs.QII

C
G

-o
nl

y

fft16 119.2 98.4 45.5 0.381 – – – – 12.0 0.101 – – – –
me 201.7 66.0 55.6 0.275 – – – – 27.0 0.134 – – – –
chem 11.3 27.1 40.0 3.554 – – – – 21.7 1.932 – – – –
fft8 159.7 117.2 71.4 0.447 – – – – 19.6 0.123 – – – –
honda 17.1 63.8 45.5 2.652 – – – – 37.0 2.161 – – – –
mcm 24.9 93.7 71.4 2.864 – – – – 62.5 2.506 – – – –
wang 19.3 79.7 83.3 4.320 – – – – 76.9 3.988 – – – –
pr 24.0 87.6 83.3 3.469 – – – – 66.7 2.776 – – – –

Geo. Mean (CG-only) 1.445x 1.445x 1.445x 0.814x 0.814x 0.814x

G
oo

d

ac97 ctrl 294.9 278.3 14.3 0.048 40.0 0.136 40.0 0.136 9.7 0.033 35.7 0.121 40.0 0.130
aes core 181.6 177.8 27.8 0.153 25.0 0.138 25.6 0.141 5.3 0.029 20.8 0.115 17.9 0.098
dir 86.3 59.6 29.4 0.341 27.0 0.313 27.0 0.313 15.6 0.181 19.2 0.223 27.0 0.313
spi 118.9 139.9 25.6 0.216 32.3 0.271 38.5 0.324 16.1 0.136 27.0 0.227 38.5 0.324
pci master 232.2 248.4 22.7 0.098 29.4 0.127 76.9 0.331 11.8 0.051 28.6 0.123 76.9 0.331

Geo. Mean (Good) 0.140x 0.182x 0.230x 0.065x 0.154x 0.214x

Geo. Mean (CG-only and Good) 0.588x 0.652x 0.713x 0.308x 0.429x 0.487x

Im
pa

ir
ed

ethernet 162.4 102.1 6.7 0.041 11.9 0.073 20.8 0.128 4.9 0.030 9.8 0.060 13.3 0.082
wb conmax 135.1 72.3 13.2 0.097 19.6 0.145 27.8 0.206 5.6 0.041 17.2 0.128 27.8 0.206
dma 127.8 131.0 5.8 0.046 10.2 0.080 10.6 0.083 4.3 0.033 9.3 0.073 9.5 0.075
tv80 96.8 105.3 7.0 0.072 4.9 0.051 64.0 0.661 2.2 0.023 3.1 0.032 12.8 0.132
jpeg enc 218.4 162.8 5.2 0.024 5.3 0.024 5.2 0.024 4.3 0.020 3.9 0.018 2.1 0.010
systemcaes 120.7 154.5 15.2 0.126 15.4 0.127 14.7 0.122 4.6 0.038 4.5 0.038 5.6 0.046
des 299.8 175.5 3.6 0.012 5.2 0.017 5.3 0.018 3.6 0.012 4.5 0.015 5.3 0.018
systemcdes 169.6 219.7 21.3 0.125 21.7 0.128 18.9 0.111 10.5 0.062 16.4 0.097 17.9 0.105

Geo. Mean (Impaired) 0.053x 0.064x 0.098x 0.029x 0.045x 0.059x

Geo. Mean (All) 0.235x 0.270x 0.334x 0.126x 0.182x 0.217x

106

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Further, achieving 1/5th the performance of a commercial FPGA is a good result for a time-

multiplexed architecture.

For the Impaired benchmarks, M-CAD does successfully synthesize each benchmark, but

the performance is poor, as expected. Interestingly for the jpeg enc, systemcaes, and system-

cdes benchmarks at maximum performance, the frequency decreases as Wf is increased from

1 to 4. This indicates that the fine-grained routing resources are being strained and, in these

cases, it is faster to compute some of these fine-grained results using the coarse-grained re-

sources. Further investigation into the coarse-grained/fine-grained partitioning in front-end

synthesis is required.

Comparing the maximum performance and maximum density M-CAD results in Table 5.1,

the performance at maximum density is 48%, 34%, and 32% lower than the performance at

maximum speed for the CG-only and Good benchmarks for Wf = 0, 1, and 4 respectively. This

is expected because at maximum density the tools are more aggressively time-multiplexing

operations onto the coarse-grained ALUs to use less area. Further, the highest reduction in

performance is at Wf = 0 because no fine-grained resources are being used; since there are no

CGI, CGO, or LUT constraints, the tools are only constrained by the instruction memory (and

the DFG itself) and can therefore time-multiplex even more aggressively. This performance

reduction is matched by increases in density at Wf = 0, demonstrated in Section 5.6.3. Re-

member that the difference between the maximum density and maximum performance results

is just a compiler flag. Both sets of results are achievable without changing the underlying

architecture.

Table 5.2 summarizes the performance of M-CAD compared to the VPR data in Table 5.1.

The results are comparable to the QuartusII results, although VPR/iFAR generally produced

higher frequency results than QuartusII/StratixIII.

107

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.2: M-CAD Fmax speedup compared to VPR.

M-CAD vs. VPR

Maximum Performance Maximum Density

Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 0.812x 0.812x 0.812x 0.457x 0.457x 0.457x
Geo. Mean (Good) 0.146x 0.190x 0.240x 0.068x 0.161x 0.222x

Geo. Mean (CG-only and Good) 0.389x 0.436x 0.482x 0.202x 0.292x 0.335x

Geo. Mean (Impaired) 0.062x 0.076x 0.115x 0.034x 0.053x 0.065x

Geo. Mean (All) 0.192x 0.221x 0.277x 0.103x 0.150x 0.175x

5.6.2 Frequency Upper Bound

To get a sense of how well M-CAD could perform, we compute an upper bound on the maxi-

mum achievable frequency by using the graph-depth of the DFG after front-end synthesis. The

purpose of this investigation is to isolate the potential Fmax improvements that might be obtain-

able with a perfect architecture and perfect placement, routing, and scheduling. To compute

the upper bound we assume that:

• each coarse-grained node in the DFG which requires the ALU takes one system clock

cycle,

• all sequences of fine-grained nodes collectively take a single clock cycle, regardless of

the number of nodes (so the maximum frequency will increase as more nodes are con-

sidered fine-grained),

• all communication and all other nodes take zero time (zero-cost routing), and

• there are no resource constraints (perfect placement, no I/O limits, infinite memory re-

sources).

In Figure 4.3a, the maximum graph depth is 3, making the frequency upper bound 1 GHz
3 =

333 MHz. For Wf = 1 and 4, the depth is also 3. However, if the graph contained a second

108

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

fine-grained node immediately after node 9, then the depth for Wf = 0 would be 4, but the depth

for all other values of Wf would still be 3 (all sequences of fine-grained nodes are assumed to

execute in a single clock cycle).

Table 5.3 compares the frequency upper bound with the Fmax from Table 5.1 for each bench-

mark. For this comparison we include the Impaired circuits because there is the most oppor-

tunity for performance gains with these circuits. The possible performance increase in Fmax

ranges from about 6x (jpeg enc and systemcaes) to nothing (me). The geomean of the ratio

across all circuits for Wf = 0,1, or 4 is just over 0.5, meaning that there is, on average, at most

a 2x performance improvement that might be found in M-CAD (back-end synthesis) and the

Malibu architecture combined. In addition, there may be other opportunities to improve the

results through changes to the front-end synthesis that are not captured in this data.

The same analysis was repeated to produce a post-placement lower bound on the schedule

length. This captures how much performance is lost due to routing and scheduling. Table 5.4

shows the schedule length (SL) for each benchmark circuit after front-end synthesis, after

placement, and after the final scheduling. The schedule length lower bound after placement is

calculated assuming:

• each coarse-grained node in the DFG that requires the ALU takes one system clock cycle,

• all sequences of fine-grained nodes collectively take a single clock cycle, regardless of

the number of nodes (so the lower bound could decrease as more nodes are considered

fine-grained),

• all communication requires a number of cycles equal to the Manhattan distance, and

• there are infinite resources for routing.

The “Placement Ratio” column in Table 5.4 computes the fraction of the schedule length

increase caused by placement (the rest is caused by routing and scheduling). The results are

109

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.3: M-CAD frequency upper bound and actual Fmax. Entries with a “–” are the
same as the Wf = 0 value. The ratio is Fmax / Bound; larger ratios are better.

Wf = 0 Wf = 1 Wf = 4

Bound Fmax Bound Fmax Bound Fmax
Circuit (MHz) (MHz) Ratio (MHz) (MHz) Ratio (MHz) (MHz) Ratio

C
G

-o
nl

y

fft16 250.0 45.5 0.18 – – – – – –
me 55.6 55.6 1.00 – – – – – –
chem 58.8 40.0 0.68 – – – – – –
fft8 250.0 71.4 0.29 – – – – – –
honda 55.6 45.5 0.82 – – – – – –
mcm 100.0 71.4 0.71 – – – – – –
wang 111.1 83.3 0.75 – – – – – –
pr 100.0 83.3 0.83 – – – – – –

Geo. Mean (CG-only) 0.58 0.58 0.58

G
oo

d

ac97 ctrl 21.7 14.3 0.66 66.7 40.0 0.60 66.7 40.0 0.60
aes core 55.6 27.8 0.50 55.6 25.0 0.45 55.6 25.6 0.46
dir 40.0 29.4 0.74 40.0 27.0 0.68 40.0 27.0 0.68
spi 33.3 25.6 0.77 55.6 32.3 0.58 55.6 38.5 0.69
pci master 29.4 22.7 0.77 40.0 29.4 0.91 125.0 76.9 0.62

Geo. Mean (Good) 0.68 0.60 0.60

Geo. Mean (CG-only and Good) 0.62 0.59 0.59

Im
pa

ir
ed

ethernet 9.9 6.7 0.67 12.8 11.9 0.93 32.3 20.8 0.65
wb conmax 40.0 13.2 0.33 40.0 19.6 0.49 58.8 17.8 0.30
dma 15.6 5.8 0.37 21.3 10.2 0.48 23.8 10.6 0.45
tv80 18.9 7.0 0.37 18.9 4.9 0.26 66.0 64.0 0.97
jpeg enc 32.3 5.2 0.16 32.3 5.3 0.16 32.3 5.2 0.16
systemcaes 71.4 15.2 0.21 76.9 15.4 0.20 90.9 14.7 0.16
des 6.7 3.6 0.54 8.8 5.2 0.60 10.2 5.3 0.52
systemcdes 28.6 21.3 0.74 28.6 21.7 0.76 30.3 18.9 0.62

Geo. Mean (Impaired) 0.38 0.41 0.40

Geo. Mean (All) 0.51 0.51 0.51

fairly consistent for the CG-only, Good, and Impaired benchmarks. Overall, placement con-

tributes 70.8% of the difference between the achieved Fmax and the upper bound. This is not

too surprising, because it is during placement where the constraints of the underlying architec-

ture are imposed on the circuit (e.g., interconnect delays, I/O constraints, memory constraints).

However, because of other factors on time-multiplexed architectures, discussed in the rest of

this section, it is likely that the placement can be improved.

110

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.4: M-CAD schedule length lower bound comparison for Wf = 0.

Schedule Length (SL)

Total SL
Increase
(Total)

Placement
SL Increase

(Place)

Placement
Ratio

(Place/Total)

Lower Bound After:

Front-End
Circuit Synthesis Place Schedule

C
G

-o
nl

y

fft16 4 17 22 18 13 0.722
me 18 18 18 0 0 –1

chem 17 23 25 8 6 0.750
fft8 4 12 14 10 8 0.800
honda 18 21 22 4 3 0.750
mcm 10 12 14 4 2 0.500
wang 9 11 12 3 2 0.667
pr 10 12 12 2 2 1.000

Geo. Mean (CG-only) 0.728

G
oo

d

ac97 ctrl 46 60 70 24 14 0.583
aes core 18 31 36 18 13 0.722
dir 25 32 34 9 7 0.778
spi 30 35 39 9 5 0.556
pci master 35 42 44 9 7 0.778

Geo. Mean (Good) 0.676

Geo. Mean (CG-only and Good) 0.706

Im
pa

ir
ed

ethernet 101 130 150 49 29 0.592
wb conmax 25 61 76 51 36 0.706
dma 64 150 171 107 86 0.804
tv80 53 124 143 90 71 0.789
jpeg enc 31 150 194 163 119 0.730
systemcaes 14 51 66 52 37 0.712
des 149 230 276 127 81 0.638
systemcdes 35 44 47 12 9 0.750

Geo. Mean (Impaired) 0.712

Geo. Mean (All) 0.708
1This value is excluded from the geomean since the ratio is undefined.

In traditional FPGA CAD, the placement and routing tasks are separate, and the tools can

achieve a high-quality result even though placement operates with no routing information. A

time-multiplexed architecture adds a temporal dimension to the problem that makes the lack of

information more of a problem. This is demonstrated below.

111

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

A

B C

D

A

D C

B

2

time time

0

1

0

1

(a) (b)

CLB0 CLB1 CLB0 CLB1

Figure 5.6: Example of bad placement. (a) The total wire length is 2, assume that A and
C may not be placed on the same CLB, and (b) a better placement with the same
wire length but requiring one less timeslot after scheduling.

Figure 5.6 illustrates one such problem where the placer needs post-scheduling information

to do a better job. The best solution would be to place nodes A and C in CLB0 and nodes B and

D in CLB1, but let us assume that the placement cost prefers to assign node A to CLB0, and

node C to CLB1. The placer is aware of external communication, but it has no idea when (in

which timeslot) such communication will take place. As a result, Figures 5.6a and 5.6b have

the same cost of 2, even though Figures 5.6b achieves a better post-scheduling solution. While

this specific problem is trivial to fix, finding a solution for the general case is more difficult.

In an attempt to improve upon this, Chapter 6 presents a tool flow that performs simultaneous

placement, routing, and scheduling.

Given that there are architectural constraints on the circuit which may necessitate an in-

crease in the schedule length, the upper-bound frequency calculated in this section is likely

an unachievable target. Since placement accounts for 70.8% of the overall schedule length

increase after front-end synthesis, it is worth investigating whether enough effort has been

expended by the placement algorithm itself.

Table 5.5 compares the previous upper-bound frequency with results generated using the

placer with greater effort. To increase placement effort, an inner-loop multiplier of 10,000 was

used instead of 10. The starting temperature was set to 100, which is very high, and the range

limit which constraints the locality annealing swaps was disabled so any node in any CLB can

be considered.

112

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Comparing the first two “Ratio” columns in Table 5.5, the high-effort placer is able to

achieve 57% of the upper bound across all circuits, whereas the M-CAD flow with the default

options achieves 51%. However, if the improved Fmax (high-effort result) is taken as a realistic

and achievable upper bound and is compared to the Fmax from Table 5.4, then the M-CAD

flow achieves 91% of the improved Fmax (the last “Ratio” column in Table 5.5). This leaves

little room for circuit performance improvement from placement alone, and suggests future

improvements should focus on front-end synthesis.

The front-end synthesis does perform well in many cases, but there is room for improve-

ment. It is not able to produce the same quality solutions as commercial tools like QuartusII.

This fact is reinforced by the frequency upper bound computed in this section; it is still slower

than the QuartusII synthesis results in Table 5.1.

5.6.3 Area and Density

In this section, the area required to synthesize each benchmark is examined for the maximum

performance and maximum density results on the architecture. The maximum density is the

minimum area, which is the smallest number of CLBs required to synthesize the circuit with-

out violating any architecture parameter values. These parameter values are the ones from

Table 3.5.

Comparison to QuartusII/StratixIII

In Section 3.7 the area of a Malibu CLB was computed to be 97,050.5 µm2 and the area of

a StratixIII ALM was estimated to be 2,674µm2. This means that a Malibu CLB is roughly

equivalent in area to 36.3 ALMs. We compute the equivalent ALMs (eALMs) for Malibu by

multiplying the number CLBs by 36.3 when Wf ≥ 1. When Wf = 0, the area of a Malibu CLB,

excluding all the fine-grained resources, is 97,050.5 - 18,487 = 78,563.5 µm2. Therefore, a

coarse-grained-only CLB is equivalent to 29.4 ALMs, and this value is used to compute the

113

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.5: M-CAD high-effort schedule length comparison for Wf = 0.

Wf = 0 from Table 5.3 High-Effort Placement

Bound Fmax Improved Fmax Improved Fmax/Improved Fmax
Circuit (MHz) (MHz) Ratio (MHz) Ratio Ratio

C
G

-o
nl

y

fft16 250.0 45.5 0.18 45.5 0.18 1.00
me 55.6 55.6 1.00 55.6 1.00 1.00
chem 58.8 40.0 0.68 43.5 0.74 0.92
fft8 250.0 71.4 0.29 71.4 0.29 1.00
honda 55.6 45.5 0.82 45.5 0.82 1.00
mcm 100.0 71.4 0.71 83.3 0.83 0.86
wang 111.1 83.3 0.75 83.3 0.75 1.00
pr 100.0 83.3 0.83 83.3 0.83 1.00

Geo. Mean (CG-only) 0.58 0.60 0.97

G
oo

d

ac97 ctrl 21.7 14.3 0.66 20.0 0.92 0.71
aes core 55.6 27.8 0.50 27.8 0.50 1.00
dir 40.0 29.4 0.74 29.4 0.74 1.00
spi 33.3 25.6 0.77 29.4 0.88 0.87
pci master 29.4 22.7 0.77 25.6 0.87 0.89

Geo. Mean (Good) 0.68 0.76 0.89

Geo. Mean (CG-only and Good) 0.62 0.66 0.94

Im
pa

ir
ed

ethernet 9.9 6.7 0.67 9.3 0.94 0.71
wb conmax 40.0 13.2 0.33 14.9 0.37 0.88
dma 15.6 5.8 0.37 8.5 0.54 0.69
tv80 18.9 7.0 0.37 7.2 0.38 0.97
jpeg enc 32.3 5.2 0.16 5.8 0.18 0.88
systemcaes 71.4 15.2 0.21 15.2 0.21 1.00
des 6.7 3.6 0.54 4.7 0.71 0.76
systemcdes 28.6 21.3 0.74 21.3 0.74 1.00

Geo. Mean (Impaired) 0.38 0.44 0.85

Geo. Mean (All) 0.51 0.57 0.91

equivalent ALMs for Wf = 0.

Table 5.6 compares the circuit area for the benchmarks implemented on Malibu with M-

CAD and on a StratixIII FPGA using QuartusII. At maximum performance, Malibu requires

more area than an FPGA, using on average (geomean) twice the area of an FPGA for the CG-

only and Good benchmarks at Wf = 0. When the fine-grained resources are enabled (Wf ≥ 1)

the density becomes worse for the CG-only circuits because they cannot make use of such

114

C
H

A
PT

E
R

5.
M

-C
A

D
:A

N
FPG

A
C

A
D

B
A

SE
D

TO
O

L
FL

O
W

Table 5.6: M-CAD area and density values compared to QuartusII/StratixIII. Entries with a “–” are same as the Wf = 1
value. The “Density” columns are the area reduction compared to QuartusII (QuartusII ALMs / Malibu equivalent
ALMs (eALMs)).

M-CAD Maximum Performance M-CAD Maximum Density

QuartusII Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Circuit ALMs eALMs Dens. eALMs Dens. eALMs Dens. eALMs Dens. eALMs Dens. eALMs Dens.

C
G

-o
nl

y

fft16 6,412 11,760 0.545 9,293 0.690 – – 470 13.640 581 11.042 – –
me 5,148 11,760 0.438 14,520 0.355 – – 1,880 2.738 1,307 3.940 – –
chem 3,526 1,058 3.331 2,323 1.518 – – 264 13.335 327 10.795 – –
fft8 2,075 7,526 0.276 9,293 0.223 – – 264 7.847 327 6.352 – –
honda 1,216 1,058 1.149 1,307 0.931 – – 264 4.599 327 3.723 – –
mcm 1,057 1,058 0.999 1,307 0.809 – – 470 2.249 327 3.236 – –
wang 797 470 1.694 581 1.372 – – 264 3.014 327 2.440 – –
pr 646 1,882 0.343 581 1.112 – – 264 2.443 327 1.978 – –

Geo. Mean (CG-only) 0.786x 0.745x 0.745x 4.833x 4.517x 4.517x

G
oo

d

ac97 ctrl 1,254 11,760 0.107 5,227 0.240 3,630 0.345 1,058 1.186 2,323 0.540 3,630 0.346
aes core 1,154 2,940 0.393 2,323 0.497 5,227 0.221 264 4.364 581 1.987 1,307 0.883
dir 1,150 1,058 1.087 1,307 0.880 581 1.980 264 4.349 581 1.980 581 1.980
spi 488 2,940 0.166 1,307 0.373 581 0.840 264 1.846 581 0.840 581 0.840
pci master 137 1,058 0.129 581 0.236 581 0.236 264 0.518 327 0.419 581 0.236

Geo. Mean (Good) 0.250x 0.392x 0.469x 1.847x 0.944x 0.654x

Geo. Mean (CG-only and Good) 0.506x 0.582x 0.637x 3.339x 2.474x 2.148x

Im
pa

ir
ed

ethernet 6,868 16,934 0.406 14,520 0.473 14,520 0.473 7,521 0.913 2,940 2.336 5,226 1.314
wb conmax 5,349 11,760 0.455 83,635 0.064 37,171 0.144 2,938 1.821 14,518 0.368 9,291 0.576
dma 1,714 16,934 0.101 14,520 0.118 28,459 0.060 2,938 0.583 9,291 0.184 20,905 0.082
tv80 850 7,526 0.113 58,080 0.015 58,080 0.015 5,759 0.148 2,940 0.289 5,226 0.163
jpeg enc 791 67,738 0.012 58,080 0.014 37,171 0.021 47,009 0.017 14,518 0.054 5,226 0.151
systemcaes 716 67,738 0.011 16,934 0.042 11,760 0.061 264 2.708 1,307 0.548 2,323 0.308
des 298 4,234 0.070 28,459 0.010 14,520 0.021 3,555 0.084 2,940 0.101 5,226 0.057
systemcdes 237 4,234 0.056 14,520 0.016 11,760 0.020 470 0.504 2,940 0.081 2,940 0.081

Geo. Mean (Impaired) 0.075x 0.039x 0.049x 0.359x 0.241x 0.196x

Geo. Mean (All) 0.245x 0.207x 0.239x 1.428x 1.018x 0.863x

115

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

resources, however the density improves for the Good circuits. Collectively, the benefits to

the Good circuits outweigh the density drop for the CG-only circuits, improving density from

0.506x to 0.582x.

At maximum density, the M-CAD flow achieves almost 5x the density of an FPGA for the

CG-only circuits due to aggressive time-multiplexing on the coarse-grained resources. For the

Good circuits (which have fine-grained requirements), it is able to nearly match the density

with Wf = 1. The limiting constraint for the maximum density results was often the number of

LUTs per CLB, which was set to 16. More FG resources per CLB would help in this case, as

would a heterogeneous architecture where some CLBs do not have the CG component. Also,

a better CG/FG partitioning strategy and better front-end logic synthesis would help as well.

Comparison to VPR/iFAR

Table 5.7 shows the circuit area in units of millions of minimum-width transistor areas (T

×106) for VPR and M-CAD at both the maximum performance and maximum density. The

VPR area is taken directly from the output of VPR (the tile area multiplied by the number of

CLBs used). The Malibu area is computed using the CLB area calculated in Section 3.7 and

multiplied by the number of CLBs used.

The VPR area results are similar to the QuartusII/StratixIII results in Table 5.6. The VPR

architecture is more dense than the StratixIII, so the Malibu results are correspondingly less

dense relative to VPR than QuartusII.

Alternate Architectures

An alternate 10x density architecture configuration from Table 5.8 can also be used with Mal-

ibu. The 10x density architecture was designed with an appropriate amount of memory re-

sources to achieve an average (geomean) 10x density compared to an FPGA across all the

benchmarks. The use of this 10x density architecture is restricted to just the discussion in this

116

C
H

A
PT

E
R

5.
M

-C
A

D
:A

N
FPG

A
C

A
D

B
A

SE
D

TO
O

L
FL

O
W

Table 5.7: M-CAD area and density values compared to VPR/iFAR. Entries with a “–” are same as the Wf = 1 value. The
“Dens.” columns are the area density compared to VPR (VPR T / M-CAD T).

M-CAD Maximum Speed M-CAD Maximum Density

VPR Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Circuit T ×106 T ×106 Dens. T ×106 Dens. T ×106 Dens. T ×106 Dens. T ×106 Dens. T ×106 Dens.

C
G

-o
nl

y

fft16 48.12 62.85 0.766 49.69 0.968 – – 2.51 19.155 3.11 15.498 – –
me 14.51 62.85 0.231 77.64 0.187 – – 10.05 1.444 6.99 2.077 – –
chem 31.41 5.66 5.552 12.42 2.528 – – 1.41 44.446 1.75 35.961 – –
fft8 11.72 40.22 0.291 49.69 0.236 – – 1.41 8.291 1.75 6.708 – –
honda 3.22 5.66 0.569 6.99 0.461 – – 1.41 2.277 1.75 1.843 – –
mcm 2.60 5.66 0.459 6.99 0.372 – – 2.51 1.034 1.75 1.487 – –
wang 1.96 2.51 0.780 3.11 0.632 – – 1.41 1.388 1.75 1.123 – –
pr 1.60 10.06 0.159 3.11 0.516 – – 1.41 1.135 1.75 0.918 – –

Geo. Mean (CG-only) 0.557x 0.528x 0.528x 3.734x 3.489x 3.489x

G
oo

d

ac97 ctrl 2.84 62.85 0.045 27.95 0.102 19.41 0.146 5.65 0.503 12.42 0.229 19.41 0.146
aes core 3.65 15.71 0.232 12.42 0.294 27.95 0.131 1.41 2.584 3.11 1.176 6.99 0.523
dir 11.06 5.66 1.956 6.99 1.583 3.11 3.562 1.41 7.828 3.11 3.563 3.11 3.563
spi 0.79 15.71 0.050 6.99 0.113 3.11 0.254 1.41 0.557 3.11 0.254 3.11 0.254
pci master 0.46 5.66 0.081 3.11 0.148 3.11 0.148 1.41 0.326 1.75 0.264 3.11 0.148

Geo. Mean (Good) 0.153x 0.240x 0.303x 1.131x 0.577x 0.400x

Geo. Mean (CG-only and Good) 0.339x 0.390x 0.426x 2.358x 1.747x 1.517x

Im
pa

ir
ed

ethernet 21.70 90.51 0.240 77.64 0.279 77.64 0.279 40.20 0.540 15.72 1.380 27.95 0.776
wb conmax 73.06 62.85 1.162 447.21 0.163 198.76 0.368 15.70 4.653 77.63 0.941 49.68 1.471
dma 7.76 90.51 0.086 77.64 0.100 152.18 0.051 15.70 0.494 49.68 0.156 111.78 0.069
tv80 2.30 40.22 0.057 310.56 0.007 310.56 0.007 30.78 0.075 15.72 0.147 27.95 0.082
jpeg enc 1.64 362.02 0.005 310.56 0.005 198.76 0.008 251.24 0.007 77.63 0.021 27.95 0.059
systemcaes 2.03 362.02 0.006 90.55 0.022 62.88 0.032 1.41 1.435 6.99 0.290 12.42 0.163
des 0.60 22.63 0.027 152.18 0.004 77.64 0.008 19.00 0.032 15.72 0.038 27.95 0.022
systemcdes 0.51 22.63 0.022 77.64 0.007 62.88 0.008 2.51 0.201 15.72 0.032 15.72 0.032

Geo. Mean (Impaired) 0.046x 0.024x 0.030x 0.220x 0.148x 0.120x

Geo. Mean (All) 0.159x 0.134x 0.155x 0.956x 0.681x 0.577x

117

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.8: Malibu memory area estimates for a 10x density architecture. The first three
rows are the Malibu architecture from Table 3.6 used throughout this thesis. The 10x
density architecture adds more memory to the R and instruction memories for more
aggressive time-multiplexing. The size of the NSEW memories are unchanged.

SRAM µm2 eDRAM µm2 Flash µm2

Memory Specification Area Per Bit Area Per Bit Area Per Bit

Ta
bl

e
3.

6

NSEW 32x16, 3R1W 5,430 10.615 – – – –
R 32x128, 3R1W 27,244 6.651 – – – –

Instr. 81x256, 1RW 20,717 0.999 6,013 0.290 1,421 0.0686

10
x

D
en

si
ty NSEW 32x16, 3R1W 5,430 10.651 – – – –

R 32x256, 3R1W 52,300 4.591 – – – –
Instr. 81x1024, 1RW 76,331 0.920 24,054 0.290 5,686 0.0686

subsection, all other results in this thesis use the architecture defined in Table 3.6.

Two coarse-grained benchmark circuits (fft16 and chem) already exceed 10x density of an

FPGA using the original architecture configuration. For the remainder of the benchmarks, to

achieve an average 10x density improvement, M-CAD must time-multiplex the circuits more

aggressively and be able to fit many operations into each CLB. Doing this requires increas-

ing the size of the instruction memory and the R memory, which means further adjusting the

ALM/CLB area estimate to include these larger memories. For most of the benchmark circuits,

10x density translates into a Malibu array size of 2x2 CLBs or fewer. Such small architecture

sizes are not possible with the current Malibu input/output resource constraint that a CLB can

only perform one input and output each user clock cycle. An alternative input/output mecha-

nism would be required to map circuits with a large number of I/Os onto such a small Malibu

array.

At 10x density, the average circuit speed is 3.30 MHz across all benchmarks for Wf = 0.

This is about 0.01x (1/100th) the speed of an FPGA. This is comparable to the VEGA density

and performance [40], but accomplished with comparison to a modern FPGA using much

larger benchmarks.

118

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

This result is only applicable for Wf = 0. Enabling the fine-grained resources means that

all signals of width≤Wf will never be time-multiplexed. This means that additional LUTs and

wires per CLB would be needed for the fine-grained signals, which makes the CLB tile larger

and necessitates even more aggressive time-multiplexing to achieve 10x density. This was not

explored.

Although we can reach 10x the density of an FPGA, this gain comes with a further loss

in performance as the circuit must be heavily time-multiplexed. Additionally, for the current

Malibu architecture, an alternative input/output mechanism would be required for circuits with

a large number of I/Os. Again, to keep the analysis in this thesis focussed, the results of the

10x density architecture are not used outside this “Alternate Architectures” subsection.

5.6.4 Compile Time

Table 5.9 shows the complete Verilog-to-bitstream compile times for QuartusII, VPR (includ-

ing the time for Quartus to build the input BLIF), and M-CAD. Also shown is the speedup

compared to QuartusII, where speedup = QuartusII time
M-CAD time . The speedup compared to VPR is sum-

marized in Table 5.10.

M-CAD shows a significant speedup compared to QuartusII ranging from 249x faster

(chem) down to 1.3x faster (dma, systemcaes) for Wf = 0. The CG-only benchmarks show

the highest speedups, as expected, because fine-grained synthesis is not invoked at all.

For Wf = 1, the speedup range changes from 249x faster (chem) to almost 72x slower

(wb conmax), with a geomean of 8.1x faster. We consider wb conmax to be anomalous because

a traditional VPR route takes 14 minutes, whereas VPR called by the Malibu to route the FG

resources takes over 5 hours. We were unable to determine why VPR runs so slowly in this

case.

In Appendix A we show that the compile time in QuartusII can be reduced by 15%, and

in VPR by 7% by disabling optimizations, turning off timing-driven placement, and reducing

119

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.9: M-CAD compile time and speedup versus QuartusII. Compile time is in sec-
onds. Entries with a “–” are for coarse-grained benchmarks and the same as the
Wf = 0 value.

M-CAD

QuartusII VPR Wf = 0 Wf = 1 Wf = 4

Circuit Time (s) Time Time Speedup Time Speedup Time Speedup

C
G

-o
nl

y

fft16 333.4 454.1 5.5 60.4 – – – –
me 220.5 111.9 13.5 16.3 – – – –
chem 311.9 3,663.0 1.2 249.8 – – – –
fft8 187.3 73.7 2.9 64.7 – – – –
honda 162.8 37.2 0.7 245.4 – – – –
mcm 153.4 25.9 0.8 200.6 – – – –
wang 148.2 22.2 10.6 13.9 – – – –
pr 145.6 18.7 1.3 112.9 – – – –

Geo. Mean (CG-only) 77.0x 77.0x 77.0x

G
oo

d

ac97 ctrl 156.8 20.2 14.0 11.2 48.2 3.3 64.0 2.5
aes core 169.6 155.0 5.9 28.6 12.2 13.9 9.9 17.2
dir 186.8 93.8 2.4 77.2 8.4 22.2 5.7 32.6
spi 138.1 9.5 3.9 35.3 3.2 42.6 3.4 41.1
pci master 140.1 10.0 2.0 70.5 6.7 20.8 5.7 24.6

Geo. Mean (Good) 36.1x 15.5x 17.0x

Geo. Mean (CG-only and Good) 57.5x 38.7x 16.9x

Im
pa

ir
ed

ethernet 306.6 207.2 69.0 4.4 544.0 0.6 543.1 0.6
wb conmax 319.8 804.7 96.6 3.3 22,997.1 0.01 9,787.1 0.03
dma 206.4 64.3 157.2 1.3 2,033.5 0.1 7,871.3 0.03
tv80 165.9 36.6 15.9 10.4 806.5 0.2 811.9 0.2
jpeg enc 149.6 31.3 91.7 1.6 141.5 1.1 125.8 1.2
systemcaes 160.9 24.8 121.1 1.3 16.4 9.8 1,491.7 0.1
des 137.3 19.8 7.7 17.8 216.6 0.6 232.3 0.6
systemcdes 135.4 16.7 2.4 55.9 14.2 9.5 16.6 8.1

Geo. Mean (Impaired) 5.02x 0.56x 0.30x

Geo. Mean (All) 28.8x 8.08x 6.46x

120

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Table 5.10: M-CAD compile time speedup versus VPR.

M-CAD vs. VPR

Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 36.14x 36.14x 36.14x
Geo. Mean (Good) 7.08x 3.03x 3.32x

Geo. Mean (CG-only and Good) 17.97x 12.50x 12.99x

Geo. Mean (Impaired) 1.52x 0.17x 0.09x

Geo. Mean (All) 6.83x 2.30x 1.80x

the placement and routing effort levels. Based on this minimal reduction, it is unlikely that

algorithm tuning alone can reduce the compile time of QuartusII or VPR to be comparable to

M-CAD.

These results also show that M-CAD can achieve fast compile times compared to FPGA

CAD tools, particularly for coarse-grained circuits. The compile times were roughly the same

for the maximum performance and for the maximum density results.

5.6.5 Synthesis Time for Very Large Circuits

It is difficult to acquire exceptionally large benchmark circuits that are real circuits. To test the

compile time of the tools on very large circuits, we randomly generated synthetic benchmarks

with a custom tool. The circuits are generated without any graph-depth or locality control, so

they are not suitable for testing the quality of the tool output. For such testing, a more realistic

random circuit generator would be required. However, we consider them adequate for testing

runtime scaling.

The circuits have 32 inputs, 16 outputs, and contain 1,000 to 50,000 nodes. Each node is

a 32-bit operation (add, subtract, invert, and, or, xor, multiply). To put this into perspective, if

we assume the simplest case where each 32-bit operation requires 32 gates, the 50,000 node

benchmark contains 1.6 million gates.

121

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

0 10000 20000 30000 40000 50000 60000

Nodes

0.1

1

10

100

1000

10000

100000

S
y
n
th

e
si

s
T
im

e
 (

se
co

n
d
s)

M-CAD Total

Front-end

Cluster
Place

Schedule

Quartus II

Figure 5.7: Synthesis time for very large circuits. A 32x32 CLB (1024 CLBs total) ar-
chitecture was used.

0 10000 20000 30000 40000 50000 60000

Nodes

0

50

100

150

200

S
y
n
th

e
si

s
R

a
te

 (
n
o
d

e
s

p
e
r

se
co

n
d
)

Figure 5.8: Synthesis rate (nodes per second) for very large circuits.

122

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

The circuits were also synthesized in QuartusII v10.0 with the largest StratixIII (EP3SL340-

F1760C2) to produce a rough comparison with FPGA area usage and runtime. The 1,000

node circuit required 22,066 ALMs (16.2% of the device) and synthesized in 9 minutes. The

2,000 node circuit used 64,748 ALMs (47.6%) synthesized in 34 minutes. The 4,000 node

circuit used 152,338 ALMs (112%) and stopped after 80 minutes as it exceeded the size of

the device. The 6,000 node circuit exhausted the 32-bit 4GB memory limit and was forced

to quit after 2 hours. The 10,000 node circuit exhausted the memory after 13 hours. The

50,000 node circuit ran for 24 hours without finishing the analysis and synthesis phase (before

placement and routing). To be fair, QuartusII definitely attempts to do more optimizations than

Verilator, and the benchmarks are not “FPGA-friendly” in that the circuits are entirely coarse-

grained and very large. However, they are all valid circuits. The exact numeric comparisons are

not important; what is of significance is that M-CAD can successfully synthesize these large

circuits and QuartusII cannot.

Figure 5.7 shows the average compile time for M-CAD when run with 10 trials of the ran-

dom benchmarks (10 different random benchmarks of the same size for each trial) compiled for

an architecture of 1024 (32x32) CLBs. The total runtime curve is shown, plus a breakdown for

each step in M-CAD. As the circuit size increases, front-end synthesis and placement dominate

the runtime. For the 50,000 node circuit, the total compile time was 54 minutes.

To reduce the overall time, front-end synthesis (parsing, elaboration, optimization, and

DFG generation) and placement are the two most likely targets. However, it is unlikely that the

front-end synthesis can be made much faster, except by reducing the optimization done. The

placement step can be improved by reducing the inner-loop iterations of the annealer, at the ex-

pense of quality. The number of inner-loop iterations is the same as in VPR, 10×n clusters1.3,

which we have found to be a good balance between quality and speed. Increasing this causes

longer run-times with little or no improvement in results, and decreasing it gives significantly

poorer results. Beyond this, placement could be improved by changing to a fundamentally

123

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

different approach, e.g. analytical placement. Alternatively, it was recently shown by Smecher

et al. [70] that a Massively Parallel Processor Array (MPPA) is capable of greatly accelerated

placement by self-hosting a parallel simulated-annealing algorithm. Subsequent work by Wang

et al. [87] showed that a many-core system can speedup placement by 123x compared to VPR

with only a small quality degradation.

Figure 5.8 shows the total compile time as a rate in nodes-per-second. The initial rise in

rate, ending at ≈ 8,000 nodes, is caused by amortization of the tool overhead. Beyond this,

algorithmic complexity catches up. Scaling to even larger circuits than shown here may require

heuristics with better algorithmic complexity or with reduced quality of results.

5.6.6 Longest-Path Analysis

The longest paths in each circuit can highlight where the M-CAD algorithms might be im-

proved to reduce the overall schedule length. The length of a path in the scheduled circuit is

the time required to traverse all compute and routing resources from inputs and registers, to

outputs and registers. This includes the time spent waiting for resources.

Table 5.11 shows the longest-path analysis for the maximum performance results in Ta-

ble 5.3. In the table, starting from the left, is the schedule length of the synthesized circuit

(SL) which is reported as the Fmax in Table 5.3. The next column is the longest path (Len),

followed by the number of longest-paths (Count) because there is often more than one, each

using a slightly different set of resources. The longest path will always be less than or equal to

the schedule length; it can be lower in cases where an input does not immediately occur in the

first timeslot due to scheduling decisions, or an output occurs before the last timeslot.

The next five columns are the longest-path breakdown, averaged over the number of

longest-paths: the number of compute-only slots where an ALU is in use (ALU); the num-

ber of wait slots spent waiting for values to arrive or waiting for the ALU while it is busy with

other computation (Wait); the number of compute-and-move slots where a value is computed

124

C
H

A
PT

E
R

5.
M

-C
A

D
:A

N
FPG

A
C

A
D

B
A

SE
D

TO
O

L
FL

O
W

Table 5.11: M-CAD Longest-path breakdown for maximum performance results. All numbers are system clock cycles.

M-CAD Wf = 0 M-CAD Wf = 1

Compute Route Compute Route

Circuit SL Len Count ALU Wait Move Route Hold1 SL Len Count ALU Wait Move Route Hold1 FG

C
G

-o
nl

y

fft16 22 22 106 1.0 16.3 0.0 4.7 0.0 – – – – – – – – –
me 18 18 20 1.6 11.0 0.1 5.2 0.0 – – – – – – – – –
chem 25 25 1 5.0 13.0 0.0 7.0 0.0 – – – – – – – – –
fft8 14 14 48 1.0 8.2 0.0 4.8 0.0 – – – – – – – – –
honda 22 22 2 13.0 0.0 4.0 5.0 0.0 – – – – – – – – –
mcm 14 14 1 7.0 0.0 0.0 7.0 0.0 – – – – – – – – –
wang 12 10 10 6.2 0.0 1.6 2.2 0.0 – – – – – – – – –
pr 12 12 2 8.0 0.0 1.0 3.0 0.0 – – – – – – – – –

G
oo

d

ac97 ctrl 70 70 8 1.8 64.9 0.0 3.4 0.0 25 25 2 1.0 21.0 0.0 3.0 0.0 0.0
aes core 36 36 1 13.0 0.0 0.0 23.0 0.0 40 39 1 13.0 5.0 0.0 21.0 0.0 0.0
dir 34 34 1 5.0 25.0 1.0 3.0 0.0 37 37 6 17.0 11.0 1.0 8.0 0.0 0.0
spi 39 36 2 16.0 0.0 2.5 17.5 0.0 31 16 1 10.0 0.0 0.0 3.0 0.0 3.0
pci master 44 43 2 10.5 28.0 0.0 4.5 0.0 34 15 1 1.0 13.0 0.0 1.0 0.0 0.0

Im
pa

ir
ed

ethernet 150 116 10 3.5 104.4 0.0 8.1 0.0 84 61 1 4.0 54.0 0.0 3.0 0.0 0.0
wb conmax 76 76 1 1.0 71.0 0.0 4.0 0.0 51 36 1 13.0 0.0 3.0 17.0 0.0 3.0
dma 171 171 1 16.0 123.0 0.0 32.0 0.0 98 98 7 2.0 89.0 2.0 4.0 0.0 1.0
tv80 143 143 1 13.0 96.0 1.0 33.0 0.0 204 137 11 11.0 118.0 0.0 7.0 0.0 1.0
jpeg enc 194 194 23 3.0 176.7 0.0 14.3 0.0 190 190 22 2.4 180.7 0.0 6.7 0.0 0.2
systemcaes 66 66 16 1.8 54.9 0.3 9.1 0.0 65 65 10 1.8 56.9 0.7 5.5 0.0 0.1
des 256 186 1 104.0 0.0 12.0 70.0 0.0 191 158 1 120.0 0.0 3.0 31.0 0.0 4.0
systemcdes 47 47 1 4.0 36.0 0.0 7.0 0.0 46 46 1 30.0 0.0 2.0 13.0 0.0 1.0

M-CAD Wf = 4

G
oo

d

ac97 ctrl 25 24 1 1.0 22.0 0.0 1.0 0.0 0.0
aes core 39 38 1 14.0 0.0 1.0 22.0 0.0 1.0
dir 37 37 2 3.5 30.0 0.5 3.0 0.0 0.0
spi 26 14 1 9.0 0.0 0.0 3.0 0.0 2.0
pci master 13 7 1 1.0 2.0 0.0 4.0 0.0 0.0

Im
pa

ir
ed

ethernet 48 48 1 5.0 34.0 0.0 8.0 0.0 1.0
wb conmax 56 36 1 5.0 0.0 0.0 31.0 0.0 0.0
dma 94 94 9 5.0 82.0 0.0 6.0 0.0 1.0
tv80 16 16 1 14.0 0.0 0.0 1.0 0.0 1.0
jpeg enc 191 191 5 1.4 184.0 0.8 4.8 0.0 0.0
systemcaes 68 68 5 1.6 61.2 0.2 4.8 0.0 0.2
des 188 166 1 111.0 0.0 4.0 46.0 0.0 5.0
systemcdes 53 39 2 25.0 0.0 2.0 11.0 0.0 1.0

1The number of hold slots are zero for all circuits (not just rounded to zero).

125

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

then transfered directly to a neighbouring CLB without using the crossbar (Move); the number

of routing timeslots where progress is made (Route); and the number of routing hold timeslots

where a value is held due to a route conflict (Hold).

For Wf > 0, the results for the CG-only circuits are equal to the Wf = 0 results because

they use no fine-grained resources, so the results are not duplicated. On the far right of the

table is an additional column (FG) for the number of timeslots that the scheduler allocated for

fine-grained routing and computation. This value is only applicable for Wf > 0, because when

Wf = 0 there are no fine-grained resources used.

Wait cycles are the extra cycles between the time an ALU operation is scheduled and the

time of its most closely scheduled predecessor ALU operation. Some wait cycles are due to

a ready operation waiting for the ALU, because it is busy servicing a large number of other

operations that are also ready. Other wait cycles are due to an operation waiting for an operand

to arrive over the routing network; in this case, the operand has already been computed but it

must be transported. M-CAD tries to avoid wait cycles along the longest paths (most critical) by

using slack and criticality and scheduling the most critical paths first. However, in doing this,

other non-critical paths are forced to wait and incur wait cycles until they too become critical.

To further reduce the number of wait cycles, it is possible to change the architecture by adding

multiple ALUs per CLB, or adding longer interconnect wires that span multiple CLBs in a

single clock cycle, or both. Future work will investigate these and other architectural options

for reducing waiting time.

The criticality scheduling approach is also what causes several paths to have the same

longest-length: a path is delayed up to the point where it become critical, and then it is treated

with higher priority in the scheduler (causing other paths with lower criticality to be delayed,

until they also become critical, etc.). There are a few singletons (circuits with a single longest

path) with high ALU wait times, like dma and wb conmax when Wf = 0. For these two circuits,

an investigation revealed that the singleton is a modulo path that is lengthened near the end of

126

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

scheduling when the scheduler reconnects modulo routes. Up to that point, the singleton path

has the same length as several other paths, but the scheduler is forced to increase the path

length to complete a modulo route. The next chapter presents a CAD flow where this is less of

a problem because placement, routing, and scheduling are done concurrently. The placer can

get immediate feedback from the router and scheduler, and thus can avoid placements which

unnecessarily increase the length of a critical path.

In Table 5.11, the number of compute timeslots and route timeslots are close, meaning that

the longest path spends roughly the same amount of time actively computing and routing. This

suggests that the tools may benefit from placing more emphasis on trying to use compute-and-

move type operations. The zero hold slots (no values were rounded down to zero) shows that

the horizontal-then-vertical routing strategy combined with the abundance of routing resources

means there are indeed few routing conflicts.

5.6.7 Density Versus Performance Tradeoff

This section investigates the density versus performance tradeoff in M-CAD. We show that

the M-CAD flow can trade density for performance, and that increasing Wf generally gives

performance gains across all densities, not just at the Fmax as was shown in Table 5.1.

Figure 5.9 shows the frequency of the largest benchmark, ethernet, for Wf =0, 1, and 4

over a range of architecture sizes from 3x3 CLBs to 48x48 CLBs.

For each architecture array size, the tools are forced to use all available CLBs so that the

performance on the various sized architecture arrays can be seen. When the array becomes too

large, there is a decrease in performance as communication delay dominates the schedule. If

the array is too small, the synthesis result may not be viable if the fixed resource constraints

(from Table 3.5) are violated. In these cases, the M-CAD flow still finishes the synthesis by

overusing the necessary resources, but it reports an error. For completeness, these results are

still included and marked with a dotted line on the left of each curve.

127

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=4
CAD wf=1
CAD wf=0

Wf=0 Upper Bound

Wf=1 Upper Bound

Wf=4 Upper Bound

ethernet

Figure 5.9: Frequency versus area (number of CLBs) for the ethernet benchmark. The
dotted line represents synthesis results where architectural resource constraints
were violated.

This graph demonstrates two things. First, it shows the Malibu tools can trade area

(number of CLBs) for performance (MHz) by targeting any architecture array size and time-

multiplexing more nodes (or fewer) on the CGs. This is useful for fitting a large design in a

small architecture, for example. Second, it shows the tradeoff involving Wf . Increasing Wf

from 0 to 1 causes the frequency to increase. This is expected since the fine-grained control

logic is moved to the FG resources where it can be computed and distributed more quickly.

This graph is duplicated in Appendix D, which also contains individual area versus per-

formance graphs for the other benchmark circuits. These two trends can be seen in all these

graphs.

5.7 Conclusions

This chapter presented the M-CAD flow for mapping circuits to the Malibu architecture. It is a

segregated flow based on the traditional place-then-route CAD model with an additional final

128

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

0.1 1.0 10.0 100.0

Density vs. QuartusII/StratixIII

0.1

1.0

10.0

Fr
e
q
u
e
n
cy

 v
s.

 Q
u
a
rt

u
sI

I/
S

tr
a
ti

x
II
I mcm (200.6x)

wang (13.9x)
chem (249.8x)
pr (112.9x)
honda (245.4x)
fft8 (64.7x)
fft16 (60.4x)
dir (22.2x)
spi (42.6x)
me (16.3x)
aes_core (13.9x)
ac97_ctrl (3.3x)
pci_master(20.8x)
geo.mean (38.7x)

QuartusII
Feasible
Range

Figure 5.10: M-CAD Wf = 1 results summary. The CG-only and Good benchmark fre-
quency versus density is shown relative to QuartusII/StratixII. The maximum den-
sity and maximum performance data points are shown for each benchmark. The
compile time speedup compared to QuartusII is shown in the figure legend after
the benchmark name.

step, scheduling, to temporally order the coarse-grained operations in each CLB.

The density, performance, and compile time results for each benchmark are summarized

in Figure 5.10. The figure shows the density versus performance for each of the CG-only

and Good benchmarks for M-CAD Wf = 1. The shaded area of the figure is the performance

and density achievable with QuartusII on a StratixIII FPGA. Each curve has two data points,

corresponding to the maximum performance and maximum density. The compile time speedup

relative to QuartusII is included in the figure legend after each benchmark name. For all the

circuits except spi, ac97 ctrl, and pci master, M-CAD is able to achieve a density result outside

the range reachable by QuartusII/StratixIII. For all the benchmarks, the compile time compared

to QuartusII is significantly faster.

The results presented in this section show that the M-CAD flow performs well. A 38.7x

improvement in compile time is achieved for Wf = 1 over FPGA CAD tools (excluding the

129

CHAPTER 5. M-CAD: AN FPGA CAD BASED TOOL FLOW

Impaired benchmark circuits). M-CAD can trade density for circuit performance, with results

for Wf = 1 ranging from 2.474x density at 0.429x performance to 0.582x density at 0.652x per-

formance compared to QuartusII/StratixIII. Additionally, when only the coarse-grained bench-

marks are considered, the compile time is 77x, the density is nearly 5x, and the performance is

80% that of a commercial FPGA.

The problems caused by lack of information sharing between the tools—usually only a

minor annoyance in FPGA CAD—are more of a problem when a temporal dimension is added

to the architecture and the CAD. This was demonstrated with an example where the placer

would benefit from the post-scheduling results, and reinforced with an upper bound frequency

investigation. M-CAD was only able to achieve 50% of the upper bound frequency for the

benchmark circuits, with 70% of the loss contributed by the placer (although this is partly due

to the placer enforcing layout restrictions on the circuit). Compiling with additional placement

effort did not appreciably improve the results. Even though an optimal placement, routing,

and scheduling solution may not be achievable, a 2x performance gap does leave room for

improvement. We believe that a better result is possible if scheduling decisions can be made

during placement. This motivated the M-HOT flow described in the next chapter. M-HOT

achieves better performance and density than M-CAD by integrating placement, routing, and

scheduling into a single algorithm.

130

Chapter 6

M-HOT: A Height-Oriented Tool Flow

6.1 Overview

The M-CAD tool in Chapter 5 was able to quickly synthesize a circuit, but only came within

50% of the upper bound on frequency. This chapter describes an alternative approach to the

CAD tools for Malibu. It integrates the placement, routing, and scheduling into a single al-

gorithm to achieve a higher-quality solution. Although not as fast as M-CAD, M-HOT can

still achieve fast compile times and improve both density and performance results. Just as with

M-CAD, M-HOT can also trade density for performance.

The results in this chapter have led us to recommend that the Malibu architecture be used

with M-HOT, and with a fine-grained width of 1 (Wf = 1). M-HOT provides a very fast compi-

lation, 26.1x faster than QuartusII, and generates high-quality results. Using Wf = 1 balances

the performance gains from increasing Wf with the density loss by doing the same, as will be

shown in this chapter. At this setting, at maximum performance, M-HOT/Malibu achieves 70%

the performance of an StratixIII FPGA and about the same density (26.1x compile speedup,

0.707x performance, 0.996x density). At maximum density, Malibu is about half the perfor-

mance of the FPGA and almost 2.5x the density (26.1x compile speedup, 0.513x performance,

131

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

2.474x density). Both of these are reached without changing the underlying architecture, only

an M-HOT compiler setting. We consider this an excellent result for a time-multiplexed coarse-

grained architecture: the tools can compile circuits quickly, the architecture is close to a com-

mercial FPGA in performance, and exceeds it in density.

This chapter is organized as follows. Sections 6.2–6.5 describe the M-HOT flow and how it

maps circuits onto the Malibu architecture. Section 6.6 presents results of circuit synthesis and

compares them to results from the M-CAD flow in the previous chapter. Section 6.7 details the

technical differences between M-HOT and previous work. Section 6.8 summarizes the M-HOT

flow and gives concluding remarks.

6.2 M-HOT Introduction

The Malibu height-oriented tool flow (M-HOT) is shown in Figure 4.1c. Compared to segre-

gated flows like M-CAD, M-HOT is able to make better decisions because it has more accurate

information about resource usage and the current schedule as it is created. M-HOT uses the

same front-end synthesis as presented in Chapter 4. The remainder of the M-HOT flow is

explained in the following sections. The overall flow of the M-HOT tool is as follows:

• Perform a minimal clustering on the input DFG.

• Levelize the DFG into an As-Late-As-Possible (ALAP) tree, resulting in the most time-

critical operations at the highest levels of the tree.

• Starting from the top of the tree (the greatest height) and working down to height 0.

Simulated annealing is done at each height to assign the nodes at that height to physical

resources. Routing is also done at this time to all previously placed nodes.

• When each height is complete, locked down the nodes and anneal the next height until

height 0 is done.

132

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

0

a

1 2 3

b c d

ADD

4 5 6 7

XOREQ EQ

INPUT INPUT INPUT INPUT

CGO CGO

CGI

LUT

x

OUTPUT

MUX

00

0
0000

00
0

11

0

1

1

00

14 15

17

16

11

13

Figure 6.1: Example: M-HOT clustering for two CLBs. Each node is put in an individual
cluster except the CGI and CGO nodes which must be kept with their respective
sources and sinks.

• Invoke VPR to route the fine-grained signals and verify the timing estimates.

This overall flow is roughly based on a CGRA mapping tool that uses modulo graph em-

bedding [62]. M-HOT adds a clustering step, support for fine-grained resources, scalability

to larger architecture array sizes, and a dynamic schedule length to reduce compile time. The

differences are detailed in Section 6.7.

133

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

6.3 M-HOT Cluster

The goal of M-HOT is to take advantage of simultaneous placement, routing, and scheduling.

The benefits of clustering first in traditional FPGA CAD tools, and in M-CAD, are problem

size reduction for placement, and reducing the interconnect demands for routing. However,

M-CAD is very fast and there is no interconnect congestion on the Malibu architecture. Since

clustering restricts the freedom of the placer, M-HOT only does a minimal clustering: LOAD

and STORE operations for the same memory are clustered together, and CGO and CGI nodes

are clustered with their respective sources or sinks as required by the CG/FG interface (see

Section 5.2). By keeping each instruction unclustered, M-HOT has a greater ability to place

instructions optimally.

This placement freedom also causes M-HOT to favour a “compute-and-move” model where

computation is done while values are being routed through the current CLB en route to the next

CLB location. The values are routed though the ALU instead of through the crossbar, so the

required computation can be done while being routed.

Returning to the example in Figure 4.4, the M-HOT clustering is shown in Figure 6.1.

6.4 M-HOT Schedule

The top-level code of the M-HOT scheduler is shown in Figure 6.2a. The algorithm accepts

a DFG and computes an ALAP height for each node. Figure 6.2b shows the ALAP result

computed from Figure 6.1. At the bottom of the tree (height 0) are the outputs and all the

registered nodes. The scheduler processes each height, starting at the largest (which are always

inputs), because those nodes have the longest path to the outputs at the bottom, so they are the

most critical.

The ALAP tree calculation ignores CGI and CGO nodes which will only appear in clusters

with some other node by virtue of the clustering approach. These nodes are not real operations,

134

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

1 function M HOT main ()
2 {
3 max h = compute ALAP heights ()
4 for (h = max h ; h >= 0; h--) {
5 nodes = a l l nodes at he igh t h
6 a f f i n i t y = c o m p u t e a f f i n i t y (nodes)
7 anneal (a f f i n i t y , nodes)
8 }
9 f i n a l i z e m o d u l o r o u t e s ()

10 }

7
XOR

ADD
4

0

a

1 2 3

b c d

5 6
EQ EQ

INPUT INPUT INPUT INPUT

CGO CGO

CGI

LUT

x
OUTPUT

MUX

14 15

17

16

11

13

0

1

2

3

4

height

(a) (b)

Figure 6.2: Example: M-HOT top-level code and ALAP tree. (a) M-HOT top-level code,
and (b) the ALAP tree. All registered nodes are at height 0.

merely placeholders for resource usage. Another way to view it is the ALAP tree is constructed

using clusters, rather than the nodes themselves.

At each height, a low-temperature anneal is done to assign coarse-grained operations to

CGs and fine-grained operations to LUTs in the FGs. The coarse-grained and fine-grained

nodes are annealed together, so either can be a move candidate. After choosing a move, the

annealer invokes the router to determine the earliest timeslot for the current operation in the

chosen destination CLB. To do this, it computes a route from every source to the current node

135

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

in the destination CLB and timeslot. Routing delays are computed the same as the M-CAD

approach. When annealing at a height is complete, all nodes at that height are locked so they

cannot be moved, and the next height is annealed.

If a node is registered, it requires special handling. A registered node is always the terminus

of a path, so it is always at height 0 in the ALAP tree. The sinks of a registered node are not

at height 0 unless the register is also an output, or the sink is another register. Therefore,

when a registered node is encountered, not only must the routes from all sources to the node

be computed, but the routes from the node to all sinks must be also computed. The latter are

called “modulo routes”, as they wrap around the schedule back to some earlier height.

Since the M-HOT approach lengthens the SL as required, instead of targeting a fixed SL,

these modulo routes may become broken as additional timeslots are added. The last step of

M-HOT in Figure 6.2a completes and reconnects any dangling routes.

At the heart of the annealer is a cost function. The annealing schedule is from VPR but

with a lower fixed initial temperature (hard-coded to 0.01). The lower temperature causes the

annealer to finish faster. Also, since nodes from previous heights are placed and locked in good

positions, they serve as anchors to help the placement converge faster.

The cost function for M-HOT is the sum of five costs. Each cost is calculated for all nodes

at the current height. A cost may look at nodes in other heights for placement information or

to compute the affinity, but the actual calculation is only done for the current height. The cost

function is:

cost = producer cost +affinity cost+ parallel cost + register cost + penalty (6.1)

The components of this cost function are described in the subsections below. The

producer cost keeps nodes at the current height near nodes of previous heights. The affin-

ity cost keeps nodes at the current height close if they share descendants which have not yet

136

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

been placed. These two costs have been adapted from [62]. The parallel cost encourages

nodes at each height to spread out for improved parallelism. The register cost keeps nodes at

the current height close if they share registers; it is similar to the affinity cost but can use actual

placement information. Finally, the penalty cost discourages illegal placements.

The producer cost, affinity cost, and register cost are sums of weighted Manhattan dis-

tances, so they are just added together in the final cost. This is similar to how the cost function

in [62] was constructed. The parallel cost is small compared to the others, so it is also just

added to the total cost; it only adds 1 to the total cost for each pair of nodes in the same height

in the same CLB. It forces nodes to spread out, but not at the expense of additional scheduling

delays. The penalty cost is large, adding 1,000 for every resource violation, overpowering all

the other costs. If scheduling finishes with a non-zero penalty cost, the solution is invalid.

6.4.1 Producer Cost

The producer cost is the delay cost of all producer nodes at previous heights to all the con-

sumer nodes in the current height being placed. Minimizing this cost means that the consumer

nodes are placed near their respective producers, reducing the routing resource usage and re-

ducing the delay for communicating values.

The calculation of producer cost is shown in Figure 6.3. The function is passed a list

of all the nodes at the current height, and it returns a single value, the producer cost. For

the CG operations, it uses actual routing information to compute the real cost (this includes

any hold slots, although usually the Manhattan distance is the actual cost, but that cannot be

guaranteed). For the FG operations it uses Equation 5.1 to estimate the delay through the

fine-grained resources.1 The total cost for either a CG or FG node is the sum of the timeslot

differences from each source to the current node.
1At the end of scheduling, the VPR router is invoked to route all the fine-grained signals and to verify that

Equation 5.1 has not under-estimated the delay on any signal. See Section 6.5.

137

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

1 function producer cos t (n o d e s i n c u r r e n t h e i g h t)
2 {
3 cost = 0
4 foreach (n o d e s i n c u r r e n t h e i g h t as node) {
5 foreach (node . sources as src) {
6 i f (s rc i s a r e g i s t e r) {
7 foreach (s rc . s inks as s ink) {
8 cost += mh(node . c lb , s ink . c lb)
9 }

10 } else {
11 /∗ The r o u t i n g cost i s the t i m e s l o t d i f f e r e n c e f o r both CG and FG resources .
12 ∗ Reca l l the d e f i n i t i o n o f ” delay ” i n Malibu i s the number o f t i m e s l o t s
13 ∗ requ i red to rou te a s i g n a l . Routing (and t i m e s l o t s) f o r each node are
14 ∗ ca l cu la ted before the cost . ∗ /
15 cost += src . t i m e s l o t − node . t i m e s l o t
16 }
17 }
18 }
19 r e t u r n cost
20 }

Figure 6.3: Calculation of producer cost.

The idea of the producer cost is the same as in [62], except there are two important mod-

ifications in this work. First, the FG computation has been added to support Malibu’s FG

resources, as described in the previous paragraph. Second, when the CG operation has a regis-

ter as a source, the source register will not be placed until the last height (height 0) is processed.

Because of this, the source register will not have a timeslot, so the producer cost cannot be

determined as described. Instead, the producer cost is set to the total Manhattan distance from

the candidate CLB location of the current node to each of the already-placed children of the

register. This helps keep the current node near the children of that source register thereby re-

ducing lengthy fanout delays when the register is finally placed (it can be easily placed near

all sinks of the register). In retrospect, since this is summed across all sinks of the source reg-

ister, this may inflate the producer cost when high-fanout registers are encountered; using the

average sink distance or bounding box perimeter of the register net may be better in that case.

138

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

6.4.2 Affinity Cost

The affinity cost keeps nodes with common descendants close together to reduce future routing

costs. It is computed among all nodes at each height (nodes(height)), and is the product of the

Manhattan distance (mh) between each pair of nodes at the height and the affinity between

them:

affinity cost = ∑
i, j∈nodes(height)

affinity(i,j)×mh(i.clb, j.clb) (6.2)

The affinity(i, j) counts the common sinks between the nodes i and j in future graph levels

(lower heights) which are not yet placed. It looks up to 3 levels deep, with a common sink

being counted four times at level 1, twice at level 2, and once at level 3. This exponential

weighting will heavily penalize two nodes with many common sinks in the very next level of

the graph if they are placed too far apart. It is calculated as follows:

affinity(i, j) = ∑
d=1..max d

2max d−d× sinks(i, j,d) (6.3)

Where, max d is the maximum depth to search for common sinks (max d = 3 in this thesis)

and sinks(i, j,d) is number of common sinks of i and j at distance d. For M-HOT, there are

three slight algorithmic exceptions. First, the M-HOT affinity calculation ignores CGI and

CGO nodes because they are not real operations. Second, for registered nodes, the affinity

calculation only includes nodes in the fanout that have not yet been placed (it is more likely

that they have already been placed, and the register cost handles that case). And third, nodes

are only counted once in the event of a feedback path.

For example, at height 4 in Figure 6.2b, nodes 0 and 1 share node 5 one depth away,

node 14 is ignored, node 17 two depths away, node 16 is ignored, and node 11 three depths

139

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

away. Hence, the affinity between nodes 0 and 1 is:

affinity(0,1) = 1×22 +1×21 +1×20 = 7 (6.4)

Notice that node 4 is not included even though it is a direct descendent of nodes 0 and 1. It

is four depths away in the ALAP tree, so there is extra time to route values to node 4, whereas

for node 5 the values are needed immediately or the critical path is lengthened.

Similarly, the affinities for the other pairs of nodes at height 4 can be computed as:

affinity(2,3) = 1×22 +2×21 +1×20 = 9 (6.5)

affinity(0,2) = 0×22 +1×21 +1×20 = 3 (6.6)

affinity(0,3) = affinity(1,2) = affinity(1,3) = affinity(0,2) (6.7)

Finally, the affinity for a height is stored in a symmetric matrix:

affinity =

0 7 3 3

7 0 3 3

3 3 0 9

3 3 9 0

(6.8)

This matrix is computed before annealing each height, and it remains constant for the du-

ration of the processing on that height.

6.4.3 Parallel Cost

This cost spreads out nodes at the same height so they are placed in different CLBs. It is a

small cost relative to the Manhattan sums used in the other cost terms, but is especially useful

140

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

for breaking ties when a node could be placed in several locations. Without this cost, nodes

tend to bunch up and require slightly more timeslots to schedule. The implementation in [62]

uses skewed scheduling and prefers to place nodes “on the left” of the array, since this is where

I/O is located. For Malibu, it is better to force the nodes to spread out because I/O is around

the periphery.

The cost is computed only for nodes at the current height (nodes(height)). It is the number

of node-pairs placed in the same CLB at the current height. This addition to the cost function

reduces the average output schedule length by 3.3% (compared to not using this cost):

parallel cost = ∑
i, j∈nodes(height)

 1 nodes[i].clb = nodes[j].clb, i 6= j

0 otherwise
(6.9)

6.4.4 Register Cost

Like the affinity cost, the register cost is a forward-looking cost that keeps a node close to its

ultimate destination registers. Although those registers have not yet been placed, the sinks of

those registers have likely already been placed. While the backward-looking producer cost

keeps these sinks close together, the register cost ensures the nodes in the fanin cone of each

register will be placed on a straight line path to the sinks of the register, and thus close to the

register too when it is finally placed. Park avoids problem in [62] by pre-placing all inputs,

outputs, registers, and memories. If the circuit has a specific pin mapping this would be a rea-

sonable approach for M-HOT too, however it is not always desirable to impose this restriction.

The register cost is computed as shown in Figure 6.4. It is the sum of the Manhattan

distances between each node in the current height and the sinks of any registers that have been

placed in the node’s respective fanout cone. While the registers themselves have not yet been

placed, the sinks of those registers have been, so the Manhattan distance can be computed.

141

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

1 function r e g i s t e r c o s t n o d e (root node , node , depth , maxdepth)
2 {
3 i f (depth == maxdepth)
4 r e t u r n 0
5

6 cost = 0
7 foreach (node . s inks as s ink) {
8 i f (s ink i s a r e g i s t e r) {
9 foreach (s ink . s inks as regs ink) {

10 cost += mh(root node . c lb , regs ink . c lb)
11 }
12 } else {
13 cost += r e g i s t e r c o s t n o d e (root node , s ink , depth + 1 , max depth)
14 }
15 }
16 r e t u r n cost
17 }
18

19 function r e g i s t e r c o s t (n o d e s i n c u r r e n t h e i g h t)
20 {
21 cost = 0
22 foreach (n o d e s i n c u r r e n t h e i g h t as node) {
23 cost += r e g i s t e r c o s t n o d e (node , node , 0 , 3) ;
24 }
25 r e t u r n cost
26 }

Figure 6.4: Calculation of register cost.

Using this cost reduces the average schedule length for circuits with registers by 4%. The

value of max depth used in this thesis is 3.

6.4.5 Penalty Cost

The penalty cost discourages invalid/illegal placements. It is computed the same way as the

M-CAD approach in Section 5.3. The initial placement at any height may be invalid, resulting

in many penalty costs. At the end of each annealing phase, however, the penalty costs are zero

(or if they are not, the tools report an error that the solution violates resource constraints).

6.5 M-HOT Route

Placement, routing, and scheduling are done together with the M-HOT tool, so there is no

opportunity to incorporate the actual FG routing delays into the flow without invoking VPR in

the inner loop of the annealer, which would take far too long to run.

142

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Instead, M-HOT initially estimates the FG routing delay using Equation 5.1 which is based

on Manhattan distances and pre-characterized Elmore delays. At the end of scheduling, M-

HOT calls VPR to compute the actual delay for each FG route. In all of our benchmark trials,

we have found that even when the routing delay is underestimated (e.g., a route has to go

around some CLBs to avoid congestion), it is close enough to the actual delay that the value

will still arrive before it is needed. M-HOT flags any routes with timing violations and reports

an error.

For coarse-grained routing, as in the M-CAD approach, a horizontal-then-vertical routing

strategy is used. By making use of both time and space, it is impossible for a route to not

(eventually) arrive at the destination, except in one case. It is possible that a producer does

not have an available write port or write resource to start a route after it has been placed. This

can happen when a producer node at one height is placed (and locked down), and then a route

from a subsequent height goes through the CLB at the same timeslot as a previously placed

producer and claims the routing resources. When a sink of the producer is finally placed, the

router will be unable to route the producer to the sink, and will fail due to unavailable resources.

When this happens, the producer cannot be moved (it is at a previous height and already locked

down), nor can routing resources be re-claimed because they are used to route values between

two other nodes which have also been locked down. The tendency of M-HOT to closely pack

nodes causes this situation to occur frequently. This situation is the reason the link from R

to the crossbar was added in Figure 3.1. When this situation occurs, the value is written to R

instead, guaranteeing that the route can always be started. From R, the route proceeds normally

when resources become available.

This problem never occurs in the M-CAD flow because of the timeslot-oriented scheduling

approach.

143

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

6.6 Experimental Results

To evaluate M-HOT, it is compared to M-CAD, and to the two baseline synthesis flows, VPR

and QuartusII. As was done for the M-CAD experimentation in Section 5.6, the maximum fre-

quency, maximum density, and compile time are used to evaluate the tool. Results are presented

for the maximum performance and maximum density on the architecture in Table 3.5, with the

benchmark circuits divided into the same three categories (CG-only, Good, and Impaired as

defined in Section 3.3). As before, the CG-only and Good represent the types of circuits which

would primarily be used on the coarse-grained Malibu architecture, so we are most interested

in those results. For the Impaired benchmarks, it is only important that the tools successfully

synthesize the circuit; these benchmarks are included to demonstrate that this is being done.

All the results in this section are generated the same way as in Section 5.6, except that the

M-HOT tool was used as a drop-in replacement for M-CAD. Therefore, the explanation and

setup for each test is not repeated in this section. For those explanations, refer to the appropriate

subsection in Section 5.6.

The subsections in this section mirror those in Section 5.6. Section 6.6.1 examines the

quality of synthesis measured by the maximum frequency (Fmax). Section 6.6.2 extends this

beyond the benchmark set by investigating an upper bound on the frequency. Section 6.6.3

looks at the area/density required to synthesize each benchmark. The compile time for the

benchmarks is in Section 6.6.4, and the compile time for very large circuits is in Section 6.6.5.

Section 6.6.6 looks at a breakdown of the longest path for the maximum performance results.

And finally, Section 6.6.7 looks at the area versus performance tradeoff.

6.6.1 Frequency (Fmax)

Table 6.1 shows the maximum frequency results for M-HOT. The VPR comparison is summa-

rized in Table 6.2. For the CG-only benchmarks, M-HOT is able to achieve a 40% improve-

144

C
H

A
PT

E
R

6.
M

-H
O

T:A
H

E
IG

H
T-O

R
IE

N
T

E
D

TO
O

L
FL

O
W

Table 6.1: M-HOT maximum frequency and comparison to QuartusII. Entries with a “–” are for coarse-grained benchmarks
and the same as the Wf = 0 value. The “vs.QII” columns are the frequency speedup (M-HOT MHz / QuartusII MHz).

M-HOT Maximum Performance M-HOT Maximum Density

QuartusII VPR Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Circuit MHz MHz MHz vs.QII MHz vs.QII MHz vs.QII MHz vs.QII MHz vs.QII MHz vs.QII

C
G

-o
nl

y

fft16 119.2 98.4 34.5 0.289 – – – – 15.2 0.127 – – – –
me 201.7 66.0 25.6 0.127 – – – – 19.2 0.095 – – – –
chem 11.3 27.1 50.0 4.443 – – – – 24.4 2.167 – – – –
fft8 159.7 117.2 55.6 0.348 – – – – 22.7 0.142 – – – –
honda 17.1 63.8 55.6 3.242 – – – – 52.6 3.071 – – – –
mcm 24.9 93.7 83.3 3.342 – – – – 83.3 3.342 – – – –
wang 19.3 79.7 111.1 5.760 – – – – 111.1 5.760 – – – –
pr 24.0 87.6 100.0 4.163 – – – – 100.0 4.163 – – – –

Geo. Mean (CG-only) 1.400x 1.400x 1.400x 0.990x 0.990x 0.990x

G
oo

d

ac97 ctrl 294.90 278.35 17.5 0.059 43.5 0.147 52.6 0.178 11.2 0.038 40.0 0.136 52.6 0.178
aes core 181.55 177.80 29.4 0.162 30.3 0.167 29.4 0.162 5.7 0.031 11.0 0.061 23.8 0.131
dir 86.32 59.61 33.3 0.386 34.5 0.399 37.0 0.429 16.4 0.190 27.8 0.322 37.0 0.429
spi 118.86 139.89 27.0 0.227 52.6 0.443 52.6 0.443 20.8 0.175 52.6 0.443 52.6 0.443
pci master 232.18 248.36 29.4 0.127 40.0 0.172 125.0 0.538 14.9 0.064 37.0 0.160 125.0 0.538

Geo. Mean (Good) 0.161x 0.237x 0.312x 0.076x 0.180x 0.299x

Geo. Mean (CG-only and Good) 0.609x 0.707x 0.786x 0.369x 0.513x 0.625x

Im
pa

ir
ed

ethernet 162.42 102.06 9.5 0.059 12.7 0.079 32.3 0.199 8.9 0.055 12.3 0.076 27.0 0.166
wb conmax 135.10 72.35 13.2 0.097 22.7 0.168 20.0 0.148 7.8 0.057 22.7 0.168 12.2 0.090
dma 127.75 130.97 12.0 0.094 15.4 0.120 17.9 0.140 8.3 0.065 14.1 0.110 12.7 0.099
tv80 96.80 105.26 4.1 0.043 5.7 0.059 33.3 0.344 3.7 0.038 5.0 0.052 31.2 0.323
jpeg enc 218.39 162.81 23.8 0.109 28.6 0.131 27.8 0.127 11.2 0.051 20.4 0.093 27.8 0.127
systemcaes 120.71 154.50 31.2 0.259 40.0 0.331 50.0 0.414 5.3 0.044 23.8 0.197 50.0 0.414
des 299.76 175.49 6.5 0.022 8.6 0.029 10.1 0.034 6.3 0.021 8.6 0.029 10.1 0.034
systemcdes 169.58 219.71 25.6 0.151 27.8 0.164 30.3 0.179 13.7 0.081 25.6 0.151 26.3 0.155

Geo. Mean (Impaired) 0.082x 0.108x 0.161x 0.048x 0.094x 0.138x

Geo. Mean (All) 0.284x 0.346x 0.430x 0.170x 0.268x 0.352x

145

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.2: M-HOT Fmax speedup compared to VPR.

M-HOT vs. VPR

Maximum Performance Maximum Density

Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 0.787x 0.787x 0.787x 0.556x 0.556x 0.556x
Geo. Mean (Good) 0.168x 0.248x 0.326x 0.079x 0.188x 0.312x

Geo. Mean (CG-only and Good) 0.406x 0.479x 0.539x 0.242x 0.349x 0.434x

Geo. Mean (Impaired) 0.097x 0.127x 0.189x 0.057x 0.110x 0.163x

Geo. Mean (All) 0.235x 0.287x 0.360x 0.141x 0.224x 0.295x

ment in clock frequency over the QuartusII/StratixIII result at maximum performance. This

is slightly less than the M-CAD value in Table 5.1, but comparable. At maximum density,

M-HOT almost matches the frequency of QuartusII/StratixIII at 0.99x, which is a definite im-

provement over the 0.814x result from M-CAD. As will be shown later in Section 6.6.3, the

density at this maximum density point is almost 5x that of a StratixIII.

For the Good benchmarks, QuartusII achieves a higher frequency than M-HOT. As with

M-CAD, the addition of fine-grained resources to the architecture (Wf > 0) doubles the per-

formance of these circuits for the maximum performance results (from 0.161x to 0.312x), and

triples it for the maximum density results (from 0.076x to 0.299x). As will be shown later in

Section 6.6.3, the density is also improved for these benchmarks compared to the M-CAD flow

by 2x at Wf = 0 and by 1.15x for other values of Wf . Overall, M-HOT is producing better

quality results.

For the Impaired benchmarks, M-HOT does successfully synthesize each benchmark, but

the performance is poor, as expected. On average M-HOT achieves 1/10th of the StratixIII

performance at maximum performance, and down to 1/20th at maximum density. With these

circuits it is only important that M-HOT achieves a successful synthesis, which it is doing.

The CG-only and Good benchmarks represent the types of circuits that would primarily be

146

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

used on the coarse-grained Malibu architecture, so we are most interested in those results. The

geometric mean of the combined CG-only and Good speedups in Table 6.1 shows that increas-

ing the amount of fine-grained resources in Malibu (Wf = 0 to Wf = 4) improves the frequency

speedup for both maximum performance (0.607x to 0.786x) and maximum density (0.369x to

0.625x). However, as will be shown later in Section 6.6.3, the density at maximum density

worsens as Wf increases from 1 to 4 due to the circuit needing more fine-grained resources.

Therefore, we have chosen Wf = 1 as a balance point between improving the frequency and

losing density. At this point (CG-only and Good benchmarks, Wf = 1), the M-HOT frequency

at maximum performance is 0.707x that of a StratixIII, and at maximum density it is 0.513x

(about half). This is an excellent result, particularly at maximum density, because M-HOT

achieves half the speed of a StratixIII with 2.5x the density (see Table 6.6), and can compile

these benchmarks 26.1x faster than QuartusII on average.

Table 6.3 summarizes the clock frequency advantage of M-HOT over M-CAD. The results

are computed by dividing the geometric mean of M-HOT speedup compared to QuartusII by

the geometric mean of the M-CAD speedup.2 The QuartusII result is cancelled in the division,

leaving just the M-HOT speedup over M-CAD:

speedup =
M-HOT speedup vs. Quartus
M-CAD speedup vs. Quartus

=

M-HOT MHz
Quartus MHz
M-CAD MHz
Quartus MHz

=
M-HOT MHz
M-CAD MHz

(6.10)

On average, M-HOT outperforms M-CAD for all the frequency results, except for the CG-

only circuits at maximum performance. For these results, the M-CAD and M-HOT results are

about the same, but M-HOT achieves over twice the density compared to M-CAD for the same

performance (see Table 6.7). For the other results, the M-HOT frequency is on average up to

29% better than M-CAD (for just the CG-only and Good benchmarks, excluding the Impaired

2Since the geometric mean is distributive over division (when there are the same number of items in the set),
the result is the same as if the geometric mean was computed after the division was done individually for each
benchmark.

147

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.3: M-HOT Fmax speedup compared to M-CAD.

M-HOT (Table 6.1) / M-CAD (Table 5.1)

Maximum Performance Maximum Density

Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 0.969 0.969 0.969 1.216 1.216 1.216
Geo. Mean (Good) 1.150 1.301 1.357 1.165 1.166 1.409

Geo. Mean (CG-only and Good) 1.035 1.085 1.103 1.196 1.196 1.287

Geo. Mean (Impaired) 1.562 1.682 1.645 1.658 2.067 2.511

Geo. Mean (All) 1.210 1.282 1.284 1.355 1.473 1.650

benchmarks). Interestingly, the Impaired benchmarks show the most gains over M-CAD, but

these are not the types of circuits the Malibu architecture is designed to handle.

Although the M-HOT Fmax is usually higher than the M-CAD Fmax, there are three circuits

where it gives lower speeds (fft16, fft8, and me). The reason for this is that the maximum depth

of these benchmarks is small (4, 4, and 10 respectively) and they have a large number of nodes,

thereby having a large number of nodes per height in the ALAP tree. Since M-HOT does no

clustering, it is essentially annealing one quarter of the circuit at each height for fft16 and fft8.

Furthermore, M-HOT only does a low-temperature anneal to be fast, but it finishes before a

good solution is found.

It is possible to recover the lost performance in fft16, fft8, and me by changing the annealer

to use the M-CAD annealing schedule at each height. Doing this improves the results to be

1% better than the M-CAD result, but it lengthens the compile time for each benchmark by

almost 10x. For example, the fft16 benchmark increases from 76.5 seconds to 690 seconds

(from Table 5.9 the runtime for fft16 with M-CAD is 5.5 seconds). To avoid adding a special

case to the code, and because we consider compile time a high-priority, this was not done for

the results reported in this thesis. All the results use the same M-HOT annealing schedule.

Future work should look for ways to speed this up, perhaps by reducing the amount of effort

148

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

required by the annealer through intelligent clustering.

6.6.2 Frequency Upper Bound

To evaluate how well M-HOT might perform, the upper bound analysis that was done with

M-CAD in Section 5.6.2 is repeated for M-HOT using the same four assumptions. Since the

upper bound is computed using the output of front-end synthesis, it is the same for M-HOT

or M-CAD. The difference is that M-HOT achieves a higher quality result, so is closer to this

bound than M-CAD.

Table 6.4 compares the frequency upper bound with the Fmax from Table 6.1 for each bench-

mark. The possible performance increase in Fmax ranges from about 7x (fft16) to nothing

(honda, wang, pr, pci master, ethernet, des, and systemcdes). The geometric mean of the ra-

tio across the CG-only and Good circuits for Wf = 0,1, or 4 is at least 0.64, meaning that

there is, on average (geometric mean), a potential 1.6x performance improvement to be found

in M-HOT by improving the back-end synthesis algorithms. In addition, there may be other

opportunities to improve the results through changes to the front-end synthesis that are not

captured in this data.

Since M-HOT does placement, routing, and scheduling at the same time, it is impossible

to decompose the difference from the actual result to the upper bound into the individual con-

tributions. However, since there are unavoidable architectural constraints on the schedule, it is

quite possible that this upper bound is unachievable. To achieve a more realistic evaluation, we

next compare to M-HOT using a high-effort anneal.

The high-effort anneal uses M-HOT with an inner-loop multiplier of 10,000, instead of 10

at each height. The starting temperature was set to 25, which is high for a low-temperature

anneal. The annealing range limit which constraints the locality annealing swaps was disabled

so any node in any CLB can be considered.

Table 6.5 compares this high-effort anneal to the regular M-HOT results and the upper

149

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.4: M-HOT frequency upper bound and actual Fmax. Entries with a “–” are the
same as the Wf = 0 value. The ratio is Fmax / Bound; larger ratios are better.

Wf = 0 Wf = 1 Wf = 4

Bound Fmax Bound Fmax Bound Fmax
Circuit (MHz) (MHz) Ratio (MHz) (MHz) Ratio (MHz) (MHz) Ratio

C
G

-o
nl

y

fft16 250.0 34.5 0.14 – – – – – –
me 55.6 25.6 0.46 – – – – – –
chem 58.8 50.0 0.85 – – – – – –
fft8 250.0 55.6 0.22 – – – – – –
honda 55.6 55.6 1.00 – – – – – –
mcm 100.0 83.3 0.83 – – – – – –
wang 111.1 111.1 1.00 – – – – – –
pr 100.0 100.0 1.00 – – – – – –

Geo. Mean (CG-only) 0.56 0.56 0.56

G
oo

d

ac97 ctrl 21.7 17.5 0.81 66.7 43.5 0.65 66.7 52.6 0.79
aes core 55.6 29.4 0.53 55.6 30.3 0.55 55.6 29.4 0.53
dir 40.0 33.3 0.83 40.0 34.5 0.86 40.0 37.0 0.93
spi 33.3 27.0 0.81 55.6 52.6 0.95 55.6 52.6 0.95
pci master 29.4 29.4 1.00 40.0 40.0 1.00 125.0 125.0 1.00

Geo. Mean (Good) 0.78 0.78 0.82

Geo. Mean (CG-only and Good) 0.65 0.64 0.65

Im
pa

ir
ed

ethernet 9.9 9.5 0.96 12.8 12.7 0.99 32.3 32.3 1.00
wb conmax 40.0 13.2 0.33 40.0 22.7 0.57 58.8 20.0 0.34
dma 15.6 12.0 0.77 21.3 15.4 0.72 23.8 17.9 0.75
tv80 18.9 4.1 0.22 18.9 5.7 0.30 66.0 33.3 0.51
jpeg enc 32.3 23.8 0.74 32.3 28.6 0.89 32.3 27.8 0.86
systemcaes 71.4 31.2 0.44 76.9 40.0 0.52 90.9 50.0 0.55
des 6.7 6.5 0.96 8.8 8.6 0.98 10.2 10.1 0.99
systemcdes 28.6 25.6 0.90 28.6 27.8 0.97 30.3 30.3 1.00

Geo. Mean (Impaired) 0.59 0.69 0.70

Geo. Mean (All) 0.62 0.66 0.67

bound analysis. Comparing the “Ratio” column to the “Improved Ratio” column, the high-

effort placer is able to achieve 70% of the upper bound across all circuits, whereas the M-HOT

tool with the default options achieves 62%. If the improved Fmax (high-effort result) is taken

as a realistic and achievable upper bound and is compared to the actual Fmax, then the M-HOT

tool result is 88% of the realistic Fmax bound. Compared to the previous chapter where M-

CAD achieved 91% of a realistic upper bound, the same observation can be made: there is

150

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.5: M-HOT high-effort schedule length comparison for Wf = 0.

Wf = 0 from Table 6.4 High-Effort Placement

Bound Fmax Improved Fmax Improved Fmax/Improved Fmax
Circuit (MHz) (MHz) Ratio (MHz) Ratio Ratio

C
G

-o
nl

y

fft16 250.0 34.5 0.14 34.5 0.14 1.00
me 55.6 25.6 0.46 27.0 0.49 0.95
chem 58.8 50.0 0.85 50.0 0.85 1.00
fft8 250.0 55.6 0.22 55.6 0.22 1.00
honda 55.6 55.6 1.00 55.6 1.00 1.00
mcm 100.0 83.3 0.83 83.3 0.83 1.00
wang 111.1 111.1 1.00 111.1 1.00 1.00
pr 100.0 100.0 1.00 100.0 1.00 1.00

Geo. Mean (CG-only) 0.56 0.57 0.99

G
oo

d

ac97 ctrl 21.7 17.5 0.81 25.6 1.18 0.68
aes core 55.6 29.4 0.53 30.3 0.55 0.97
dir 40.0 33.3 0.83 34.5 0.86 0.97
spi 33.3 27.0 0.81 38.5 1.15 0.70
pci master 29.4 29.4 1.00 34.5 1.17 0.85

Geo. Mean (Good) 0.78 0.94 0.85

Geo. Mean (CG-only and Good) 0.64 0.69 0.93

Im
pa

ir
ed

ethernet 9.9 9.5 0.96 14.7 1.49 0.65
wb conmax 40.0 13.2 0.33 14.1 0.35 0.94
dma 15.6 12.0 0.77 12.0 0.77 1.00
tv80 18.9 4.1 0.22 10.8 0.57 0.38
jpeg enc 32.3 23.8 0.74 26.3 0.82 0.90
systemcaes 71.4 31.2 0.44 31.2 0.44 1.00
des 6.7 6.5 0.96 6.5 0.96 1.00
systemcdes 28.6 25.6 0.90 25.6 0.90 1.00

Geo. Mean (Impaired) 0.59 0.72 0.82

Geo. Mean (All) 0.62 0.70 0.88

little room for circuit performance improvement from simple changes to back-end synthesis.

Instead, future work should focus on front-end synthesis.

Comparing the M-HOT high-effort results with the M-CAD high-effort results in Sec-

tion 5.6.2, M-HOT is able get closer to the computed upper bound than M-CAD (70% vs.

57%). This is expected and is due, at least in part, to the M-CAD information sharing prob-

lem. Since M-CAD placement lacks scheduling information, the M-CAD heuristics sometimes

151

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

cannot distinguish between two placements where one has a better (smaller) post-scheduling

schedule length. M-HOT does not have this problem, so it is expected to perform better.

6.6.3 Area and Density

In this section, the area and density of each benchmark is examined at maximum performance

and maximum density. The maximum density occurs at the minimum area which is the smallest

number of CLBs required to synthesize the circuit without violating any architecture parameter

values. These parameter values are the ones from Table 3.5.

Comparison to QuartusII/StratixIII

In Section 3.7 the area of a Malibu CLB was computed to be 97,050.5 µm2 and the area of

a StratixIII ALM was estimated to be 2,674µm2. This means that a Malibu CLB is roughly

equivalent in area to 36.3 ALMs. Without any FG components, the Malibu CLB is slightly

smaller at 29.4 ALMs. The equivalent ALMs (eALMs) for Malibu is computed by multiplying

the number CLBs by 36.3 when Wf ≥ 1, and by 29.4 when Wf = 0.

Table 6.6 compares the circuit area for the benchmarks implemented on Malibu with M-

HOT and on a StratixIII FPGA using QuartusII. At maximum performance with Wf = 0, Mal-

ibu achieves twice the density of an FPGA for the CG-only circuits, and about half the density

for the Good circuits. When the fine-grained resources are enabled (Wf ≥ 1) the density be-

comes worse for the CG-only circuits because they cannot make use of such resources, however

the density is still better than an FPGA. For the Good benchmarks, the density initially gets

worse for Wf = 1, but then improves when Wf = 4.

At maximum density, the M-HOT results are the same as the M-CAD results, because the

minimum architecture array size is a function of the resource requirements of each benchmark

circuits. The difference is that M-HOT can schedule the instructions on these resources more

efficiently and achieve a higher Fmax as shown in Table 6.3. For the Good circuits, although

152

C
H

A
PT

E
R

6.
M

-H
O

T:A
H

E
IG

H
T-O

R
IE

N
T

E
D

TO
O

L
FL

O
W

Table 6.6: M-HOT area and density values compared to QuartusII/StratixIII. Entries with a “–” are same as the Wf = 1
value. The “Dens.” columns are the area reduction compared to QuartusII (QuartusII ALMs / Malibu equivalent
ALMs (eALMs)).

M-HOT Maximum Performance M-HOT Maximum Density

QuartusII Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Circuit ALMs eALMs Dens. eALMs Dens. eALMs Dens. eALMs Dens. eALMs Dens. eALMs Dens.

C
G

-o
nl

y

fft16 6,412 4,234 1.515 3,630 1.766 – – 470 13.640 581 11.042 – –
me 5,148 4,234 1.216 9,293 0.554 – – 1,880 2.738 1,307 3.940 – –
chem 3,526 1,058 3.331 1,307 2.698 – – 264 13.335 327 10.795 – –
fft8 2,075 1,058 1.961 3,630 0.572 – – 264 7.847 327 6.352 – –
honda 1,216 470 2.585 327 3.722 – – 264 4.599 327 3.723 – –
mcm 1,057 470 2.247 581 1.820 – – 470 2.249 327 3.236 – –
wang 797 265 3.012 327 2.440 – – 264 3.014 327 2.440 – –
pr 646 265 2.441 327 1.977 – – 264 2.443 327 1.978 – –

Geo. Mean (CG-only) 2.182x 1.628x 1.628x 4.833x 4.517x 4.517x

G
oo

d

ac97 ctrl 1,254 1,882 0.666 3,630 0.345 3,629 0.346 1,058 1.186 2,323 0.540 3,629 0.346
aes core 1,154 2,940 0.393 3,630 0.318 2,323 0.497 264 4.364 581 1.987 1,307 0.883
dir 1,150 1,058 1.087 1,307 0.880 581 1.980 264 4.349 581 1.980 581 1.980
spi 488 470 1.037 581 0.840 581 0.840 264 1.846 581 0.840 581 0.840
pci master 137 1,058 0.129 581 0.236 581 0.236 264 0.518 327 0.419 581 0.236

Geo. Mean (Good) 0.520x 0.453x 0.583x 1.847x 0.944x 0.654x

Geo. Mean (CG-only and Good) 1.257x 0.996x 1.097x 3.339x 2.474x 2.148x

Im
pa

ir
ed

ethernet 6,868 11,752 0.584 3,629 1.892 7,114 0.965 7,521 0.913 2,940 2.336 5,226 1.314
wb conmax 5,349 7,526 0.711 14,518 0.368 11,759 0.455 2,938 1.821 14,518 0.368 9,291 0.576
dma 1,714 7,526 0.228 14,518 0.118 28,455 0.060 2,938 0.583 9,291 0.184 20,905 0.082
tv80 850 7,521 0.113 3,630 0.234 7,114 0.119 5,759 0.148 2,940 0.289 5,226 0.163
jpeg enc 791 67,693 0.012 20,905 0.038 5,226 0.151 47,009 0.017 14,518 0.054 5,226 0.151
systemcaes 716 2,940 0.244 3,630 0.197 2,323 0.308 264 2.708 1,307 0.548 2,323 0.308
des 298 4,231 0.070 2,940 0.101 5,226 0.057 3,555 0.084 2,940 0.101 5,226 0.057
systemcdes 237 1,058 0.224 3,629 0.065 3,629 0.065 470 0.504 2,940 0.081 2,940 0.081

Geo. Mean (Impaired) 0.162x 0.177x 0.165x 0.359x 0.241x 0.196x

Geo. Mean (All) 0.576x 0.515x 0.533x 1.428x 1.018x 0.863x

153

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.7: M-HOT density improvement factor versus M-CAD.

M-HOT (Table 6.6) / M-CAD (Table 5.6)

Maximum Performance Maximum Density

Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 2.775 2.184 2.184 1.000 1.000 1.000
Geo. Mean (Good) 2.081 1.157 1.176 1.000 1.000 1.000

Geo. Mean (CG-only and Good) 2.484 1.711 1.721 1.000 1.000 1.000

Geo. Mean (Impaired) 2.157 4.554 3.381 1.000 1.000 1.000

Geo. Mean (All) 2.354 2.484 2.226 1.000 1.000 1.000

Fmax improves from Wf = 1 to Wf = 4, the density drops considerably. This is because too

many LUTs are required, and this limits the achieved density.

Including fine-grained resources in the architecture, which increases the CLB size, is not

helpful for maximum density. However, including fine-grained resources is helpful for per-

formance, so again we recommend Wf = 1 as a mid-point between density and performance

advantages.

Table 6.7 compares the M-HOT density to the M-CAD density, computed the same way as

the frequency comparison shown in Table 6.3. Compared to M-CAD, the M-HOT approach

is doing an excellent job scheduling the coarse-grained instructions giving nearly 2.5x better

density than the M-CAD approach for Wf = 0, and is 1.7x better for other values of Wf with

the CG-only and Good results. Just as with the frequency results, the Impaired benchmarks

show the most gains over M-CAD. However, in this case, the gains come with longer compile

times, as will be demonstrated in Section 6.6.4.

Comparison to VPR/iFAR

Table 6.8 shows the transistor area in units of millions of minimum-width transistor areas (T

×106) for VPR, and for M-HOT using both the maximum performance and maximum density

results. The VPR area is taken directly from the output of VPR (the tile area multiplied by

154

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

the number of CLBs used). The Malibu area is computed using the CLB area calculated in

Section 3.7 and multiplied by the number of CLBs used.

The VPR area results are similar to the QuartusII/StratixIII results in Table 6.6. For the

CG-only and Good circuits, at maximum density the density gets worse as Wf increases from 0

to 4, and at maximum performance it initially gets worse Wf = 0 to Wf = 1 but then improves

to Wf = 4. This leads to the same recommendation as with the QuartusII density comparison.

Wf = 1 is a balance point between performance advantages and density improvement.

6.6.4 Compile Time

Table 6.9 shows the compile time for M-HOT and the speedup relative to QuartusII. The

speedup relative to VPR is summarized in Table 6.10. Comparing M-HOT to QuartusII, the

CG-only and Good benchmarks combined show an 18x to 26.7x (geomean) improvement in

compile time.

There are a few benchmarks that take a very long time to synthesize with M-HOT. Most

of the wb conmax time is spent in fine-grained routing with VPR, as was the case with M-

CAD. The ethernet and tv80 benchmarks are very slow at Wf = 0, but then improve as the

fine-grained resources are used. These benchmarks have a number of fine-grained nodes at a

low height, so the ALAP tree is bottom heavy and the annealer spends a lot of time on the last

few heights. Annealing becomes faster by moving these nodes into the fine-grained network.

The dma benchmark is similarly bottom-heavy, but it requires more time to anneal the last few

heights at Wf = 4 compared to Wf = 1.

Table 6.11 compares the M-HOT compile time to the M-CAD compile time from Table 5.9.

M-HOT is slower than M-CAD for word-oriented circuits, but faster for circuits with fine-

grained components. This is because M-HOT does routing during placement (instead of after

it), so it always actively routing signals to evaluate swaps in the simulated annealer. For fine-

grained nets it estimates the route delay using Equation 5.1 and invokes VPR at the end of

155

C
H

A
PT

E
R

6.
M

-H
O

T:A
H

E
IG

H
T-O

R
IE

N
T

E
D

TO
O

L
FL

O
W

Table 6.8: M-HOT area and density values compared to VPR/iFAR. Entries with a “–” are same as the Wf = 1 value. The
“Dens.” columns are the density compared to VPR (VPR T / M-HOT T).

M-HOT Maximum Performance M-HOT Maximum Density

VPR Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4

Circuit T ×106 T ×106 Dens. T ×106 Dens. T ×106 Dens. T ×106 Dens. T ×106 Dens. T ×106 Dens.

C
G

-o
nl

y

fft16 48.12 22.63 2.127 19.41 2.479 – – 2.51 19.155 3.11 15.498 – –
me 14.51 22.63 0.641 49.69 0.292 – – 10.05 1.444 6.99 2.077 – –
chem 62.81 5.66 11.104 6.99 8.989 – – 1.41 44.446 1.75 35.961 – –
fft8 11.72 5.66 2.071 19.41 0.604 – – 1.41 8.291 1.75 6.708 – –
honda 3.22 2.51 1.280 1.75 1.842 – – 1.41 2.277 1.75 1.843 – –
mcm 2.60 2.51 1.033 3.11 0.836 – – 2.51 1.034 1.75 1.487 – –
wang 1.96 1.41 1.387 1.75 1.123 – – 1.41 1.388 1.75 1.123 – –
pr 1.60 1.41 1.134 1.75 0.918 – – 1.41 1.135 1.75 0.918 – –

Geo. Mean (CG-only) 1.686x 1.257x 1.257x 3.734x 3.489x 3.489x

G
oo

d

ac97 ctrl 2.84 10.06 0.283 19.41 0.146 19.41 0.146 5.65 0.503 12.42 0.229 19.41 0.146
aes core 3.65 15.71 0.232 19.41 0.188 12.42 0.294 1.41 2.584 3.11 1.176 6.99 0.523
dir 11.06 5.66 1.956 6.99 1.583 3.11 3.562 1.41 7.828 3.11 3.563 3.11 3.563
spi 0.79 2.51 0.313 3.11 0.254 3.11 0.254 1.41 0.557 3.11 0.254 3.11 0.254
pci master 0.46 5.66 0.081 3.11 0.148 3.11 0.148 1.41 0.326 1.75 0.264 3.11 0.148

Geo. Mean (Good) 0.318x 0.277x 0.357x 1.131x 0.577x 0.400x

Geo. Mean (CG-only and Good) 0.888x 0.703x 0.774x 2.358x 1.747x 1.517x

Im
pa

ir
ed

ethernet 21.70 62.81 0.345 19.41 1.118 38.04 0.570 40.20 0.540 15.72 1.380 27.95 0.776
wb conmax 73.06 40.22 1.816 77.63 0.941 62.88 1.162 15.70 4.653 77.63 0.941 49.68 1.471
dma 7.76 40.22 0.193 77.63 0.100 152.15 0.051 15.70 0.494 49.68 0.156 111.78 0.069
tv80 2.30 40.20 0.057 19.41 0.119 38.04 0.061 30.78 0.075 15.72 0.147 27.95 0.082
jpeg enc 1.64 361.78 0.005 111.78 0.015 27.95 0.059 251.24 0.007 77.63 0.021 27.95 0.059
systemcaes 2.03 15.71 0.129 19.41 0.104 12.42 0.163 1.41 1.435 6.99 0.290 12.42 0.163
des 0.60 22.61 0.027 15.72 0.038 27.95 0.022 19.00 0.032 15.72 0.038 27.95 0.022
systemcdes 0.51 5.66 0.089 19.41 0.026 19.41 0.026 2.51 0.201 15.72 0.032 15.72 0.032

Geo. Mean (Impaired) 0.100x 0.108x 0.101x 0.220x 0.148x 0.120x

Geo. Mean (All) 0.386x 0.345x 0.357x 0.956x 0.681x 0.577x

156

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.9: M-HOT compile time and speedup versus QuartusII. Compile time is in sec-
onds. Entries with a “–” are for coarse-grained benchmarks and the same as the
Wf = 0 value.

M-HOT

QuartusII VPR Wf = 0 Wf = 1 Wf = 4

Circuit Time (s) Time Time Speedup Time Speedup Time Speedup

C
G

-o
nl

y

fft16 333.4 454.1 76.5 4.4 – – – –
me 220.5 111.9 390.9 0.6 – – – –
chem 311.9 3,663.9 2.6 119.7 – – – –
fft8 187.3 73.7 8.4 22.4 – – – –
honda 162.8 37.2 0.6 268.9 – – – –
mcm 153.4 25.9 0.8 196.6 – – – –
wang 148.2 22.2 10.6 14.0 – – – –
pr 145.6 18.7 0.9 169.0 – – – –

Geo. Mean (CG-only) 30.9x 30.9x 30.9x

G
oo

d

ac97 ctrl 156.8 20.2 241.2 0.7 37.9 4.1 34.1 4.6
aes core 169.6 155.0 52.9 3.2 18.1 9.4 18.9 9.0
dir 186.8 93.8 6.7 27.8 3.3 56.0 3.0 61.6
spi 138.1 9.5 5.4 25.4 4.7 29.5 4.8 28.7
pci master 140.1 10.0 8.0 17.5 2.2 62.3 2.4 58.9

Geo. Mean (Good) 7.6x 20.9x 21.2x

Geo. Mean (CG-only and Good) 18.0x 26.1x 26.7x

Im
pa

ir
ed

ethernet 306.6 207.2 3,574.2 0.1 421.3 0.7 377.3 0.8
wb conmax 319.8 804.7 10,857.1 0.03 27,838.2 0.01 1,950.1 0.2
dma 206.4 64.3 11,165.3 0.02 3,083.6 0.1 8,417.0 0.02
tv80 165.9 36.6 1,811.0 0.1 138.8 1.2 78.2 2.1
jpeg enc 149.6 31.3 267.9 0.6 62.4 2.4 98.3 1.5
systemcaes 160.9 24.8 183.8 0.9 24.6 6.6 1492 0.1
des 137.3 19.8 92.5 1.5 19.9 6.9 19.6 7.0
systemcdes 135.4 16.7 14.8 9.1 6.2 21.8 6.8 20.0

Geo. Mean (Impaired) 0.27x 1.06x 0.79x

Geo. Mean (All) 3.64x 7.79x 7.01x

157

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.10: M-HOT compile time speedup versus VPR.

M-HOT vs. VPR

Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 14.50x 14.50x 14.50x
Geo. Mean (Good) 1.49x 4.10x 4.16x

Geo. Mean (CG-only and Good) 5.47x 8.44x 8.49x

Geo. Mean (Impaired) 0.08x 0.32x 0.24x

Geo. Mean (All) 1.04x 2.28x 2.04x

Table 6.11: M-HOT compile time speedup versus M-CAD. An entry of 0.4 means that
M-CAD is 1/0.4=2.5x faster than M-HOT.

M-CAD (Table 5.9) / M-HOT (Table 6.9)

Wf = 0 Wf = 1 Wf = 4

Geo. Mean (CG-only) 0.40 0.40 0.40
Geo. Mean (Good) 0.21 1.35 1.25

Geo. Mean (CG-only and Good) 0.31 0.64 0.62

Geo. Mean (Impaired) 0.05 1.88 2.67

Geo. Mean (All) 0.16 0.96 1.08

scheduling to verify the route timings. Reducing this routing burden, combined with the sepa-

rate low-temperature annealing at each height, results in a faster overall flow.

Despite a few slow-compiling circuits (wb conmax and dma) M-HOT is a reasonably fast

approach. There is much work that can be done to improve the synthesis speed of M-HOT,

but as is, 17 of the 21 benchmarks show a speedup compared to QuartusII (Wf = 1). Of

those that compile slower, 3 of the 4 are Impaired benchmarks. Overall, the M-HOT approach

is faster than QuartusII, but not as fast as M-CAD. However, given the circuit density and

performance advantages with M-HOT, it should be used instead of M-CAD for coarse-grained

circuit compilation. Using Wf = 1 is again preferred because of the increase in compilation

speed compared to Wf = 0 with no significant further advantage by going to Wf = 4. For

158

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

0 10000 20000 30000 40000 50000 60000

Nodes

0.1

1

10

100

1000

10000

100000

1000000

S
y
n
th

e
si

s
T
im

e
 (

se
co

n
d

s)

M-CAD Total

Front-end

M-HOT Total
Quartus II

Figure 6.5: M-HOT compile time for very large circuits. A 32x32 CLB (1024 CLBs
total) architecture was used.

circuit performance and density, Wf = 1 is a midpoint between improved performance and loss

in density.

6.6.5 Compile Time for Very Large Circuits

This section tests the compile time performance of M-HOT using the same large randomly

generated circuits that were used in Section 5.6.5. Figure 6.5 shows the average compile time

for M-HOT when run with 10 trials of the random benchmarks (a different random benchmark

of the same size is used for each trial) compiled for an architecture of 1024 (32x32) CLBs. The

M-CAD and QuartusII data from Figure 5.7 are also shown for comparison.

The M-HOT runtime is approximately 42x higher (slower) than M-CAD on average (ex-

cluding the data below 10,000 nodes), and about an order-of-magnitude below QuartusII. For

the 50,000 node circuit, the total compile time was 4,609 minutes (3 days, 4 hours, 49 min-

159

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

utes). Further, these very large circuits synthesize successfully on Malibu, whereas they exceed

the capacity of the largest modern FPGAs.

6.6.6 Longest-Path Analysis

This section presents a breakdown of the longest path for the maximum frequency results in

Table 6.1, and compares this breakdown to the longest path results from M-CAD given in

Table 5.11. The length of a path in the scheduled circuit is the time required to traverse all

compute and routing resources from inputs and registers, to outputs and registers. The longest

path can be less than or equal to the schedule length, but not greater than it. An example of

when it will be less than the schedule length is given in Section 5.6.6.

Table 6.12 shows a breakdown of the longest path for the M-HOT results. Starting from

the left is the schedule length (SL) of the synthesized circuit which is reported as Fmax in

Table 6.4. The next column is the longest path (Len), followed by the number of longest-paths

(Count). The next five columns are the longest-path breakdown, averaged over the number of

longest-paths: the number of compute-only slots where an ALU is in use (ALU); the number

of slots spent waiting for values to arrive or waiting for the ALU while it is busy with other

computation (Wait); the number of compute-and-move slots where a value is computed then

transfered directly to a neighbouring CLB without using the crossbar (Move); the number of

routing timeslots where progress is made (Route); and the number of routing hold timeslots

where a value is held due to a route conflict (Hold).

The M-HOT longest path results in Table 6.12 are similar to the M-CAD results in Ta-

ble 5.11, but there are three interesting observations. First, M-HOT has fewer singletons (cir-

cuits with only one longest path). Fewer singletons means the tool is doing a better job of

keeping a single path from lengthening too much; instead multiple paths are critical. By inte-

grating the placer, router, and scheduler into a single flow, M-HOT can avoid some scenarios

where, previously, the M-CAD flow would have had no choice but to lengthen the schedule to

160

C
H

A
PT

E
R

6.
M

-H
O

T:A
H

E
IG

H
T-O

R
IE

N
T

E
D

TO
O

L
FL

O
W

Table 6.12: M-HOT Longest-path breakdown for maximum performance results. All numbers are system clock cycles.

M-HOT Wf = 0 M-HOT Wf = 1

Compute Route Compute Route

Circuit SL Len Count ALU Wait Move Route Hold1 SL Len Count ALU Wait Move Route Hold1 FG

C
G

-o
nl

y

fft16 29 29 43 1.2 23.7 0.1 4.0 0.0 – – – – – – – – –
me 39 39 16 1.8 31.1 0.1 5.9 0.0 – – – – – – – – –
chem 20 19 10 5.5 0.0 9.9 3.6 0.0 – – – – – – – – –
fft8 18 18 25 1.6 12.9 0.3 3.2 0.0 – – – – – – – – –
honda 18 18 4 7.2 0.0 7.5 3.2 0.0 – – – – – – – – –
mcm 12 11 5 4.6 0.0 4.2 2.2 0.0 – – – – – – – – –
wang 9 9 19 4.2 0.0 3.3 1.5 0.0 – – – – – – – – –
pr 10 10 6 3.5 0.0 5.5 1.0 0.0 – – – – – – – – –

G
oo

d

ac97 ctrl 57 53 8 1.8 49.4 0.5 1.4 0.0 23 22 24 3.5 11.5 1.1 5.3 0.0 0.6
aes core 34 33 4 7.2 0.8 5.2 19.8 0.0 33 32 8 7.6 6.2 5.1 12.2 0.0 0.8
dir 30 28 18 4.2 10.7 7.2 5.9 0.0 29 29 16 4.4 17.1 3.6 3.6 0.0 0.3
spi 37 27 2 4.0 17.5 1.5 4.0 0.0 19 18 1 5.0 9.0 1.0 2.0 0.0 1.0
pci master 34 29 5 1.4 24.8 1.0 1.8 0.0 25 24 4 4.8 4.5 13.5 1.0 0.0 0.2

Im
pa

ir
ed

ethernet 105 82 13 2.5 73.8 0.6 5.1 0.0 79 72 1 3.0 64.0 0.0 4.0 0.0 1.0
wb conmax 76 76 10 5.0 45.6 2.0 23.4 0.0 44 44 21 5.2 24.7 3.1 10.5 0.0 0.5
dma 83 83 42 8.0 41.6 8.1 25.3 0.0 65 65 20 7.1 48.2 2.8 5.9 0.0 1.0
tv80 243 242 14 13.9 196.0 8.9 23.3 0.0 176 175 15 37.9 20.7 73.7 37.5 0.0 5.3
jpeg enc 42 42 9 3.2 29.1 1.2 8.4 0.0 35 35 12 3.9 19.3 1.2 9.8 0.0 0.8
systemcaes 32 30 19 3.4 18.4 1.1 7.1 0.0 25 25 37 3.2 14.2 0.7 6.5 0.0 0.4
des 155 154 1 2.0 147.0 1.0 4.0 0.0 116 116 1 3.0 105.0 0.0 8.0 0.0 0.0
systemcdes 39 39 2 1.5 34.5 1.0 2.0 0.0 36 36 2 1.0 30.0 1.0 4.0 0.0 0.0

M-HOT W f = 4

G
oo

d

ac97 ctrl 19 18 11 4.2 7.1 1.3 4.5 0.0 1.0
aes core 34 34 5 8.8 7.0 6.0 11.4 0.0 0.8
dir 27 26 52 4.4 10.2 9.4 1.7 0.0 0.3
spi 19 18 1 1.0 14.0 0.0 3.0 0.0 0.0
pci master 8 8 1 3.0 0.0 4.0 0.0 0.0 1.0

Im
pa

ir
ed

ethernet 31 31 31 4.9 15.4 1.7 8.1 0.0 0.9
wb conmax 50 50 6 5.3 15.5 1.8 26.2 0.0 1.2
dma 56 56 20 9.0 37.6 1.4 6.2 0.0 1.8
tv80 30 30 11 4.4 10.6 1.0 13.1 0.0 0.9
jpeg enc 36 35 40 5.6 20.0 1.4 6.4 0.0 1.7
systemcaes 20 20 15 3.3 9.3 0.4 6.7 0.0 0.3
des 99 59 1 15.0 0.0 20.0 23.0 0.0 1.0
systemcdes 33 33 1 10.0 0.0 19.0 3.0 0.0 1.0

1: The number of hold slots are zero for all circuits (not just rounded to zero).

161

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

connect one last path. M-HOT, instead, would change the placement (if a lower-cost alternative

could be found by the annealer).

Second, there are no routing hold slots on the longest path in M-HOT. In fact, there are

no hold slots on any path in any benchmark. This means, as before with M-CAD, that the

horizontal-then-vertical routing strategy is not causing any routing congestion.

Third, a large portion of the longest path, for most benchmarks, is still wait slots. The

M-HOT approach favours a “compute-and-move” strategy where a value is computed while

it is routed. In these results, there is no apparent increase in the number of such operations

on the longest path compared to M-CAD. However, the M-HOT longest paths are different

than the M-CAD longest paths (verified by checking that the sources and sinks of the paths are

different). To see that M-HOT actually does favour a “compute-and-move” strategy, Table 6.13

shows the total number of “compute-and-move” operations for each benchmark for M-CAD

and M-HOT. On the far right of this table is the ratio of the number of these operations in M-

HOT / M-CAD. M-HOT contains 18% to 30% more of these operations (CG-only and Good

benchmarks), on average. So, while the number of compute-and-move operations along the

longest path is the same between M-HOT and M-CAD, the total number is 18% to 30% greater

in M-HOT.

6.6.7 Density Versus Performance Tradeoff

This section investigates the density versus performance tradeoff in M-HOT. We show that,

like the M-CAD tool, the M-HOT tool can trade density for performance, and that increasing

Wf generally gives performance gains across all densities, not just at the Fmax as was shown in

Table 6.1.

Figure 6.6 shows the frequency of the largest benchmark, ethernet, for Wf =0,1,4 over a

range of architecture sizes from 3x3 CLBs to 48x48 CLBs. This figure contains the M-CAD

data from Figure 5.9, as well as the M-HOT data. Appendix D contains the individual area

162

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

Table 6.13: Total mumber of compute-and-move operations.

M-CAD M-HOT M-HOT / M-CAD

Circuit Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 W f = 4 W f = 0 Wf = 1 Wf = 4

C
G

-o
nl

y

fft16 2,520 – – 4,671 – – 1.85 – –
me 3,095 – – 9,154 – – 2.96 – –
chem 822 – – 1,156 – – 1.41 – –
fft8 986 – – 1,131 – – 1.15 – –
honda 285 – – 303 – – 1.06 – –
mcm 329 – – 295 – – 0.90 – –
wang 121 – – 120 – – 0.99 – –
pr 153 – – 134 – – 0.88 – –

Geo. Mean (CG-only) 1.28 1.28 1.28

G
oo

d

ac97 ctrl 7,410 6,835 6,765 8,911 6,538 6,345 1.20 0.96 0.94
aes core 2,626 3,286 3,919 4,305 5,028 4,877 1.64 1.53 1.24
dir 980 2,179 2,239 1,472 2,173 2,327 1.50 1.00 1.04
spi 1,068 1,044 892 995 959 874 0.93 0.92 0.98
pci master 1,492 1,505 1,357 2,192 1,466 1,338 1.47 0.97 0.99

Geo. Mean (Good) 1.32 1.05 1.03

Geo. Mean (CG-only and Good) 1.30 1.19 1.18

Im
pa

ir
ed

ethernet 18,710 16,096 17,292 26,653 17,352 16,134 1.42 1.08 0.93
wb conmax 27,594 34,511 36,205 53,026 38,360 39,779 1.92 1.11 1.10
dma 25,249 28,016 35,218 46,477 24,503 26,286 1.84 0.87 0.75
tv80 20,647 23,025 17,381 23,934 21,106 16,628 1.16 0.92 0.96
jpeg enc 13,772 11,257 9,881 7,517 8,259 9,197 0.55 0.73 0.93
systemcaes 10,475 7,195 6,114 5,136 5,433 5,599 0.49 0.76 0.92
des 3,632 7,226 7,519 6,855 7,833 8,056 1.89 1.08 1.07
systemcdes 1,704 3,185 3,367 2,431 3,138 3,276 1.43 0.99 0.97

Geo. Mean (Impaired) 1.20 0.93 0.95

Geo. Mean (All) 1.26 1.08 1.09

versus performance graphs for each benchmark circuit.

For each architecture array size, the tools are forced to use all available CLBs so that the

performance on the various sized architecture arrays can be seen. When the array becomes too

large there is a decrease in performance as communication delay dominates the schedule. If the

array is too small, the synthesis result may not be viable if the fixed resource constraints (from

Table 3.5) are violated. In these cases, the M-HOT tool still finishes the synthesis (overusing

the necessary resources) but reports an error. For completeness, these results are still included

163

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound

Wf=1 Upper Bound

Wf=4 Upper Bound

ethernet

Figure 6.6: Frequency versus area (number of CLBs) for the ethernet benchmark. The
dotted line represents synthesis results where architectural resource constraints
were violated.

and marked with a dotted line on the left of each curve.

This graph demonstrates three things about the M-HOT tool. First, the M-HOT frequency

results are mostly higher for all architecture sizes than M-CAD, demonstrating the superiority

in the quality of results in the M-HOT approach. Second, this figure (and the other graphs in

Appendix A) show that the M-HOT tool can trade area (number of CLBs) for performance

(MHz) by targeting any architecture array size and time-multiplexing more code (or less) on

the CGs. Third, it shows the tradeoff involving Wf . Increasing Wf from 0 to 1 causes the

frequency to also increase as expected since the fine-grained control logic is moved to the FG

resources where it can be computed and distributed more quickly.

6.7 Comparison to Previous Work

The M-HOT flow was developed after an analysis of the M-CAD results in the previous chapter.

It was likely that the performance and density of circuits mapped to Malibu could be improved

164

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

with an algorithm that could use information from routing and scheduling during placement.

The challenge was to create such an algorithm and make it fast.

M-HOT does simultaneous placement, routing, and scheduling of both coarse-grained and

fine-grained resources. It supports a heterogeneous architecture (recall only one in five CLBs

have multipliers, and only CLBs around the periphery support I/O).

The overall flow of M-HOT is similar to the modulo graph embedding (MGE) scheduler

by Park [62]; the DFG is divided into a number of heights, and each height placed, routed, and

scheduled separately. This flow allows the algorithm to be fast while retaining some benefits

of doing placement, routing, and scheduling at the same time. The MGE scheduler, however,

targets a CGRA architecture similar to ADRES [57]. It only supports coarse-grained elements,

and maps software loop kernels, not circuits. The specific differences between M-HOT sched-

uler step and the MGE scheduler scheduler are as follows:

• The MGE scheduler was tested on CGRAs with up to 16 (4x4 array) processing elements.

Park noted that the scheduler should scale up to larger architectures. In this thesis, we

use M-HOT on architectures up to 48x48 CLBs, demonstrating that the general approach

does indeed scale.

• M-HOT places, routes, and schedules the fine-grained and coarse-grained operations

together. To do this, the delay model used throughout M-HOT is the same unified delay

model that was used in Chapter 5. M-HOT also interfaces with the VPR router (as was

done in Chapter 5) to verify the fine-grained routing delays at the end of scheduling. The

MGE schedule has no support for fine-grained resources.

• The MGE scheduler pre-places inputs, outputs, registers, and memories. In M-HOT, in-

puts for the most critical paths in the DFG are at the highest level of the ALAP tree (see

Section 6.4), so these inputs are placed first anyway. Other inputs are placed as needed,

165

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

and thus have the opportunity to use the affinity cost from the currently unfolding sched-

ule to be placed in locations near where they are needed. The same is true for outputs,

except that the affinity cost is used to encourage paths toward an output-capable CLB

when required. Registers in M-HOT are simply nodes in the DFG with the registered

flag enabled, they do not need any extra resources so there is no reason to pre-place

them. Finally, there is memory in each CLB, and not pre-placing the memories means

the scheduler can choose the best location for the memory based on the current schedule

and minimize the schedule length.

• The MGE scheduler used a fixed II for scheduling. It uses multiple invocations of the

tool to search for the lowest II, but is not guaranteed to find the true minimum II. M-

HOT minimizes the SL, not the II, for reasons discussed in Section 2.3.3. M-HOT also

uses a variable-length schedule that is increased as needed during scheduling. This is

sub-optimal, but it means the tool is only invoked once.

• M-HOT uses a parallel cost in the cost function to encourage nodes at each height to

spread out to many CLBs, encouraging parallelism.

• M-HOT uses a register cost in the cost function to cause multiple DFG paths that end

at the same user register (logic reconvergence) to tend toward the CLB which holds the

register state. We believe that the MGE scheduler used the affinity to do this, but that

is not explicitly stated in [62]. Registers are always at the last height (height=0) of the

ALAP tree. Because of this, the sinks of the registers will already be placed and have

position information available. The register cost uses the actual placement information,

just as the producer cost uses the actual placement information, rather than using the

affinity heuristic.

• M-HOT uses a penalty cost in the cost function to discourage illegal placements and

166

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

0.1 1.0 10.0 100.0

Density vs. QuartusII/StratixIII

0.01

0.10

1.00

10.00

Fr
e
q
u
e
n
cy

 v
s.

 Q
u
a
rt

u
sI

I/
S

tr
a
ti

x
II
I wang (14.0x)

chem (119.7x)
pr (169.0x)
mcm (196.6x)
honda (268.9x)
dir (56.0x)
fft8 (22.4x)
fft16 (4.4x)
spi (29.5x)
aes_core (9.4x)
ac97_ctrl (4.1x)
me (0.6x)
pci_master(62.3x)
geo.mean (26.1x)

QuartusII
Feasible
Range

Figure 6.7: M-HOT Wf = 1 results summary. The CG-only and Good benchmark fre-
quency versus density is shown relative to QuartusII/StratixII. The maximum den-
sity and maximum performance data points are shown for each benchmark. The
compile time speedup compared to QuartusII is shown in the figure legend after the
benchmark name.

resource overuse.

6.8 Conclusions

This chapter presents the M-HOT flow which breaks from the traditional FPGA-CAD flow of

placement-then-routing, and performs integrated placement, routing, and scheduling to achieve

a higher-quality solution. Although the compile time in M-HOT is 1.5x longer than M-CAD

(Wf = 1), it is still 26.1x faster than both QuartusII and VPR. M-HOT also improves the circuit

performance by an average of 10% over M-CAD and simultaneously improves the density by

an average of nearly 2x.

The results in this chapter have led us to recommend that the Malibu architecture be used

with M-HOT with a fine-grained width of 1 (Wf = 1). M-HOT provides a very fast compi-

lation and generates high-quality results. Using Wf = 1 balances the performance gains from

167

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

increasing Wf with the density loss. At maximum performance, M-HOT/Malibu achieves 70%

the performance of an StratixIII FPGA and about the same density (26.1x compile speedup,

0.707x performance, 0.996x density). At maximum density, Malibu is about half the perfor-

mance of the FPGA and almost 2.5x the density (26.1x compile speedup, 0.513x performance,

2.474x density).

These results are summarized in Figure 6.7. The shaded area of the figure is the perfor-

mance and density achievable with QuartusII/StratixIII. The figure shows the density, perfor-

mance, and compile time results achieved for the CG-only and Good benchmarks for M-HOT

Wf = 1. The maximum performance and maximum density is plotted for each benchmark. The

compile time speedup relative to QuartusII is shown in brackets after the benchmark name in

the figure legend. For all the circuits except spi, ac97 ctrl, and pci master, M-HOT is able to

achieve a density result outside the range reachable by QuartusII/StratixIII. For all the bench-

marks except me, the compile time compared to QuartusII is much faster. Five circuits achieve

both a higher frequency and a more dense result than QuartusII.

Among these results, M-HOT sometimes generates solutions with poor performance. In

particular, larger circuits with a small height (e.g., 4) have long schedule lengths because the

low-temperature annealer gives up before a good solution is reached. This situation can be

detected and worked-around by dynamically adjusting the annealing schedule, but that may

cause even longer compilation times. Since these circuits already have long compile times, this

may not be a good idea. Instead, future work should investigate other approaches to placement

that are faster than annealing, or at least scale better to larger numbers of nodes.

The frequency upper bound which was computed for M-CAD is also compared to M-HOT.

M-HOT achieves 64% of this upper bound, whereas M-CAD only achieves 50%. Due to

architectural constraints, the entire 1.6x improvement may not be achievable, however an M-

HOT experiment using a high-effort annealer showed that some improvement is possible. To

realize additional performance and density gains, future work should focus on improving the

168

CHAPTER 6. M-HOT: A HEIGHT-ORIENTED TOOL FLOW

front-end synthesis, the coarse/fine-grained interface, and the coarse/fine-grained partitioning

strategy to provide a higher quality input to M-HOT.

169

Chapter 7

Conclusions

7.1 Thesis Conclusions

Modern FPGAs implement a wide range of circuits which have both coarse-grained and

fine-grained components. The capacity of these FPGAs continues to double every 18 to 24

months [29, 80] as predicted by Moore’s Law. As such, great demand is placed on FPGA CAD

tools to synthesize these ever-larger circuits faster, and without loss in quality.

In particular, there is a trend toward using circuits with coarse-grained components. This

is partly because of full-system generators and C–to-gates hardware flows that automatically

generate large, word-oriented datapaths from software specifications. Unfortunately, coarse-

grained circuits do not map well to traditional fine-grained FPGAs; the compilation is slow and

there is a fixed device capacity limit.

We look at addressing these two issues in this thesis, as well as improving density, and

maintaining good circuit performance relative to an FPGA. Improved density, a soft capacity

limit, and fast compile times are all important for reducing costs (either silicon area or engineer-

ing salaries). Additionally, compile time, a soft device capacity limit, and circuit performance

are important for a rapid product development cycle and reducing the time-to-market for new

170

CHAPTER 7. CONCLUSIONS

technology.

To improve coarse-grained circuit mapping (addressing compile time, area/density, capac-

ity limit, and performance), time-multiplexed coarse-grained resources are added to the tra-

ditional fine-grained FPGA CLB to create Malibu, a new type of FPGA architecture. Two

mapping approaches are demonstrated for this new architecture: M-CAD, which is based on

traditional FPGA CAD tools with a scheduling step added at the end, and M-HOT, which is

based on an integrated placement, routing, and scheduling approach.

To evaluate the Malibu architecture and tools, three metrics are used: compile time, density,

and performance. The compile time metric is important for a rapid product development cycle,

whether that is fixing bugs or adding new features to circuits. Current compile times for FPGA

CAD tools range from several minutes for small circuits to many hours, or even days, for very

large circuits. This wastes time and hurts designer productivity.

Density is an important metric because density translates directly into cost. Larger devices

cost more. Being able to fit circuits onto smaller devices, whether for testing or product de-

ployment, results in a cost savings. Improving density over FPGAs has an additional benefit:

the Malibu architecture can be used for anticipatory large-circuit development and testing for

large FPGA devices which do not exist yet, but will soon, as predicted by Moore’s Law.

Performance is important for data throughput, whether emulating an ASIC for testing, or

using the FPGA in a final product. FPGAs already come within 1/4th the performance of an

ASIC [45], which is fast enough for both simulation and direct use in commercial products.

When considering a new FPGA-like architecture for coarse-grained circuits, performance must

not be degraded too much.

These metrics are measured using the synthesis results from a number of benchmark bench-

mark circuits. The circuits are divided into three categories: CG-only, Good, and Impaired.

The first two categories are coarse-grained circuits with small amounts of fine-grained logic.

These are the types of circuits that we expect would be implemented on Malibu, so all com-

171

CHAPTER 7. CONCLUSIONS

parisons in this thesis are done with these circuits. The Impaired circuits use Verilog structures

which do not map well to Malibu. These circuits are written in a style which is not effi-

ciently supported by either our front-end synthesis, the back-end mapping flow (M-CAD and

M-HOT), or the Malibu architecture, or some combination thereof. An experienced Malibu de-

veloper would avoid using these particular structures and design a circuit in a way that works

well with Malibu. However, in this thesis, we have not modified any of the benchmark circuits.

The data for the Impaired benchmarks is shown throughout the thesis, but we only require that

M-CAD and M-HOT successfully synthesize these circuits.

The Malibu architecture, the M-CAD flow, and the M-HOT flow form the three main thesis

contributions. We use the three aforementioned metrics with the benchmark circuits to assess

the architecture and tool flows, and to compare them with a commercial FPGA (StratixIII) and

FPGA CAD tool (QuartusII). This comparison and evaluation of Malibu has led us to recom-

mend using the M-HOT flow with a fine-grained width (Wf) of 1 for a balance between the

performance gains by pushing more resources onto the fine-grained resources and the density

loss of doing so.

The first thesis contribution is the Malibu architecture presented in Chapter 3. The Mal-

ibu CLB is a unique combination of time-multiplexed, coarse-grained resources and traditional

fine-grained FPGA CLBs. We explain the architecture in detail and show how it implements a

circuit. Then, an experiment is done to determine suitable values for all the architecture param-

eters. With the architecture fully specified, an 81-bit instruction word for use by the coarse-

grained resources is derived, and area of the Malibu CLB is computed to be 97,050.5µm2. The

area is used to compute the density of M-CAD and M-HOT synthesis results.

Compared to FPGAs, the coarse-grained resources allow a much faster compile times (up

to 269x faster in this thesis), and the time-multiplexing feature can improve density over a

StratixIII FPGA up to 2.5x on average. The architecture also allows the Malibu CAD flows

(M-CAD or M-HOT) to trade density for performance. An average (geomean) density range

172

CHAPTER 7. CONCLUSIONS

of 0.996x up to 2.474x is demonstrated.

The second thesis contribution is the M-CAD flow presented in Chapters 4 and 5. M-CAD

is based on algorithms used by FPGA CAD tools [13, 18, 39, 71], but augments these with

support for coarse-grained, time-multiplexed resources. New placement and routing tools are

created based on these algorithms to handle both types of resources simultaneously. Finally,

a new scheduling step is added at the end of the flow to temporally order the coarse-grained

operations in each CLB. To our knowledge this is the first time a complete Verilog-to-bitstream

flow has been created for an FPGA-like architecture with both coarse-grained and fine-grained

resources.

We show that M-CAD improves compile times over FPGA CAD tools by an average factor

of 38.7x (geometric mean of speedups for M-CAD, Wf = 1, CG-only and Good benchmarks).

Having coarse-grained resources in the architecture means that coarse-grained synthesis can

be used (as opposed to synthesizing down to 2–input logic gates), which significantly reduces

the problem size and thus improves the compile time. We also avoid the use of long-running

iterative algorithms to keep runtime low. Very large synthetic circuits, with up to 50,000 32-

bit operations (approx 1.6 million gates), are used to extrapolate performance results. M-

CAD synthesizes the 50,000 node circuit in 54 minutes, whereas QuartusII quits after 24 hours

without finishing.

To test the performance limit, a performance upper bound is calculated using the post-front-

end synthesis graph-depth of the circuit. We find that the M-CAD synthesis results reach just

over half of this value, meaning there is less than a 2x improvement possible without changing

the front-end synthesis.

Finally, M-CAD can trade density for circuit performance without changing the underlying

architecture. Compared to QuartusII/StratixIII, the performance/density range is from 0.582x

density and 0.642x performance at maximum performance to 2.474x density and 0.429x per-

formance at maximum density. These results are summarized in Table 7.1 and Figure 7.1. If

173

CHAPTER 7. CONCLUSIONS

the architecture parameter values are changed to include more memory for additional time-

multiplexing, a 10x density is possible with 0.01x performance.

The major drawback of the M-CAD approach is the separation of information in the algo-

rithms used. The separation is not a problem in FPGA CAD, but adding another dimension to

the mapping problem, time, exemplifies the inefficiencies. Specifically, there are cases where

placement needs the order of the coarse-grained operations (the output of scheduling) to avoid

bad decisions. Since we avoid iterative approaches this is not possible, and the placement step

ends up accounting for 70% of the loss from the upper bound to the actual synthesis result.

The third thesis contribution is the M-HOT flow presented in Chapter 6. M-HOT does

integrated placement, routing, and scheduling to avoid the aforementioned problem with the

separation of information. It is based on a modulo graph embedding CGRA scheduler [62]. It

constructs an ALAP tree representation of the circuit and places (in space and time) and routes

each height separately, starting from the maximum height where the most critical nodes are.

We also use the same performance upper bound that was calculated in the M-CAD analysis

to show that M-HOT achieves 64% of this maximum. Hence, there is at best a 1.6x performance

improvement possible in M-HOT. The large circuit synthesis results confirm that M-HOT can

also successfully synthesize large circuits on the Malibu architecture, but it takes longer, just

over 3 days for the 50,000 node circuit.

The M-HOT approach is not without drawbacks. It generates slightly inferior solutions to

M-CAD on large circuits with a small height (e.g., less than 10) because the low-temperature

annealer gives up before a good solution is found. This situation can be detected and worked-

around by dynamically adjusting the annealing schedule, but that increases the compile time.

With the already long compile times for circuits with imbalanced ALAP trees, this may not be

a good idea. A better way of recovering placement quality is needed.

The M-CAD and M-HOT results are summarized next. Table 7.1 summarizes the numerical

results, and Figure 7.1 shows the performance versus density tradeoff graphically for Wf = 1.

174

CHAPTER 7. CONCLUSIONS

Table 7.1: Summary of important results. Geometric mean of the CG-only and Good
benchmarks. All results are compared to a QuartusII synthesis for the largest
StratixIII FPGA (EP3SL340F1760C2).

Compile
Time

Density vs. Performance Range

At Max Performance At Max Density

Result Perf. Density Perf. Density

M-CAD Wf = 0 57.5x 0.588x 0.506x 0.308x 3.339x
M-CAD Wf = 1 38.7x 0.652x 0.582x 0.429x 2.474x
M-CAD Wf = 4 16.9x 0.713x 0.637x 0.487x 2.148x

M-HOT Wf = 0 18.0x 0.609x 1.297x 0.369x 3.339x
M-HOT Wf = 1 26.1x 0.707x 0.996x 0.513x 2.474x
M-HOT Wf = 4 26.7x 0.786x 1.097x 0.625x 2.148x

0.0 1.0 2.0 3.0 4.0 5.0

Density vs. QuartusII/StratixIII

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
e
q
u
e
n
cy

 v
s.

 Q
u
a
rt

u
sI

I/
S
tr

a
ti

x
II
I

QuartusII
Feasible
Range

CT=30.9xCT=77.0x

CT=38.7x

CT=15.5x

CT=20.9x

CT=26.1x

M-CAD CG-only

M-CAD Good

M-CAD CG+Good

M-HOT CG-only

M-HOT Good

M-HOT CG+Good

Figure 7.1: Malibu Wf = 1 results summary. The geometric mean of the frequency versus
density relative to relative to QuartusII/StratixII is shown for maximum density and
maximum performance. The CT value on each curve is the compile time speedup
relative to QuartusII.

175

CHAPTER 7. CONCLUSIONS

In Table 7.1, all the results are versus QuartusII synthesizing for a StratixIII FPGA. “0.1x”

means 1/10th the QuartusII/StratixIII result (slower for synthesis, larger for area), “1x” means

the same result, and “10x” means ten times better. The table shows the average compile times,

the performance at the maximum density, and the density at the maximum performance. M-

HOT gives superior results compared to M-CAD, and Wf = 1 balances the loss in density (at

maximum density) with the gains in performance.

Figure 7.1 shows the Wf = 1 results graphically. There are three curves for the CG-only,

Good, and combined CG-only+Good benchmark sets. The maximum performance and maxi-

mum density is plotted for each benchmark set. The CT value on each curve is the compile time

speedup relative to QuartusII. M-HOT achieves better performance and density results com-

pared to M-CAD. For CG-only, both M-CAD and M-HOT achieve performance, density, and

compile time results outside the range reachable by QuartusII/StratixIII. For CG-only+Good,

both M-CAD and M-HOT achieve density and compile time results outside the range reachable

by QuartusII/StratixIII.

It is difficult to compare the Malibu architecture and CAD to more mature work such as

VPR and QuartusII, but the architecture and tools show promising results. Appendix A verified

that it is not possible to achieve comparable compile times with VPR or QuartusII. The compile

time in QuartusII and VPR was decreased by disabling features like timing-driven placement,

and lowering the annealing placement effort. As placement time decreases, so does the quality

of the placement solution, and that causes routing time to increase. The overall effect is that

total compile time can be decreased by about 15% with a 13% reduction in Fmax. In this thesis

there is an average 18x to 57.5x decrease in compile time with a 33% to 66% reduction in Fmax.

M-CAD and M-HOT sometimes have very slow runtimes, and the front-end synthesis

sometimes produces more nodes than what seems necessary. However, both flows are new

and written only by one person. In contrast, VPR and QuartusII are mature tools which have

evolved for years with multiple developers, so they exhibit fewer special cases. Most impor-

176

CHAPTER 7. CONCLUSIONS

tantly, the results presented in this thesis show it is possible to achieve fast synthesis, increased

density, and reasonable performance on the Malibu architecture with a variety of circuits.

7.2 Future Directions

This work has shown that clock frequency results can be improved by no more than 2x or

1.6x by making simple adjustments to M-CAD and M-HOT, respectively. However, it may be

possible to achieve further gains in compile time or density by tuning these tools.

For example, to decrease compile time, one possibility is to do away with placement en-

tirely. The edge-centric modulo scheduler proposed by Park et al. [64] is an interesting ap-

proach to CGRA scheduling. Basically, if a route is created between an input (or register)

and an output (or register), then the operations along that path must be implemented in the

CLBs visited by the route. A routing algorithm like PathFinder could work to implement this

approach for Malibu, and the time saved by not doing placement could allow for an iterative

approach. Heavily used CLBs would be marked as congested, and the router would rip-up and

re-route until all paths were satisfied, with the most critical paths being the highest priority.

There are also some limitations to the current tool that would merit future work regardless

of any compile time or density improvements. We assume a single clock domain in this work,

which could be an issue with complex industrial circuits. Multiple clock domains could be

handled by either partitioning the CLBs into groups for each clock domain, or by unifying the

domains into a single clock, e.g. if one clock is a multiple of the other, the code in one clock

domain could be unrolled.

We have also avoided specifically handling large, user-instantiated memories. This could

be handled in software by programming one CLB to fetch data from nearby CLBs which

are, in turn, programmed specifically to act as memory fetch units. It could also be handled

at the hardware level by building some mechanism into the Malibu architecture to aggregate

memories automatically if required.

177

CHAPTER 7. CONCLUSIONS

The work done on front-end synthesis in this thesis just scratches the surface of what is

possible. A better front-end synthesis tool would generate a better-optimized circuit which

would be smaller, faster, and take less time to compile. Using Verilator was an excellent start

as it allowed the rest of the tool flow to be developed and evaluated. What is now needed

is a new front-end synthesis tool that is suitable for both M-CAD and M-HOT. It must be

both coarse-grained and fine-grained aware, and able to apply optimizations to both types of

resources.

Due to time constraints, and the lack of an improved front-end synthesis tool tuned for Mal-

ibu, we have avoided a deep investigation into architectural enhancements. For example, the

architecture could include long coarse-grained wires to reduce waiting time. It could include

multiple ALUs per CLB to speed up computation and further reduce waiting time. It could

have an improved FG/CG interface, or the ability to time-multiplex the fine-grained resources

(which appear to be limiting the density).

As with all research, this thesis concludes by saying: there is much work to be done.

178

Bibliography

[1] VPR and T-VPack User’s Manual (Version 5.0). → pages 192, 206

[2] L. V. Agostini, R. C. Porto, S. Bampi, and I. S. Silva. A FPGA based design of a
multiplierless and fully pipelined JPEG compressor. In Proc. Euromicro Conference on
Digital System Design, pages 210–213, 2005. → pages 2

[3] Altera Corporation. Automated generation of hardware accelerators with direct memory
access from ANSI/ISO standard C functions. whitepaper., May 2006. URL
www.altera.com/literature/wp/wp-aghrdwr.pdf. → pages 2

[4] Altera Corporation. Stratix III Device Handbook, 2007. URL
http://www.altera.com/literature/hb/stx3/stratix3 handbook.pdf. → pages 78

[5] Altera Corporation. Quartus II Handbook, 2010. URL
http://www.altera.com/literature/hb/qts/quartusii handbook.pdf. → pages 3, 16

[6] Altera Corporation. SOPC Builder User Guide, 2010. URL
http://www.altera.com/literature/ug/ug sopc builder.pdf. → pages 2

[7] Altera Corporation. Stratix V Device Handbook, 2011. URL
http://www.altera.com/literature/hb/stratix-v/stratix5 handbook.pdf. → pages 1

[8] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider.
Teramac–configurable custom computing. In Proc. FPGAs for Custom Computing
Machines (FCCM), pages 32–38, 1995. → pages 36

[9] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider, and L. Albertson. Plasma:
An FPGA for million gate systems. In Proc. Field-Programmable Gate Arrays (FPGA),
pages 10–16, 1996. → pages 36

[10] ARM. Synthesizable ARM7TDMIT M 32-bit RISC performance, retrieved Jan. 2010.
URL www.arm.com/products/CPUs/ARM7TDMIS.html. → pages 62

[11] V. Betz and J. Rose. Directional bias and non-uniformity in FPGA global routing
architectures. In Proc. International Conference on Computer-Aided Design (ICCAD),
ICCAD, pages 652–659, 1996. → pages 21

179

www.altera.com/literature/wp/wp-aghrdwr.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/hb/stratix-v/stratix5_handbook.pdf
www.arm.com/products/CPUs/ARM7TDMIS.html

BIBLIOGRAPHY

[12] V. Betz and J. Rose. Cluster-based logic blocks for FPGAs: Area-efficiency vs. input
sharing and size. In Proc. Custom Integrated Circuits Conference (CICC), pages
551–554, 1997. → pages 15, 17

[13] V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. In Proc. Field Programmable Logic (FPL), pages 213–222, 1997. → pages 7,
19, 173

[14] V. Betz, J. Rose, and A. Marquardt, editors. Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, 1999. → pages 45

[15] N. Bhat, K. Chaudhary, and E. S. Kuh. Performance-oriented fully routable dynamic
architecture for a field programmable logic device. Technical Report UCB/ERL
M93/42, EECS Department, University of California, Berkeley, 1993. URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2355.html. → pages 12, 22, 23

[16] A. Boccardi, M. Gasior, R. Jones, K. Kasinski, and R. J. Steinhagen. The FPGA-based
continuous FFT tune measurement system for the LHC and its test at the CERN SPS.
Technical Report CERN-AB-2007-062, CERN, Geneva, 2007. → pages 1

[17] D. Brand, A. Drumm, S. Kundu, and P. Narain. Incremental synthesis. In Proc.
International Conference on Computer-Aided Design (ICCAD), pages 14–18, 1994. →
pages 3

[18] R. Brayton and A. Mishchenko. ABC: An academic industrial-strength verification tool.
In Computer Aided Verification, volume 6174 of Lecture Notes in Computer Science,
pages 24–40. 2010. URL http://dx.doi.org/10.1007/978-3-642-14295-6 5. → pages 7,
16, 173

[19] D. Carey. Under the hood: The MP3 that broke new ground, May 2007. URL
http://www.eetimes.com/design/programmable-logic/4004667/
Under-the-Hood-The-MP3-that-broke-new-ground. → pages 1, 2

[20] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon. Stream
computations organized for reconfigurable execution (SCORE). In Proc. Field
Programmable Logic (FPL), pages 605–614, 2000. → pages 23, 32

[21] D. Cherepacha and D. Lewis. DP-FPGA: An FPGA architecture optimized for
datapaths. VLSI Design, 4(4):329–343, 1996. → pages xi, 12, 23, 27

[22] K. Choi and M. Song. Design of a high performance 32x32-bit multiplier with a novel
sign select booth encoder. In Proc. International Symposium on Circuits and Systems,
pages 701–704, May 2001. → pages 45

[23] Christoph Albrecht. IWLS 2005 benchmarks. [Online]. Available:
http://www.iwls.org/iwls2005/benchmarks.html, 2005. → pages 52

180

http://www.eecs.berkeley.edu/Pubs/TechRpts/1993/2355.html
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://www.eetimes.com/design/programmable-logic/4004667/Under-the-Hood-The-MP3-that-broke-new-ground
http://www.eetimes.com/design/programmable-logic/4004667/Under-the-Hood-The-MP3-that-broke-new-ground

BIBLIOGRAPHY

[24] E. G. Coffman. Computer and Job Shop Scheduling Theory. Wiley, New York, 1976. →
pages 36

[25] J. Cong and K. Minkovich. Mapping for better than worst-case delays in LUT-based
FPGA designs. In Proc. Field-Programmable Gate Arrays (FPGA), pages 56–64, 2008.
→ pages 16

[26] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling. Architecture
design of reconfigurable pipelined datapaths. In Proc. Conference on Advanced
Research in VLSI (ARVLSI), pages 23–40, 1999. → pages xi, 12, 23, 28, 29, 30

[27] A. DeHon. Reconfigurable Architectures for General-Purpose Computing. PhD thesis,
Massachusetts Institute of Technology, 1996. → pages xi, 12, 23, 25, 26

[28] A. Donev, V. V. Bulatov, T. Oppelstrup, G. H. Gilmer, B. Sadigh, and M. H. Kalos. A
first-passage kinetic Monte Carlo algorithm for complex diffusion-reaction systems. J.
Comput. Phys., 229(9):3214–3236, 2010. → pages 2

[29] P. Dorsey. Xilinx stacked silicon interconnect technology delivers breakthrough FPGA
capacity, bandwidth, and power efficiency, Oct 2010. URL
http://www.xilinx.com/support/documentation/white papers/
wp380 Stacked Silicon Interconnect Technology.pdf. → pages 10, 170

[30] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - reconfigurable pipelined datapath.
In Proc. Field Programmable Logic (FPL), pages 126–135, 1996. → pages 28

[31] J. Fender and J. Rose. A high-speed ray tracing engine built on a field-programmable
system. In Proc. Field-Programmable Technology (FPT), pages 188 – 195, 15-17 2003.
→ pages 2

[32] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and S. Hauck. SPR: an
architecture-adaptive CGRA mapping tool. In Proc. Field-Programmable Gate Arrays
(FPGA), pages 191–200, 2009. → pages 6, 33, 36

[33] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor, and R. Laufer.
PipeRench: A coprocessor for streaming multimedia acceleration. In Proc. International
Symposium on Computer Architectures (ISCA), pages 28–39, 1999. → pages 12, 23, 31

[34] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. R. Taylor, and R. Reed.
PipeRench: A reconfigurable architecture and compiler. Computer, 33:70–77, 2000. →
pages 31

[35] D. Grant and G. Lemieux. A spatial computing architecture for implementing
computational circuits. In Proc. Microsystems and Nanoelectronics Research
Conference (MNRC), pages 41–44, Oct. 2008. → pages 52

181

http://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
http://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf

BIBLIOGRAPHY

[36] V. Granville, M. Krivanek, and J.-P. Rasson. Simulated annealing: A proof of
convergence. In Proc. Pattern Analysis and Machine Intelligence, pages 652–656, 1994.
→ pages 18

[37] T. R. Halfhill. Tabula’s time machine. Microprocessor Report, Mar. 2010. → pages 12

[38] J. Jaeger. Virtually every ASIC ends up an FPGA, Dec. 2007. URL
www.eetimes.com/showArticle.jhtml?articleID=204702700. → pages 2

[39] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon. Odin II - an open-source verilog
HDL synthesis tool for CAD research. In Proc. Field-Programmable Custom
Computing Machines (FCCM), pages 149–156, 2010. → pages 7, 66, 173

[40] D. Jones and D. Lewis. A time-multiplexed FPGA architecture for logic emulation. In
Proc. Custom Integrated Circuits, pages 495–498, 1995. → pages xi, 12, 22, 23, 24, 118

[41] M.-E. Jones. 1T-SRAM-Q quad-density technology reins in spiraling memory
requirements. http://csserver.evansville.edu/ ˜mr56/cs838/Paper16.pdf, retrieved Sept
2010. → pages 62

[42] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
applications in VLSI domain. IEEE Trans. VLSI, 7(1):69–79, Mar 1999. → pages 91

[43] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983. URL
http://www.ncbi.nlm.nih.gov/pubmed/17813860. → pages 17

[44] G. Krishnamurthy, E. D. Granston, and E. J. Stotzer. Affinity-based cluster assignment
for unrolled loops. In Proc. ICS, pages 107–116, 2002. → pages 35

[45] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 26(2):203–215, 2007. ISSN
0278-0070. → pages 1, 171

[46] I. Kuon and J. Rose. Area and delay trade-offs in the circuit and architecture design of
FPGAs. In Proc. Field Programmable Gate Arrays (FPGA), pages 149–158, 2008. →
pages 5

[47] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.
Foundations and Trends in Electronic Design Automation, 2:135–253, February 2008.
ISSN 1551-3076. → pages 19

[48] S. K. Lai. Flash memories: Successes and challenges. IBM Journal of Research and
Development, 52(4.5):529 –535, Jul. 2008. → pages 62

[49] J.-E. Lee, K. Choi, and N. D. Dutt. Compilation approach for coarse-grained
reconfigurable architectures. IEEE Des. Test, 20(1):26–33, 2003. → pages 33

182

www.eetimes.com/showArticle.jhtml?articleID=204702700
http://www.ncbi.nlm.nih.gov/pubmed/17813860

BIBLIOGRAPHY

[50] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent scheduling. In Proc.
International Symposium on Microarchitecture (MICRO), pages 111–122, 2002. →
pages 33, 35

[51] G. Lemieux and D. Lewis. Design of Interconnection Networks for Programmable
Logic. Kluwer Academic Publishers, 2004. → pages 36

[52] V. Manohararajah. Area Optimizations in FPGA Architecture and CAD. PhD thesis,
University of Toronto, 2005. → pages 12, 23, 24

[53] A. Marquardt, V. Betz, and J. Rose. Timing-driven placement for FPGAs. In Proc. Field
Programmable Gate Arrays (FPGA), pages 203–213, 2000. → pages 19, 20, 37, 92, 95

[54] L. McMurchie and C. Ebeling. Pathfinder: A negotiation-based performance-driven
router for FPGAs. In Proc. Field-Programmable Gate Arrays (FPGA), pages 111–117,
1995. → pages 21

[55] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. DRESC: a retargetable
compiler for coarse-grained reconfigurable architectures. Proc. Field-Programmable
Technology (FPT), pages 166–173, 2002. → pages 35

[56] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo scheduling. In
Proc. Design, Automation and Test in Europe (DATE), pages 255–261, 2003. → pages
33, 35

[57] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. ADRES: An
architecture with tightly coupled VLIW processor and coarse-grained reconfigurable
matrix. In Proc. Field Programmable Logic (FPL), pages 61–70, 2003. → pages xi, 12,
23, 30, 165

[58] Mentor Graphics. Catapult C Synthesis, 2006. URL www.mentor.com/products/esl/
high level synthesis/catapult synthesis/upload/Catapult DS pdf.pdf. → pages 2

[59] C. Mulpuri and S. Hauck. Runtime and quality tradeoffs in FPGA placement and
routing. In Proc. Field Programmable Gate Arrays (FPGA), pages 29–36, 2001. →
pages 5, 11, 37, 38

[60] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A tool to model
large caches. Technical Report HPL-2009-85, HP Laboratories, 2009. → pages 61

[61] E. Nystrom and A. E. Eichenberger. Effective cluster assignment for modulo scheduling.
In Proc. International Symposium on Microarchitecture (MICRO), pages 103–114,
1998. → pages 36

183

www.mentor.com /products/esl/high_level_synthesis/catapult_synthesis/upload/Catapult_DS_pdf.pdf
www.mentor.com /products/esl/high_level_synthesis/catapult_synthesis/upload/Catapult_DS_pdf.pdf

BIBLIOGRAPHY

[62] H. Park. Polymorphic Pipeline Array: A Flexible Multicore Accelerator for Mobile
Multimedia Applications. PhD thesis, The University of Michigan, 2009. → pages 8, 34,
35, 133, 137, 138, 141, 165, 166, 174

[63] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding: mapping
applications onto coarse-grained reconfigurable architectures. In Proc. Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages 136–146, 2006. →
pages 34, 37

[64] H. Park, K. Fan, S. A. Mahlke, T. Oh, H. Kim, and H.-S. Kim. Edge-centric modulo
scheduling for coarse-grained reconfigurable architectures. In Proc. Parallel
Architectures and Compilation Techniques (PACT), pages 166–176, 2008. → pages 35,
177

[65] J. Sánchez and A. González. Modulo scheduling for a fully-distributed clustered VLIW
architecture. In Proc. International Symposium on Microarchitecture (MICRO), pages
124–133, 2000. → pages 36

[66] Y. Sankar and J. Rose. Trading quality for compile time: Ultra-fast placement for
FPGAs. In Proc. Field-Programmable Gate Arrays (FPGA), pages 157–166, 1999. →
pages 5, 11, 37

[67] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. Keckler, and
C. Moore. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture.
In Proc. International Symposium on Computer Architecture (ISCA), pages 422–433,
2003. → pages 12, 23, 32

[68] D. P. Singh and S. D. Brown. Incremental placement for layout driven optimizations on
FPGAs. In Proc. Computer-Aided Design (ICCAD), pages 752–759, 2002. → pages 17

[69] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves Filho.
MorphoSys: an integrated reconfigurable system for data-parallel and
computation-intensive applications. IEEE Trans. Computers, 49(5):465–481, May 2000.
→ pages 12, 23, 31

[70] G. Smecher, S. Wilton, and G. G. Lemieux. Self-hosted placement for massively parallel
processor arrays. In Proc. Field-Programmable Technology (FPT), pages 159–166, Dec.
2009. → pages 124

[71] W. Snyder. Verilator-3.652, June 2007. URL www.veripool.com/verilator doc.pdf. →
pages 7, 69, 173

[72] M. B. Srivastava and M. Potkonjak. Optimum and heuristic transformation techniques
for simultaneous optimization of latency and throughput. IEEE Trans. VLSI, 3(1):2–19,
1995. → pages 52

184

www.veripool.com/verilator_doc.pdf

BIBLIOGRAPHY

[73] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proc.
International Symposium on Microarchitecture (MICRO), page 291, 2003. → pages 12,
23, 32

[74] W. Swartz and C. Sechen. New algorithms for the placement and routing of macro cells.
In Proc. International Conference on Computer-Aided Design (ICCAD), pages 336–339,
1990. → pages 18

[75] Synopsys, Inc. Synphony C Compiler, 2010. URL http:
//www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx. →
pages 2

[76] Tabula, Inc. ABAX Product Family Overview, 2010. → pages 23, 26

[77] Tabula, Inc. Stylus Software Overview, 2010. → pages 26

[78] Texas Instruments. TMS320C6457 Communications Infrastructure Digital Signal
Processor Data Manual, 2010. URL http://www.ti.com/lit/gpn/tms320c6a8167. → pages
46

[79] X. Tian and K. Benkrid. American option pricing on reconfigurable hardware using
least-squares Monte Carlo method. In Proc. Field-Programmable Technology (FPT),
pages 263 –270, 9-11 2009. → pages 2

[80] S. Trimberger. Moore’s law, fpgas and computation. [Online].
Available:http://www.skatelescope.org/US SKA Technology Day06/Trimberger.pdf,
Mar 2006. → pages 1, 10, 170

[81] University of Massachusetts. Umass RCG HDL benchmark collection. [Online].
Available: http://www.ecs.umass.edu/ece/tessier/rcg/benchmarks, 2006. → pages 52

[82] University of Toronto. iFAR - intelligent FPGA architecture repository. [Online].
Available: http://www.eecg.utoronto.ca/vpr/architectures, 2008. → pages 97, 103

[83] B. C. Van Essen. Improving the Energy Efficiency of Coarse-Grained Reconfigurable
Arrays. PhD thesis, The University of Washington, 2010. → pages 12, 23, 31, 36

[84] B. C. Van Essen, R. Panda, A. Wood, C. Ebeling, and S. Hauck. Energy-efficient
specialization of functional units in a coarse-grained reconfigurable array. In Proc. Field
Programmable Gate Arrays (FPGA), pages 107–110, 2011. → pages 11

[85] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, and W. Bohm. A compiler
framework for mapping applications to a coarse-grained reconfigurable computer
architecture. In Proc. Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), pages 116–125, 2001. → pages 35

185

http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx
http://www.ti.com/lit/gpn/tms320c6a8167

BIBLIOGRAPHY

[86] K. Vorwerk. On the Use of Directed Moves for Placement in VLSI CAD. PhD thesis,
The University of Waterloo, 2009. → pages 17

[87] C. C. Wang and G. G. Lemieux. Scalable and deterministic timing-driven parallel
placement for FPGAs. In Proc. Field Programmable Gate Arrays (FPGA), pages
153–162, 2011. → pages 124, 195

[88] S. J. E. Wilton, C. H. Ho, P. H. W. Leong, W. Luk, and B. Quinton. A synthesizable
datapath-oriented embedded FPGA fabric. In Proc. Field Programmable Gate Arrays
(FPGA), pages 33–41, 2007. → pages 12, 23, 27

[89] M. G. Wrighton and A. M. DeHon. Hardware-assisted simulated annealing with
application to fast FPGA placement. → pages 37, 206

[90] Xilinx. 7 Series FPGA Overview, Mar 2011. URL
http://www.xilinx.com/support/documentation/data sheets/ds180 7Series Overview.pdf.
→ pages 1

[91] Xilinx, Inc. EDK Concepts, Tools, and Techniques, 2008. URL
www.xilinx.com/support/documentation/sw manuals/edk ctt.pdf. → pages 2

[92] Xilinx, Inc. ISE Design Suite Software Manuals and Help, 2010. URL
http://www.xilinx.com/support/documentation/sw manuals/xilinx12 3/manuals.pdf. →
pages 16

[93] A. Yan and S. J. E. Wilton. Product-Term Based Synthesizable Embedded
Programmable Logic Core. IEEE Trans. VLSI, 14(5):474–488, 2006. → pages 28

[94] A. Ye and J. Rose. Using bus-based connections to improve field-programmable gate
array density for implementing datapath circuits. In IEEE Trans. VLSI, pages 3–13,
2005. → pages 12, 23, 27

[95] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and Y. Paek. SPKM: A novel
graph drawing based algorithm for application mapping onto coarse-grained
reconfigurable architectures. In Proc. Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 776–782, 2008. → pages 33, 34

[96] V. Zygouris, K. Karagianni, and T. Stouraitis. A Navier-Stokes processor for biomedical
applications. In Proc. Signal Processing Systems (SiPS), pages 368 – 372, 2-4 2005. →
pages 2

186

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
www.xilinx.com/support/documentation/sw_manuals/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/manuals.pdf

Appendix A

Scaling Existing FPGA CAD Tools

A.1 Overview

This appendix presents an investigation into reducing the compile times in VPR and QuartusII.

This investigation is to study whether existing tools can be made as fast as the M-CAD and

M-HOT tools presented in this thesis. For QuartusII the compile time can be reduced by only

15% with a 13% loss in quality. For VPR the compile time can be reduced by 7% with a 25%

loss in quality for about half the circuits (the other half are unroutable at this point). At this

limit, the M-CAD and M-HOT approaches are still over 11x and 4.8x faster respectively.

As was done in the body of this thesis, all comparisons between the Malibu tools (M-CAD

and M-HOT) to QuartusII and VPR exclude the Impaired benchmarks.

A.2 QuartusII

All the results in this thesis from the commercial QuartusII tool were generated using the

default QuartusII settings. For the CG-only benchmark results in Chapters 5 and 6, M-CAD and

M-HOT achieved a higher maximum frequency (geomean) result than QuartusII synthesizing

for an StratixIII FPGA. However, for the Good benchmarks, which include some fine-grained

187

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

signals, the QuartusII frequency was up to 7.1x better than the result from the Malibu tools.

For the Impaired circuits, the difference was even greater, favouring QuartusII.

The main advantage of Malibu CAD tools is very fast compile times, as shown in Ta-

bles 5.9 and 6.9. M-CAD is 16.9x to 57.5x (geomean) faster than QuartusII for the CG-only

and Good benchmarks. M-HOT is 18.0x to 26.7x faster than QuartusII for the same bench-

marks. In this section we investigate whether is possible for QuartusII to match the compile

times of M-CAD or M-HOT.

The compile time in QuartusII is decreased in three ways:

1. Lower Front-End Synthesis Effort – The following setting can be used to disable many

of the optimizations applied during front-end synthesis:

set_global_assignment -name SYNTHESIS_EFFORT FAST

2. Lower Placement and Routing Effort – The following settings were used to speedup

the placement and routing effort. Optimizations are turned off, timing-driven placement

is disabled, and the router effort is set to the lowest permissible value (0.25).

set_global_assignment -name SYNTH_TIMING_DRIVEN_SYNTHESIS OFF

set_global_assignment -name ROUTER_EFFORT_MULTIPLIER 0.25

set_global_assignment -name OPTIMIZE_HOLD_TIMING OFF

set_global_assignment -name FITTER_EFFORT "FAST FIT"

set_global_assignment -name FINAL_PLACEMENT_OPTIMIZATION NEVER

set_global_assignment -name FITTER_AGGRESSIVE_ROUTABILITY_OPTIMIZATION

NEVER

3. Reduce the Placement Effort Multiplier – The placement effort multiplier is the same

as the inner-loop multiplier in VPR annealing algorithm. Reducing this value decreases

the time spent in the inner-loop of the QuartusII annealer and speeds up placement.

However, speeding up placement results in a poorer placement, and that means router

has to work harder to find a solution. The default placement effort multiplier is 1.

188

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

set_global_assignment -name PLACEMENT_EFFORT_MULTIPLIER 1

... down to ...

set_global_assignment -name PLACEMENT_EFFORT_MULTIPLIER 0.00001

Table A.1 shows the result of changing only the front-end synthesis effort in QuartusII.

“Reg” columns are results where the placement and routing effort is lowered, and the placement

effort multiplier is set to 1. The “Fast” columns are results with same settings but with the front-

end synthesis effort lowered as well. Enabling fast front-end synthesis reduces the front-end

synthesis time by about 25%, but increases the placement and routing time by 2%. Overall

there is less than a 3% reduction in total compile time, a 1.4% reduction in frequency, and a

1.6% increase in area.

Since the overall impact of setting is small, and to be consistent with the QuartusII front-

end synthesis used for VPR, we have chosen to not lower the front-end synthesis effort for the

results in this section and in the next section with VPR. As we will demonstrate in this section,

a further 3% reduction in compile time is negligible when compared to M-CAD and M-HOT.

Figure A.1 shows the geometric mean of the maximum frequency and compile time for a

sweep of the QuartusII placement effort multiplier. The rightmost point on the x-axis is the

default value where QuartusII is run with the default settings. This is the QuartusII data used

throughout this thesis. For the other data points along the x-axis, the two methods above are

used to speed up the synthesis. The individual graphs for each benchmark are in Section A.5.

Disabling optimizations (default vs. 1 on the x-axis) causes about a 15% reduction in com-

pile time for placement effort multiplier values down to 0.01 compared to the default settings.

Across this range, there is also up to a 13% decrease in Fmax. Below 0.01, the compile time

increases, presumably because the routing is taking longer. Unfortunately, QuartusII does not

give accurate separate runtime statistics for placement and routing (however in the next section

we can see that routing time increases as placement time decreases for VPR). At the far left

of the graph, with a 0.00001 multiplier, there is a 67% reduction in Fmax and the compile time

189

A
PPE

N
D

IX
A

.
SC

A
L

IN
G

E
X

IST
IN

G
FPG

A
C

A
D

TO
O

L
S

Table A.1: QuartusII results with fast front-end synthesis optimization. Enabling fast front-end synthesis reduces the quality
of the circuit, so front-end synthesis is faster, but place and route is slower. Also with fast front-end synthesis, the
frequency is decreased and area is increased.

Front-End Synthesis (s) Place and Route (s) Front-End + P&R Frequency (MHz) Area (ALMs)

Circuit Reg Fast Fast/Reg Reg Fast Fast/Reg Fast/Reg Reg Fast Fast/Reg Reg Fast Fast/Reg

C
G

-o
nl

y

fft16 26 22 0.857 126 130 1.029 0.999 143.0 156.3 1.093 4558 4561 1.001
me 18 14 0.786 96 97 1.013 0.977 203.8 203.8 1.000 5575 5575 1.000
chem 23 23 1.000 182 186 1.020 1.017 12.0 12.0 1.000 3589 3589 1.000
fft8 10 8 0.778 73 78 1.065 1.030 166.3 163.8 0.985 1715 1719 1.002
honda 19 19 1.000 55 56 1.021 1.016 18.3 12.0 0.659 1216 1251 1.029
mcm 12 12 1.000 57 57 1.000 1.000 23.3 24.8 1.065 1057 1008 0.954
wang 12 12 1.000 53 54 1.022 1.018 19.3 19.9 1.034 797 789 0.990
pr 9 9 1.000 53 54 1.022 1.019 23.7 23.1 0.975 646 641 0.992

Geo. Mean (CG-only) 0.922 1.024 1.009 0.966 0.996

G
oo

d

ac97 ctrl 9 8 0.857 60 60 1.000 0.981 236.2 243.6 1.031 1275 1287 1.009
aes core 16 5 0.286 64 70 1.089 0.929 185.0 187.9 1.016 1156 1157 1.001
dir 22 13 0.611 75 81 1.077 0.971 79.7 78.7 0.987 1326 1523 1.149
spi 7 5 0.667 51 51 1.000 0.960 124.1 115.9 0.934 497 531 1.068
pci master 5 5 1.000 50 49 0.977 0.979 211.8 218.4 1.031 134 133 0.993

Geo. Mean (Good) 0.631 1.028 0.964 0.999 1.042

Geo. Mean (CG-only and Good) 0.797 1.025 0.992 0.979 1.013

Im
pa

ir
ed

ethernet 57 42 0.744 152 154 1.015 0.941 152.7 156.1 1.022 7194 7378 1.026
wb conmax
dma 23 16 0.684 87 82 0.947 0.892 81.2 94.8 1.168 1813 1776 0.980
tv80 25 13 0.522 55 56 1.021 0.865 107.1 97.8 0.913 886 943 1.064
jpeg enc 17 17 1.000 57 58 1.021 1.016 182.9 180.1 0.985 1185 1218 1.028
systemcaes 23 13 0.579 65 65 1.000 0.890 116.5 115.8 0.994 811 925 1.141
des 10 6 0.625 63 64 1.019 0.965 247.8 247.8 1.000 1316 1316 1.000
systemcdes 7 5 0.667 52 54 1.047 1.001 172.2 159.2 0.924 340 315 0.926

Geo. Mean (Impaired) 0.675 1.010 0.937 0.998 1.022

Geo. Mean (All) 0.752 1.020 0.972 0.986 1.016

190

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

0

20

40

60

80

100

120

G
e
o
m

e
a
n
 C

o
m

p
ile

 T
im

e
 (

se
co

n
d
s)

0

10

20

30

40

50

60

70

80

90

G
e
o
m

e
a
n
 F

re
q
u
e
n
cy

 (
M

H
z)

Frequency
Total Compile Time

Figure A.1: QuartusII compile time and frequency for various values of the placement
effort multiplier.

increases almost to the original value.

The area of these results (number of ALMs) reported by QuartusII is unchanged. Regard-

less of the optimizations on placement and routing, the number of logic entities is the same.

This is because we have chosen to leave the front-end synthesis optimizations at their default

settings.

Compared to QuartusII run with the default settings, it is possible to speed up QuartusII

by 15% at most. Also compared to QuartusII with the default settings, the worst M-CAD

speedup is 16.9x (Wf = 4, excluding the Impaired benchmarks, Table 5.9), and the worst M-

HOT speedup of 18x (Wf = 0, excluding the Imparied benchmarks, Table 6.9). The Malibu

approaches offer significant compile time savings.

191

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

A.3 VPR

This section looks at the effect of reducing the compile time in VPR. To reduce compile time,

the “-fast” option is used with both the VPR placer and router. This option sets the following

five parameters:

• Reduces bb factor to 0 (default = 3). This parameter allows the router to use channels

outside the bounding box. The bounding box is defined by the source/sink pin locations.

Larger values cause the router to be slower, but perform a more extensive search for

possible routes [1].

• Reduces max router iterations to 10 (default = 50). This parameter specifies the num-

ber of iterations the router will try before giving up and returning that the circuit is

unroutable. This option does not speed up finding a successful routing solution [1].

• Increases first iter pres fac to 10000 (default = 0.5). This parameter sets the penalty

for overusing routing channels for the first routing iteration. Larger values will clear

overused resources faster and cause the router to run faster, but will use more tracks in

the final solution [1].

• Increases initial pres fac to 10000 (default = 0.5). This parameter sets the penalty for

overusing routing channels for the second routing iteration. Larger values will clear

overused resources faster and cause the router to run faster, but will use more tracks in

the final solution [1].

• Reduces the inner num multiplier to 1 (default = 10). This parameter controls the number

of moves at each annealing temperature in placement
(

moves = inner num×num blocks
4
3

)
.

Smaller values cause the placer to run faster at the expense of placement quality [1].

192

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

In addition to using -fast, the inner num is further decreased to speed up placement

even more. Each benchmark was placed and routed using the same iFAR architecture file

(n10k04l04.fc15.area1delay1.cmos65nm) as all the other VPR results in this thesis. The num-

ber of channels was set to 100 in all cases too, as recommended by the architecture file. So the

density results are the same as those reported in Chapters 5 and 6.

Decreasing the inner num reduces the placement quality and that, in turn, increases routing

time. Figure A.2 shows this trend. On the x-axis is a sweep of the inner num down to 0.05.

About half the circuits failed to route with inner num=0.01, and all the circuits except jpeg enc,

spi, and pci master failed to route with inner num=0.001. No circuits successfully routed with

inner num below 0.001. The chem benchmark failed to route with any value of inner num

below 1, so it has been excluded from all calculations in this section. The geometric mean

reported in Figure A.2 is computed for all benchmarks (except chem), which is why it does not

extend below 0.05. The same placement and routing trend can be seen in the individual graphs

of each benchmark, which are in Section A.6.

Figure A.3 plots only the benchmarks which built at inner num=0.01, and the trend is

the same; as placement time decreases with smaller inner num values, routing time increases.

This figure also shows the rapid loss in frequency as inner num reaches low values, with no

reduction in compile time. There is a 7% reduction in compile time for a 25% loss in quality.

This trend is also visible in the individual graphs of each benchmark (Section A.6).

To better compare the compile time of M-CAD and M-HOT versus VPR, Table A.2 shows

the minimum VPR compile time for each benchmark circuit, the value of inner num where

minimum compile time is achieved, and the frequency result at minimum synthesis time. It then

shows the compile time and performance compared to M-CAD and M-HOT. For the compile

time, the value is the Malibu compile time speedup computed by taking the VPR compile time

column and dividing it by the values in Table 5.9 for M-CAD or Table 6.9 for M-HOT. Thus,

a value of 2.00 means that Malibu synthesis is 2x faster than VPR. For the frequency results,

193

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

50

60

70

G
e
o
m

e
a
n
 C

o
m

p
ile

 T
im

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

G
e
o
m

e
a
n
 F

re
q
u
e
n
cy

 (
M

H
z) Frequency

Total Compile Time
Front-End Synthesis
Place
Route

Figure A.2: VPR compile time and frequency versus inner num for all benchmarks. As
inner num is decreased, placement time decreases, but routing time increases due
to reduced placement quality.

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

5

10

15

20

25

30

35

G
e
o
m

e
a
n
 C

o
m

p
ile

 T
im

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

G
e
o
m

e
a
n
 F

re
q
u
e
n
cy

 (
M

H
z) Frequency

Total Compile Time
Front-End Synthesis
Place
Route

Figure A.3: VPR compile time and frequency versus inner num for benchmarks which
build at inner num=0.01. Benchmarks: dir,honda, des, pci master, spi, system-
cdes, jpeg enc, mcm, pr, and wang. The same placement and routing trend as
Figure A.2 is visible.

194

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

Tables 5.1 and 6.1 are used, and a value of 2.00 means that the Malibu circuit is 2x faster than

the one produced by VPR.

The results for the CG-only and Good benchmarks show that M-CAD is over 11x faster

than VPR and achieving about half the performance. Comparing these results to Table 5.10

(compile time of M-CAD versus VPR-fast), Malibu was 17.97x faster than VPR and is now

just over 15x faster for Wf = 0. The frequency results in Table 5.2 (frequency of M-CAD

versus VPR-fast) show that the quality has stayed about the same.

The M-HOT results are similar to the M-CAD results, although the change in compile time

is not as drastic (see Tables 6.2 and 6.10). M-HOT is still faster than VPR, and the performance

is about the same.

Other methods of reducing placement time exist, such as parallel placement [87]. However,

the front-end synthesis time (QuartusII BLIF generation) and routing dominate the compile

time; so even if placement time could be reduced to zero, that would only speed up VPR by

less than 2x (see Figure A.2). Because of this, the Malibu approach would still be faster.

A.4 Conclusions

It is possible to speed up both QuartusII and VPR to achieve faster synthesis and reduced qual-

ity. However, the compile time cannot be reduced to the times reported by M-CAD or M-HOT.

Part of the reason is the interplay between placement and routing: as placement time decreases,

the quality of the result also decreases, and that increases routing time. If the placement quality

is reduced too much, the router simply fails. Even if placement time could be reduced to zero,

the front-end synthesis and routing time would still exist, and the Malibu approach would still

be faster.

There are likely more options for both tools which could be explored in future work to fur-

ther reduce compile times. However, we feel that the results in this appendix demonstrate the

virtues the Malibu coarse-grained synthesis approach and the underlying coarse-grained archi-

195

A
PPE

N
D

IX
A

.
SC

A
L

IN
G

E
X

IST
IN

G
FPG

A
C

A
D

TO
O

L
S

Table A.2: M-CAD and M-HOT results compared to the fastest VPR compile time. The inner num parameter was decreased
to find the fastest VPR synthesis (where the circuit still routed).

Fastest VPR
Compile Time

M-CAD M-HOT

Compile Time Speedup Performance Factor Compile Time Speedup Performance Factor

inner Synth. Freq. Wf = 0 Wf = 1 Wf = 4 Wf = 0 W f = 1 W f = 4 Wf = 0 Wf = 1 Wf = 4 Wf = 0 Wf = 1 Wf = 4Circuit num Time (s) (MHz)

C
G

-o
nl

y

fft16 0.05 541.6 104.7 98.07 – – 0.43 – – 7.08 – – 0.33 – –
me 0.25 142.7 71.8 10.54 – – 0.77 – – 0.37 – – 0.36 – –
chem
fft8 0.25 93.9 118.0 32.46 – – 0.61 – – 11.23 – – 0.47 – –
honda 0.1 44.9 57.4 67.65 – – 0.79 – – 74.13 – – 0.97 – –
mcm 0.1 33.6 88.9 43.93 – – 0.80 – – 43.06 – – 0.94 – –
wang 0.05 26.9 71.8 2.53 – – 1.16 – – 2.55 – – 1.55 – –
pr 0.1 23.7 85.3 18.42 – – 0.98 – – 27.56 – – 1.17 – –

Geo. Mean (CG-only) 24.05 24.05 24.05 0.76 0.76 0.76 9.41 9.41 9.41 0.71 0.71 0.71

G
oo

d

ac97 ctrl 0.1 26.0 306.4 1.86 0.54 0.41 0.05 0.13 0.13 0.11 0.69 0.76 0.06 0.14 0.17
aes core 0.1 159.8 174.0 26.92 13.08 16.18 0.16 0.14 0.15 3.02 8.83 8.47 0.17 0.17 0.17
dir 0.1 104.8 57.3 43.30 12.43 18.30 0.51 0.47 0.47 15.62 31.41 34.53 0.58 0.60 0.65
spi 1 18.0 144.0 4.61 5.56 5.36 0.18 0.22 0.27 3.31 3.86 3.75 0.19 0.37 0.37
pci master 0.001 10.9 154.3 5.48 1.62 1.91 0.15 0.19 0.50 1.36 4.85 4.58 0.19 0.26 0.81

Geo. Mean (Good) 8.87 3.80 4.15 0.16 0.21 0.26 1.87 5.13 5.21 0.18 0.27 0.35

Geo. Mean (CG-only and Good) 15.87 11.15 11.57 0.40 0.44 0.49 4.80 7.31 7.35 0.40 0.47 0.53

Im
pa

ir
ed

ethernet 0.1 226.0 107.4 3.28 0.42 0.42 0.06 0.11 0.19 0.06 0.54 0.60 0.09 0.12 0.30
wb conmax 0.5 1069.7 72.3 11.08 0.05 0.11 0.18 0.27 0.25 0.10 0.04 0.55 0.18 0.31 0.28
dma 0.25 75.4 133.6 0.48 0.04 0.010 0.04 0.08 0.08 0.007 0.02 0.009 0.09 0.12 0.13
tv80 0.25 46.4 112.0 2.92 0.06 0.06 0.06 0.04 0.57 0.03 0.33 0.59 0.04 0.05 0.30
jpeg enc 0.1 34.9 159.2 0.38 0.25 0.28 0.03 0.03 0.03 0.13 0.56 0.36 0.15 0.18 0.17
systemcaes 0.05 33.6 153.5 0.28 2.05 0.02 0.10 0.10 0.10 0.18 1.37 0.02 0.20 0.26 0.33
des 0.25 22.9 162.2 2.96 0.11 0.10 0.02 0.03 0.03 0.25 1.15 1.17 0.04 0.05 0.06
systemcdes 0.01 24.7 191.7 10.19 1.74 1.48 0.11 0.11 0.10 1.66 3.98 3.64 0.13 0.14 0.16

Geo. Mean (Impaired) 1.89 0.21 0.11 0.06 0.08 0.11 0.10 0.39 0.30 0.10 0.13 0.19

Geo. Mean (All) 6.77 2.28 1.80 0.19 0.22 0.27 1.02 2.27 2.04 0.23 0.28 0.35

196

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

tecture. For coarse-grained circuits (which are the likely candidates for synthesis on Malibu)

the Malibu approach is faster than available academic and commercial tools, and has reason-

ably good quality given the compile time.

A.5 Individual QuartusII Graphs

The graphs in this section were used to generate Figure A.1. For each graph, the default Quar-

tusII settings are on the right, and the placement effort multiplier is swept, with optimizations

disabled, from 1 to 0.00001.

CG-only Benchmarks

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

140

150

160

170

180

190

200

210

220

230

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

160

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

fft16

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

0

100

200

300

400

500

600

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

50

100

150

200

250
Fm

a
x
 (

M
H

z)

Fmax
Total Buildtime

me

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

185

190

195

200

205

210

215

220

B
u
ild

ti
m

e
 (

se
co

n
d
s)

10

10

10

11

12

12

12

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

chem

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

80

85

90

95

100

105

110

115

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

160

180

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

fft8

197

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

75

80

85

90

95

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

2

4

6

8

10

12

14

16

18

20

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

honda

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

68

70

72

74

76

78

80

82

84

86

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

5

10

15

20

25

30

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

mcm

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

65

70

75

80

85

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

2

4

6

8

10

12

14

16

18

20

22

24

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

wang

0.0
0001

0.0
001

0.0
01

0.0
1

0.0
5

0.1
0.2

5
0.5 1

defa
ult

Placement Effort Multiplier

60

65

70

75

80

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0
2
4
6
8

10
12
14
16
18
20
22
24
26

Fm
a
x
 (

M
H

z)
Fmax
Total Buildtime

pr

Good Benchmarks

0.
00

00
1

0.
00

01

0.
00

1

0.
01

0.
05 0.
1

0.
25 0.
5 1

de
fa

ul
t

Placement Effort Multiplier

65

70

75

80

85

90

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

50

100

150

200

250

300

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

ac97_ctrl

0.
00

00
1

0.
00

01

0.
00

1

0.
01

0.
05 0.
1

0.
25 0.
5 1

de
fa

ul
t

Placement Effort Multiplier

80

85

90

95

100

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

160

180

200

Fm
a
x
 (

M
H

z) Fmax
Total Buildtime

aes_core

198

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

0.
00

00
1

0.
00

01

0.
00

1

0.
01

0.
05 0.
1

0.
25 0.
5 1

de
fa

ul
t

Placement Effort Multiplier

98

100

102

104

106

108

110

112

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

10

20

30

40

50

60

70

80

90

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

dir

0.
00

00
1

0.
00

01

0.
00

1

0.
01

0.
05 0.
1

0.
25 0.
5 1

de
fa

ul
t

Placement Effort Multiplier

55

60

65

70

75

80

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

spi

0.
00

00
1

0.
00

01

0.
00

1

0.
01

0.
05 0.
1

0.
25 0.
5 1

de
fa

ul
t

Placement Effort Multiplier

55

60

65

70

75

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

50

100

150

200

250

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

pci_master

Impaired Benchmarks

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

0

50

100

150

200

250

300

350

400

450

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

160

180

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

ethernet

wb conmax failed to build with any

optimizations enabled, so it has been

excluded from this analysis.

199

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

110

115

120

125

130

135

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

140

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

dma

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

80

85

90

95

100

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

10

20

30

40

50

60

70

80

90

100

110

120

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

tv80

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

76

78

80

82

84

86

88

90

B
u
ild

ti
m

e
 (

se
co

n
d

s)

0

50

100

150

200

250

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

jpeg_enc

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

84

86

88

90

92

94

96

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

systemcaes

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

70

75

80

85

90

95

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

50

100

150

200

250

300

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

des

0.00001

0.0001
0.001

0.01
0.05 0.1

0.25 0.5 1

default

Placement Effort Multiplier

58

60

62

64

66

68

70

72

74

B
u
ild

ti
m

e
 (

se
co

n
d
s)

0

20

40

60

80

100

120

140

160

180

Fm
a
x
 (

M
H

z)

Fmax
Total Buildtime

systemcdes

200

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

A.6 Individual VPR Graphs

The data from the graphs in this section was used to generate Figure A.2 and Figure A.3. For

each graph, the VPR -fast option was used for both the placer and the router. On the x-axis,

inner num is swept from 1 (the value used in the thesis, and the default setting for VPR-fast),

down to 0.001. The curves stops on each graph where the circuit failed to route. About half

the circuits failed to route with inner num=0.01, and all the circuits except jpeg enc, spi, and

pci master failed to route with inner num=0.001.

Of note on these graphs is that:

• As placement time decreases the routing time increases. Overall, there is a small reduc-

tion in the total compile time.

• On the left of these graphs (low values of inner num) routing dominates the compile

time.

• The frequency falls rapidly for low values of inner num, without any further decrease in

compile time.

CG-only Benchmarks

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

200

400

600

800

1000

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

fft16

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

20

40

60

80

100

120

140

160

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

10

20

30

40

50

60

70

80

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

me

201

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

chem failed to synthesize values of

inner num < 1 so it has been

excluded from this analysis.

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

20

40

60

80

100

120

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

140

Fr
e
q

u
e
n
cy

 (
M

H
z) Frequency

Total Time
FE Synth
Pack
Place
Route

fft8

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

50

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

10

20

30

40

50

60

70

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

honda

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

mcm

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

wang

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

5

10

15

20

25

30

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

pr

202

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

Good Benchmarks

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

100

200

300

400

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

ac97_ctrl

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

50

100

150

200

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

50

100

150

200

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

aes_core

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

20

40

60

80

100

120

140
C

o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

10

20

30

40

50

60

70

Fr
e
q

u
e
n
cy

 (
M

H
z) Frequency

Total Time
FE Synth
Pack
Place
Route

dir

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

5

10

15

20

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

140

160

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

spi

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

2

4

6

8

10

12

14

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

50

100

150

200

250

300

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

pci_master

203

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

Impaired Benchmarks

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

50

100

150

200

250

300

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

Fr
e
q

u
e
n
cy

 (
M

H
z) Frequency

Total Time
FE Synth
Pack
Place
Route

ethernet

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

200

400

600

800

1000

1200

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

10

20

30

40

50

60

70

80

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

wb_conmax

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

20

40

60

80

100
C

o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

140

160

Fr
e
q

u
e
n
cy

 (
M

H
z) Frequency

Total Time
FE Synth
Pack
Place
Route

dma

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

50

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

tv80

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

50

100

150

200

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

jpeg_enc

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

10

20

30

40

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

20

40

60

80

100

120

140

160

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

systemcaes

204

APPENDIX A. SCALING EXISTING FPGA CAD TOOLS

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

5

10

15

20

25

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

50

100

150

200

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

des

0.001 0.01 0.05 0.1 0.25 0.5 0.75 1

inner_num

0

5

10

15

20

25

C
o
m

p
ile

 T
im

e
 (

se
co

n
d

s)

0

50

100

150

200

250

Fr
e
q

u
e
n
cy

 (
M

H
z)

Frequency
Total Time
FE Synth
Pack
Place
Route

systemcdes

205

Appendix B

VPR Without “-fast”

All the VPR results in this thesis were generated using the “-fast” option (referred to as “VPR-

fast”). VPR-fast reduces the number of inner-loop iterations in the VPR annealer by 10x.

According to the VPR manual [1], this reduces placement time by about 10x (only placement

time, not routing too) with a maximum 10% loss in quality. Table B.1 compares VPR-fast to

VPR using the benchmarks used in this thesis. The placer is over 5x faster with the “-fast”

option, but when routing time is added, the overall speedup is 3.6x. This data does not include

the time for BLIF generation.

The channel width for VPR-fast is about 5% worse than VPR. This is expected since VPR

has more iterations to find a higher quality solution.

The critical path delay results for VPR-fast are about 7% faster than VPR. This a somewhat

surprising result, but it is consistent with previous tests [89].

206

A
PPE

N
D

IX
B

.
V

PR
W

IT
H

O
U

T
“-FA

ST
”

Table B.1: VPR versus VPR-fast results.

Synthesis Time Channel Width Critical Path Delay

VPR -fast VPR Ratio VPR
-fast

VPR

Pack Place Route Pack Place Route Place Total VPR Ratio -fast VPR Ratio

C
G

-o
nl

y

fft16 1.23 318.37 49.07 1.06 1239.85 47.90 3.89 3.50 110 70 1.57 10.17 10.41 0.98
me 0.71 62.76 16.16 0.60 285.14 21.36 4.54 3.86 51 50 1.02 15.14 16.41 0.92
chem 1.00 189.38 2960.49 0.64 1102.91 3176.31 5.82 1.36 110 106 1.04 36.84 40.68 0.91
fft8 0.24 34.19 10.06 0.22 159.73 11.78 4.67 3.86 50 46 1.09 8.53 8.68 0.98
honda 0.09 5.45 3.10 0.09 39.04 4.51 7.17 5.05 47 46 1.01 15.68 16.33 0.96
mcm 0.07 4.54 2.52 0.07 29.34 3.61 6.47 4.64 46 44 1.05 10.67 11.35 0.94
wang 0.05 3.26 1.95 0.06 19.31 2.74 5.93 4.20 44 40 1.10 12.55 13.59 0.92
pr 0.05 2.63 1.52 0.05 13.99 2.14 5.31 3.85 47 50 0.93 11.41 11.80 0.97

Geo. Mean (CG-only) 5.38 3.58 1.09 0.95

G
oo

d

ac97 ctrl 0.11 5.27 3.11 0.10 29.27 4.21 5.56 3.96 40 40 1.01 3.59 3.83 0.94
aes core 0.14 8.88 4.20 0.12 59.00 5.59 6.64 4.90 39 36 1.08 5.62 6.76 0.83
dir 0.19 21.87 19.41 0.17 141.22 11.49 6.46 3.69 81 80 1.01 16.77 17.49 0.96
spi 0.03 1.27 1.05 0.03 7.56 1.34 5.96 3.81 44 44 0.99 7.15 7.32 0.98
pci master 0.01 0.63 0.56 0.02 3.40 0.43 5.37 3.21 29 26 1.13 4.03 4.68 0.86

Geo. Mean (Good) 5.98 3.87 1.04 0.91

Geo. Mean (CG-only and Good) 5.60 3.69 1.07 0.93

Im
pa

ir
ed

ethernet 1.40 107.80 31.47 1.13 438.97 33.30 4.07 3.37 66 68 0.97 9.80 10.46 0.94
wb conmax 0.51 582.71 83.49 0.43 1045.97 56.20 1.80 1.65 70 66 1.06 13.82 14.48 0.95
dma 0.16 16.38 7.56 0.14 101.92 7.93 6.22 4.56 59 62 0.95 7.64 7.86 0.97
tv80 0.06 3.09 2.80 0.06 20.52 3.29 6.63 4.01 52 50 1.03 9.50 9.53 1.00
jpeg enc 0.14 2.38 1.88 0.12 10.49 1.95 4.41 2.86 30 30 1.00 6.14 6.21 0.99
systemcaes 0.06 4.04 2.18 0.07 28.14 3.06 6.96 4.97 51 52 0.99 6.47 7.34 0.88
des 0.02 1.02 0.81 0.03 5.17 0.84 5.06 3.25 32 32 0.99 5.70 6.38 0.89
systemcdes 0.02 0.90 0.65 0.03 6.75 0.87 7.50 4.86 33 30 1.09 4.55 5.22 0.87

Geo. Mean (Impaired) 4.93 3.51 1.01 0.94

Geo. Mean (All) 5.34 3.62 1.05 0.93

207

Appendix C

Verilator Node Mapping

Table C.1: Verilator to Malibu node mapping.

Verilator Node Malibu Op Notes

ALWAYS – Indicates a clocked region of the code, Malibu sup-
ports only a single clock.

ARRAYSEL LOAD/STORE User-instantiated array operations. Either a load or a
store depending on usage.

ASSIGNDLY (deleted) Delayed assignment to a variable. Deleted after en-
suring all child nodes are registered.

ASSIGNDLY IF MUX Marked as registered and renamed if a single IF,
mapped into a decision tree if multiple IFs write to
the same value.

ASSIGNW (deleted) Assignment to a variable.

ACTIVE – Indicates a combinational region of the code.

ADD ADD

AND AND

ASSIGN (deleted) Assignment to a variable

ASSIGNPRE (deleted) Delayed assignment (from previous cycle). Deleted
after ensuring all child nodes are registered

Continued on next page...

208

APPENDIX C. VERILATOR NODE MAPPING

Table A.1: Verilator to Malibu node mapping. Continued from previous page.

Verilator Node Malibu Op Notes

ASSIGNPOST (deleted) Delayed assignment to a variable. Deleted after en-
suring all child nodes are registered

CAST MOV Change the width of a signal.

CONCAT CONCAT

COND MUX Conditional assignment

CONDBOUND MUX Conditional assignment with a bounded output.

CONST CONST Kept until scheduling, then deleted after the sched-
uler maps the values to the R memory.

EQ EQ

EXTEND MOV Zero-extension. Implemented as a MOV operation
with the output truncated.

EXTENDS EXTS Sign extension.

IF MUX Renamed if a single IF, mapped into a decision tree
if multiple IFs write to the same value.

LOGNOT EQ NOT reduction to a single bit, really a test for zero.

LT LT

LTE LTE

LTS LTES

GT LTE,NOT Operands swapped and LTE is used instead. If an
operand is immediate, then they cannot be swapped.
LTE is still used but the value is written to a temp.
variable and a NOT operation is inserted.

GTE LT,NOT Same as GT but using the LT operation.

GTS LTES,NOT Same as GT but using the LTES operation.

GTES LTS,NOT Same as GT but using the LTS operation.

MUL MULU

MULS MULS

NEQ NEQ

NOT NOT

Continued on next page...

209

APPENDIX C. VERILATOR NODE MAPPING

Table A.1: Verilator to Malibu node mapping. Continued from previous page.

Verilator Node Malibu Op Notes

OR OR

REDAND REDAND

REDNOT EQ NOT-reduction is the same as a comparison to zero

REDOR REDOR

REDXOR REDXOR

REPLICATE CONCAT Mapped into a tree of concatenate operations to repli-
cate the required bits.

SHIFTL LSL Renamed

SHIFTR LSR Renamed

SHIFTRS LSR,EXTS Mapped to an unsigned shift plus a sign extension.

SEL AND,LSR Bit selection. Converted into a bitmask and a shift.

SUB SUB

UNARYMIN SUB 2’s complement NOT, mapped to subtract: 0−value.

VAR:BLOCKTEMP (deleted) Intermediate assignment, not needed.

VAR:IN INPUT Renamed. A placeholder for input, not a real opera-
tion.

VAR:MODULETEMP (deleted) Intermediate assignment, not needed.

VAR:OUT OUTPUT Renamed. A placeholder for output, not a real oper-
ation.

VAR:REG (deleted) Deleted after ensuring the parent node is registered.

VAR:WIRE (deleted) Intermediate assignment, not needed.

XOR XOR

210

Appendix D

Area Versus Performance Graphs

This appendix contains the area versus performance graphs for each benchmark circuit. For

the CG-only benchmark there is only a Wf = 0 curve because these circuits do not require

fine-grained resources, and the synthesis solution is the same for any value of Wf .

CG-only Benchmarks

10 100 1000

Area (CLBs)

5

10

15

20

25

30

35

40

45

50

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound at 250

fft16

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

40

45

50

55

60

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound

me

211

APPENDIX D. AREA VERSUS PERFORMANCE GRAPHS

10 100 1000

Area (CLBs)

15

20

25

30

35

40

45

50

55

60

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound

chem

10 100 1000

Area (CLBs)

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound at 250

fft8

10 100 1000

Area (CLBs)

15

20

25

30

35

40

45

50

55

60

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound

honda

10 100 1000

Area (CLBs)

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound is at 100.0

mcm

10 100 1000

Area (CLBs)

20

30

40

50

60

70

80

90

100

110

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound

wang

10 100 1000

Area (CLBs)

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
HOT wf=0

Wf=0 Upper Bound

pr

212

APPENDIX D. AREA VERSUS PERFORMANCE GRAPHS

Good Benchmarks

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

40

45

50

55

60

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4Wf=0 Upper Bound

Wf=1 Upper Bound
Wf=4 Upper Bound

ac97_ctrl

10 100 1000

Area (CLBs)

5

10

15

20

25

30

35

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound is 55.6
Wf=1 Upper Bound is 55.6

Wf=4 Upper Bound is 55.6

aes_core

10 100 1000

Area (CLBs)

5

10

15

20

25

30

35

40

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound Wf=1 Upper Bound Wf=4 Upper Bound

dir

10 100 1000

Area (CLBs)

10

15

20

25

30

35

40

45

50

55

60

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound

Wf=1 Upper Bound
Wf=4 Upper Bound

spi

10 100 1000

Area (CLBs)

5

15

25

35

45

55

65

75

85

95

105

115

125

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound
Wf=1 Upper Bound

Wf=4 Upper Bound

pci_master

213

APPENDIX D. AREA VERSUS PERFORMANCE GRAPHS

Impaired Benchmarks

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound

Wf=1 Upper Bound

Wf=4 Upper Bound

ethernet

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

Fr
e
q
u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound is at 40.0
Wf=1 Upper Bound is at 40.0
Wf=4 Upper Bound is at 58.8

wb_conmax

10 100 1000

Area (CLBs)

0

5

10

15

20

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound

Wf=1 Upper Bound

Wf=4 Upper Bound

dma

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound
Wf=1 Upper Bound

Wf=4 Upper Bound

tv80

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound Wf=1 Upper Bound Wf=4 Upper Bound

jpeg_enc

10 100 1000

Area (CLBs)

0

5

10

15

20

25

30

35

40

45

50

55

60

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound is at 71.4
Wf=1 Upper Bound is at 76.9
Wf=4 Upper Bound is at 90.9

systemcaes

214

APPENDIX D. AREA VERSUS PERFORMANCE GRAPHS

10 100 1000

Area (CLBs)

0

5

10

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound

Wf=1 Upper Bound

Wf=4 Upper Bound

des

10 100 1000

Area (CLBs)

5

10

15

20

25

30

Fr
e
q

u
e
n
cy

 (
M

H
z)

CAD wf=0
CAD wf=1
CAD wf=4
HOT wf=0
HOT wf=1
HOT wf=4

Wf=0 Upper Bound
Wf=1 Upper Bound
Wf=4 Upper Bound

systemcdes

215

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Statement and Contributions of Thesis
	1.3 Evaluation Metrics
	1.4 Comparison to Related Work
	1.5 Thesis Organization

	2 Background
	2.1 Overview
	2.2 Introduction to FPGA CAD
	2.2.1 Front-End Logic Synthesis
	2.2.2 Clustering
	2.2.3 Placement
	2.2.4 Routing

	2.3 Related Work
	2.3.1 Fine-Grained, Time-Multiplexed Architectures
	2.3.2 Coarse-Grained Architectures
	2.3.3 CGRA and Fast CAD

	3 Malibu Architecture
	3.1 Overview
	3.2 The Malibu Architecture
	3.3 Benchmark Circuits
	3.4 Architectural Parameter Values
	3.5 Instruction Format
	3.6 Verification of Results
	3.7 CLB Area
	3.7.1 Area for Comparison to VPR/iFAR
	3.7.2 Area for Comparison to QuartusII/StratixIII

	3.8 Conclusions

	4 Front-End Synthesis
	4.1 Overview
	4.2 Circuit Representation
	4.3 Parsing and Elaboration
	4.4 Coarse-Grained Synthesis
	4.5 Fine-Grained Synthesis
	4.6 Benchmark Evaluation
	4.6.1 Bad Verilog Structures

	4.7 Conclusions

	5 M-CAD: An FPGA CAD Based Tool Flow
	5.1 Overview
	5.2 M-CAD Cluster
	5.3 M-CAD Place
	5.4 M-CAD Route
	5.5 M-CAD Schedule
	5.6 Experimental Results
	5.6.1 Frequency (Fmax)
	5.6.2 Frequency Upper Bound
	5.6.3 Area and Density
	5.6.4 Compile Time
	5.6.5 Synthesis Time for Very Large Circuits
	5.6.6 Longest-Path Analysis
	5.6.7 Density Versus Performance Tradeoff

	5.7 Conclusions

	6 M-HOT: A Height-Oriented Tool Flow
	6.1 Overview
	6.2 M-HOT Introduction
	6.3 M-HOT Cluster
	6.4 M-HOT Schedule
	6.4.1 Producer Cost
	6.4.2 Affinity Cost
	6.4.3 Parallel Cost
	6.4.4 Register Cost
	6.4.5 Penalty Cost

	6.5 M-HOT Route
	6.6 Experimental Results
	6.6.1 Frequency (Fmax)
	6.6.2 Frequency Upper Bound
	6.6.3 Area and Density
	6.6.4 Compile Time
	6.6.5 Compile Time for Very Large Circuits
	6.6.6 Longest-Path Analysis
	6.6.7 Density Versus Performance Tradeoff

	6.7 Comparison to Previous Work
	6.8 Conclusions

	7 Conclusions
	7.1 Thesis Conclusions
	7.2 Future Directions

	Bibliography
	Appendix A Scaling Existing FPGA CAD Tools
	A.1 Overview
	A.2 QuartusII
	A.3 VPR
	A.4 Conclusions
	A.5 Individual QuartusII Graphs
	A.6 Individual VPR Graphs

	Appendix B VPR Without ``-fast''
	Appendix C Verilator Node Mapping
	Appendix D Area Versus Performance Graphs

