Deterministic Timing-Driven Parallel Placement by
Simulated Annealing using Half-Box Window
Decomposition

Jeffrey B. Goeders, Guy G. F. Lemieux, and Steven J. E. Wilton,
Department of Electrical and Computer Engineering
University of British Columbia
Vancouver, BC, V6T 174
jgoeders, lemieux, stevew @ece.ubc.ca

Abstract—As each generation of FPGAs grow in size, the run
time of the associated CAD tools is rapidly increasing. Many
past efforts have aimed at improving the CAD run time through
parallelization of the placement algorithm. Wang and Lemieux
presented an algorithm that is scalable, deterministic, timing-
driven and achieves speedup over VPR [Wang and Lemieux
FPGA’11]. This paper provides two significant alterations to
Wang and Lemieux’s algorithm, resulting in additional speedup
and quality improvement.

The first contribution is a new data decomposition scheme,
called the half-box window technique, which achieves speedup
by reducing the frequency of thread synchronization. The sec-
ond contribution is the development of an improved annealing
schedule, which further improves run time and slightly improves
the quality of results.

Together, these modifications achieve run time speedups of up
to 70%. To put this in perspective, Wang and Lemieux required
25 threads to achieve best speedup, while this work requires only
16 threads. For a 10% degradation in quality, the new 16-thread
algorithm achieves a 51x speedup over VPR, compared to a 35x
speedup by the 25-thread original algorithm. Regarding quality,
the best quality of results achieved by the new algorithm is a
5% degradation versus VPR, compared to a 8% degradation of
the original Wang and Lemieux algorithm.

Index Terms—FPGA; CAD; parallel placement

I. INTRODUCTION

As CMOS technology continues to scale, the number of
elements within an FPGA is continuing to increase. This
doubling in size every generation means that the associated
FPGA CAD tools must perform more computation with each
generation as well — even if the computation is linear, it
must do twice the work. Thus, the amount of computation
is growing much faster than the speed of the processors upon
which these CAD tools are to be run [1]. As a result, the
run-times of these tools are increasing dramatically, which in
turn slows product development, increases the design cost and
lengthens the time to market. The rate at which CAD run time
is increasing is not sustainable. This has driven significant
research into creating faster CAD tools, e.g., [1]-[4].

One way to accelerate FPGA CAD tools is to parallelize the
CAD flow. Modern processors contain multiple cores, and if
these cores can operate together, the turn-around time of FPGA
CAD iterations can be significantly shortened. There have

been a number of papers from both industry and academia
describing parallel CAD algorithms [5]-[13]. Each of these
previous works describes how the problem space can be
divided or decomposed into tasks for individual processors,
and how strategic communication and synchronization can
ensure acceptable quality of results. In this paper, we enhance
the timing-driven parallel placement algorithm described by
Wang and Lemieux in [5]. Their solution divides the entire
FPGA device into regions, each of which can be processed in
parallel, and uses barriers to ensure that the overall result is
deterministic. Compared to the original sequential placement
algorithm in VPR 5.0 [14], they achieve a speedup of 123x

Region (numbered square)

Sub-region
(lettered squi

Extended sub-region
(shaded)

Fig. 1. Data decomposition of Wang and Lemieux’s algorithm, from [5].

when using 25 threads, but with an 8% increase in the critical
path delay and a 11% increase in the bounding box metrics.

In this paper, we consider two enhancements to the al-
gorithm in [5]. First, we show that an improved decompo-
sition strategy reduces the number of barriers required for
synchronization, improving the overall run-time with the same
quality of result (QoR). In [5], barriers are used to ensure
that each processor sees a consistent view of the current
solution; by being more aggressive in the manner in which
processors share the optimization space, we can reduce the
number of barriers while maintaining the deterministic nature
of the original algorithm. We call the new approach the half-
box window decomposition method, or simply the half-box
method for short.

The second contribution of this paper is an improved par-
allel annealing schedule that gets closer to the full quality of
the original VPR 5.0 algorithm. Our work demonstrates that
the Wang and Lemieux annealing schedule, which emphasizes
additional moves early to allow blocks to migrate across
the chip, is not necessary. We find that given a sufficiently
long run-time, the original Wang and Lemieux algorithm can
achieve, at best, a 7.5% bounding box cost increase compared
to VPR 5.0. The new annealing schedule, combined with the
half-box method, reduces the bounding box cost increase to
just 5%.

By combining both the half-box method and the newly
tuned annealing schedule, the run time is improved up to 70%.
The 70% reduction in run-time is significant, since it allows
for faster turn-around times and shorter design cycles.

The paper is organized as follows. Section II describes
previous work, with an emphasis on the algorithm described
in [5]. Section III shows how the number of barriers in the
baseline algorithm can be reduced, and quantifies the impact
on overall run-time. Section IV then describes our experiments
aimed at improving the QoR by tuning the annealing parame-
ters. Section V provides final results and section VI concludes.

II. PREVIOUS WORKS

Parallel placement research has been ongoing for many
years; however, most past solutions do not meet the require-
ments imposed by modern FPGA CAD tools. Almost all
of the previous work has targeted wirelength only and does
not support the timing-driven requirement of current CAD
tools [9]-[13]. In addition, these algorithms, with the exception
of [9], are nondeterministic, meaning they do not produce the
same result with each execution. Commercial CAD developers
will opt for deterministic algorithms as they ensure repro-
ducibility, which is essential to effective regression testing and
debugging [8].

Ludwin [8] presents a solution that is both timing-driven
and deterministic. CLB swaps are speculatively executed in
parallel, but committed sequentially to prevent conflicts that
would arise from two threads attempting to swap the same
CLB. The algorithm achieves a 2.2x speedup on four cores.
However, the fact that swaps are committed sequentially means

that the algorithm will likely not scale well to a large number
of processors, where conflicts will be more likely.

Wang and Lemieux [5] provide a solution that is timing-
driven, deterministic and scalable. To the best of our knowl-
edge, this is the only published work that meets all of these
requirements.

A. Wang and Lemieux’s Algorithm

Wang and Lemieux’s algorithm is a simulated annealing
approach based on a parallelization of VPR 5.0. The majority
of VPR processing takes place in a set of nested loops. The
outer loop controls the annealing temperature, and the inner
loop considers many CLB swaps at each temperature. Wang
and Lemieux’s algorithm parallelizes the inner loop such that
all threads are considering CLB swaps simultaneously.

The grid of CLBs is divided into equal-sized partitions,
called regions, each assigned to one thread. Regions are
further subdivided into four smaller subregions. Subregions
are extended by 2 CLBs in each direction, forming extended
subregions. The regions and subregions are respectively num-
bered and lettered in Figure 1, with an extended subregion
shown in the inset.

Each thread loops through their four subregions, considering
many swaps at each phase. CLBs can be swapped from the
subregion to anywhere in the extended subregion, which al-
lows for migration of blocks between regions. Synchronization
keeps all threads working in the same respective subregion,
which ensures that no two threads are simultaneously operat-
ing on the same CLBs. For example, all threads will consider
swaps within subregion A at the same time. Then, the threads
will move on to subregion B, then C and finally D before
repeating the process. Since no two extended subregions of
the same letter overlap, collisions will be prevented.

Between each change of subregion a barrier allows for
synchronization of the threads. This barrier is used to:

1) Keep all threads working in the same subregion.
2) Allow threads to synchronize their changes with a global
copy of the grid.

While operating within a subregion, each thread is unaware
of the changes being made by the other threads, and will not
receive the changes until the next synchronization. Although
this causes some swap choices to be made based on stale data,
it has been shown that this does not affect the QoR [5] [15].

In the remainder of this paper, Wang and Lemieux’s algo-
rithm will be referred to as the baseline algorithm.

III. IMPROVING DOMAIN DECOMPOSITION

One potential way to improve Wang and Lemieux’s al-
gorithm is to reduce the number of synchronization barriers
required. According to the data in [5], up to 17% of the execu-
tion time is spent waiting at barriers while switching between
subregions. The algorithm must wait idle at the barrier, as
using this time to perform additional swaps would cause non-
deterministic behaviour. The algorithm requires barriers and
thread synchronization between iterations of each subregion,

=
i
] AR AN

B Region iterated over (Swap From) D Possibilities to swap with (Swap To)

Barrier me—

—C | m—

|
[—p—

§|||FFT]

Fig. 2. Wang and Lemieux’s algorithm. Swap-From and Swap-To regions
of 1 thread. Execution cycles through stages from left to right, repeatedly.

—— G T e—
— T o —
— T o —

L [)]

. Region iterated over (Swap From) D Possibilities to swap with (Swap To)

Fig. 3. Full-Box technique. Swap-From and Swap-To regions of 1 thread.
Execution cycles through stages from left to right, repeatedly.

totalling four times while iterating over a thread region. By
reducing the number of barriers, the run time can be improved.

The following section explores different techniques de-
signed to reduce the number of synchronization barriers. Three
different techniques are presented; however, only the last
technique showed improvement in run time over the baseline
algorithm.

A. Explanation of Representation

Figures are used to represent the decomposition methods of
the different techniques. Figure 2 is provided as an example,
and demonstrates the operation the baseline algorithm for one
thread in a 9-thread configuration. In each figure the shaded
area indicates the region that is iterated over (swap-from).
Each CLB in this region is considered for swapping. The
thick black boxed area indicates the region of blocks that
can be swapped with (swap-to). Barriers are indicated where
necessary. Although the figures show shaded regions for only
one or two threads, the pattern is replicated across all thread
regions.

B. Full-Box Technique

The Full-Box technique eliminates as many barriers as
possible. The baseline algorithm requires a barrier between
each subregion. By modifying the swap regions, four subre-
gions can be iterated over between each barrier, essentially
reducing the number of barriers by a factor of four. This
can be accomplished by making the swap-from and swap-to
regions coincident. Figure 3 illustrates the technique. The first
step allows blocks to move around within the regions, while
the second and third steps allow for horizontal and vertical
migration.

This technique shows no significant improvement over the
original algorithm. This is likely due to the fact that although
the number of barriers is reduced, the ability for blocks to
migrate is reduced. If a certain block would produce better

@
@
1

@

@

b
H
T

— 5 T C] m— —] m—

@
©
-1
@
il
@

. Region iterated over (Swap From) D Possibilities to swap with (Swap To)

Fig. 4. Strip technique. Swap-From and Swap-To regions of 2 threads.
Execution cycles through stages from left to right, top row then bottom row,
repeatedly.

. Region iterated over (Swap From)

D Possibilities to swap with (Swap To)

Fig. 5. Example of stale data problems in long strip-based regions. The two
points represent CLBs connected by a net.

QoR on the other side of the FPGA, it will take much longer
to migrate there compared to the original method. With the
Full-Box technique, the swap-to and swap-from regions are
identical. In the original algorithm, blocks which migrate
outside of the swap-from subregion are never selected again as
the first move candidate, so they are unlikely to move back into
the swap-from subregion. In the Full-Box technique, blocks
which move toward the correct half of the subregion on their
first move are, on average, 50% likely to be visited again as a
first move candidate. As a result, they can randomly be moved
back to the incorrect half, and make no progress this round. In
contrast, the baseline algorithm is more likely to make progress
every round.

C. Strip Technique

Another approach is to allow for greater migration. Instead
of square regions, this technique employs longer rectangular
regions. Figure 4 illustrates the algorithm. This allows a block
to migrate up to three positions for every two subregion
iterations. This method is also able to perform two subregion
iterations between each barrier, using half as many barriers
as the baseline algorithm. The algorithm alternates between
horizontal and vertical rectangular regions to allow for migra-
tion in each direction. The algorithm cycles through multiple
combinations of swap-from/swap-to regions to ensure each
part of the grid receives fair treatment.

This technique also showed no significant improvement over
the baseline algorithm. We suspect that the primary reason is
that long strip-sized regions can increase the effect of stale
data. The original solution used small square subregions, so
the effect of stale data was minimal. In contrast, if long
narrow subregions are used, CLBs can move great distances

within a subregion, causing other threads to make incorrect
decisions regarding swaps. Figure 5 illustrates an example of
this problem. In this theoretical scenario, both threads will
swap two connected CLBs in order to shorten the distance
between them. However, since neither is aware of the other’s
choice, both make the swap and no benefit is gained.

D. Half-Box Technique

The final approach aims to increase block migration, but
without making long narrow strips that potentially create stale
data problems. This method requires half of the number of
barriers as the baseline algorithm, while also allowing for
migration in all directions. Figure 6 illustrates the technique.
The swap-from region is set to include two of the four
subregions assigned to the thread, which reduces the number
of barriers by a factor of two. The swap-to region includes the
entire swap-from region as well as the two subregions from a
neighbouring thread that are not included in the neighbour’s
swap-from region. For threads operating on the periphery of
the device, it may not have a neighbouring thread to use for
part of its swap-to region. When this occurs, the swap-to region
is not expanded and the swap-to region only includes the
swap-from region. The algorithm alternates between vertical
and horizontal neighbours, allowing blocks to migrate in all
directions. To ensure fairness between the regions near the
periphery of the device, the algorithm alternates the direction
of the swap-to neighbour. Thus, the four stages of the algo-
rithm as illustrated in Figure 6 are swapping with the thread
neighbour above, then to the right, then below, and finally to
the left. This four-stage approach performed much better than
just using the first two stages.

E. Evaluation Methodology

The different decomposition techniques were evaluated by
performing placement on 7 synthetic circuits from Un/DoPack
[16]. Although these are synthetic circuits, they were built
by combining 20 real sub-circuits, which allows them to
have properties similar to a real circuit. Each circuit contains
roughly 40,000 6-input LUTs. Large circuits are needed to test
scaling this parallel placement algorithm to a large number
of threads; small circuits cannot be decomposed into enough
regions to support a large number of threads. Wall-clock
time was used for timing measurements; these measurements
include the execution time of the main simulated annealing
placement loop only, not the initialization steps (reading the
netlist from a file, building a model of the architecture, or the
various sanity checks). For quality comparisons, all bounding
box and critical path results are normalized to the results
produced by VPR. The normalized values for all 7 circuits
are averaged using a geometric mean to produce a single
comparison value for both bounding box and critical path.

The machine used was a Dell R815, which is a 4-socket con-
figuration, each with an 8-core AMD Opteron 6128 processor
running at 2.0GHz, totalling 32 cores. The machine is running
a standard installation of Ubuntu Server Linux 10.10. Unless

L1l

L]
— T m—

D Possibilities to swap with (Swap To)

B T —

—Dar e m—

L]

B Region iterated over (Swap From)

Fig. 6. Half-Box technique. Swap-From and Swap-To regions of 1 thread.
Execution cycles through stages from left to right, repeatedly.

otherwise noted, experiments were run with the parallel placer
configured for 25 threads. This was chosen for two reasons:

1) Wang and Lemieux report the best results for these cir-
cuits were obtained when using 25 threads and provide
results for this configuration.

2) It was the goal to use lots of threads, but not so much
that the 32-core machine would be saturated, otherwise
operating system threads could interfere with the results.

F. Evaluation Results

Of the different decomposition techniques, only the Half-
Box approach shows improvement over the baseline algorithm.
The quality versus run time is plotted for the bounding box
cost and critical path delay in Figures 7 and 8. Since additional
improvements are made in Section IV, the overall speedup
over the baseline is provided later, in Section V.

IV. IMPROVING QUALITY OF RESULTS
A. Motivation

Wang and Lemieux’s parallel placer achieves excellent
speedup results; however, quality suffers by approximately
10% compared to the serial VPR implementation. During
early design optimization, when incremental design changes
are frequent, a 10% quality loss could be acceptable as often
designers are concerned more with functional correctness than
performance. However, in later design phases performance can
become a major factor, and a 10% drop in performance may
be unacceptable.

One could argue that in cases where performance is key,
the single threaded VPR could be run. However, if the size

134 -Baseline Algorithm

BHalf-Box Window Technique

=
w
o

=
]
>

=
N
N

I
N
'S

Bounding Box (normalized to VPR)
=y =
o N
o oo

[
o
=)

0 10 20 30 40 50 60
Execution Time (s)

Fig. 7. QoR degradation of the bounding box cost versus run time for the
baseline algorithm and the Half-Box technique.

of FPGAs continue to scale according to Moore’s Law, the
execution time could extend from tens of hours to days or
even weeks. This long run time may be unacceptable, even
if only run occasionally. Instead, a single, parallel, scalable
solution needs to be developed. Ideally, this solution would
offer the same quality results as single-threaded VPR.

Wang and Lemieux’s algorithm contains a parameter, re-
gion_place_count, which regulates how many swaps will be
considered, and thus can be used to trade off run-time for
quality. Generally, the larger the region_place_count value, the
better the results. However, Wang and Lemieux show that even
when this parameter is set to a very large value, the quality
difference between their algorithm and the sequential version
reaches an asymptotic bound of 8%. Thus, other methods must
be explored to determine whether the quality results can be
further improved past this point.

B. Initial Best QoR

An initial experiment was performed to test if the Half-
Box implementation could achieve a better QoR than the
baseline algorithm. Both the baseline algorithm and the Half-
Box implementation were run with large region_place_count
values of 300 and 310. These data points should be close to
the best possible quality as no significant quality improvement
was noticed past region_place_count = 180 for the baseline
algorithm. The results showed approximately 7% degradation
in bounding box cost and 2-3% degradation in critical path
delay. This is similar to the finding of Wang and Lemieux
and shows that the Half-Box technique does not inherently
improve the QoR. As the Half-Box technique provides similar
QoR with better run time, all experiments in the remainder of
this paper use the Half-Box approach.

C. Initial Placement

It is possible that the quality loss is directly due to the fact
that thread regions restrict the swap distance. This restriction
may hinder wide-scale block migration across the grid.

Feasibility: To explore whether this is a possibility, VPR
with the Fast option specified (which sets inner_num=1) was
run with a restriction on the maximum swap distance. Swaps

1.10 -#-Baseline Algorithm

1.09 BHalf-Box Window Technique

1.08
1.07
1.06
1.05
1.04

1.03

Critical Path Delay (normalized to VPR)

1.02

0 20 40 60 80 100 120
Execution Time (s)

Fig. 8. QoR degradation of the critical path delay versus run time for the
baseline algorithm and the Half-Box technique.

1.6 BHalf-Box Window Algorithm

15 +VPR

A VPR Fast

1.4
X VPR Fast with Restricted Swap Distance

13

Bounding Box (normalized to VPR)

12
11
X
A
1.0 -
0.9
10 100 1000
Execution Time (s)
Fig. 9. QoR degradation of the bounding box cost versus run time for the

Half-Box placer, including data points for VPR, VPR Fast, and VPR Fast
with a restricted swap distance of 9.

were restricted to a maximum distance of 9. This roughly
corresponds to the maximum swap distance for the parallel
placer when using 25 threads and a grid size of 70x70,
which is representative of the benchmark circuits. The data
point for VPR Fast with a restricted swap distance is shown
on a bounding box QoR versus run-time graph in Figure
9. The result is a QoR similar to that experienced by the
parallel placement code. This correlation suggests that it is
the restricted swap distance that is responsible for the quality
loss.

One way to help blocks migrate more easily is to use an
initial placement in which blocks have already migrated to
a location close to their optimal position. To illustrate this,
we ran experiments with an initial placement created by the
original sequential VPR placer. Although this would not make
sense in practice, since it would defeat any run-time gain by
using the parallel placer, we used this experiment here to test
our hypothesis. If using an excellent initial placement yields no
quality improvement, there is no need to explore inferior initial
placements. However, if an excellent initial placement does
yield improvements, other methods of producing an initial
placement of lesser quality, but with shorter run-time could
be explored.

Results and Analysis: The standard sequential VPR was
used to produce a placement for the circuit. This placement file
is used as an initial placement for the Half-Box parallel place-
ment execution. Tests were performed on all seven benchmarks
using region_place_count of both 300 and 310. The results are
similar to those in Section IV-B and show no improvement
in QoR. The reason is that during the initial phases of
simulated annealing, most swaps are accepted regardless of
their impact on quality. This allows the process to produce a
random placement before cooling to the best solution. In our
experiments, we observed that this randomization completely
negates the initial placement. The parallel placer is designed in
such a way that each inner loop will consider swapping every
block of the grid. This will occur multiple times with very high
acceptance rates. This is likely sufficient to fully randomize
the placement, even with restricted movement distances.

Success Rate Change in parameter Success Rate Change in parameter
temperature region_place_count temperature num_moves
> 0.96 old_t * 0.5 input_region_place_count > 0.96 old_t * 0.4 inner_num * num,_block s%
> 0.8 old_t * 0.9 input_region_place_count 038 old t* 0.9
> 0.15 orrlim > 1 | old_t * 0.9 input_region_place_count / 4 SO0I5ortim > 1 | old t *0.95
otherwise old_t * 0.6 | input_region_place_count / 20 otherwise old__ %038
TABLE [TABLE IV

ANNEALING SCHEDULE OF WANG AND LEMIEUX’S PARALLEL PLACER.

Success Rate Change in parameter
temperature num_moves
> 0.96 old_t * 0.5 inner_num * num_blocks%
> 0.8 old_t * 0.9
> 0.15 or rlim > 1 | old_t * 0.95
otherwise old_t * 0.8
TABLE 11

ANNEALING SCHEDULE OF VPR.

Phase where oo = 5 Quality Loss against VPR
Bounding Box | Critical Path
None 4.8% 2.9%
> 0.96 5.0% 3.6%
> 0.8 5.0% 3.5%
> 0.15 or rlim > 1 4.5% 3.6%
otherwise 4.7% 2.9%
TABLE III

QUALITY RESULTS FOR AN ANNEALING SCHEDULE WITH BIASED
SCHEDULER PHASES.

Although Figure 9 suggests that swap distances are respon-
sible for the quality loss, there is no evidence that this prevents
the early phases of the annealer from fully randomizing the
placement. These results show that it is likely that the quality
loss comes as a result of limited swap distance during cooling,
and the cooling schedule itself, but not the randomization
phases.

D. Annealing Schedule

The second area of investigation is whether the annealing
schedule can be modified to improve the QoR. For all exper-
iments in this section, the same methodology was used as in
Section III-E.

The Baseline Algorithm: The annealing schedule used by
Wang and Lemieux’s parallel placer is presented in Table I,
which can be contrasted with the original VPR scheduler in
Table II. There are two major differences. First, the parallel
placer algorithm uses an accelerated cooling rate, scaling
the temperature by 0.9 instead of 0.95 and 0.6 instead of
0.8. Second, VPR uses inner_num to control the effort level,
while the baseline algorithm uses region_place_count. It is not
immediately clear how these two terms relate.

Relating region_place_count to inner_num: Without know-
ing how how region_place_count and inner_num are related,
it is difficult to determine whether the parallel placer is
considering more, equal, or fewer swaps than VPR. Knowing
this would be helpful in evaluating the QoR against VPR. In

THE IMPROVED ANNEALING SCHEDULE.

VPR, the number of swaps considered at each temperature is:
nUmM_moves = inner_num * num_blocks%

The inner loop of VPR considers num_moves swaps be-
tween random blocks before moving on to the next tempera-
ture. The parallel placer is structured somewhat differently. For
each inner loop iteration, every block on the grid has a 90% of
being considered for a swap. Region_place_count dictates the
number of inner loop iterations, and changes with temperature
as shown in table I. Thus, the number of swaps considered by
the parallel placer at each temperature is:

num_moves = 0.9 xinput_region_place_count

num_blocks * «

Where « values of 1, 1, 0.25 and 0.05 are progressively used
during cooling. It becomes apparent that the number of moves
considered by the parallel placer grows linearly with the block
count, while in VPR it grows by a power of 4/3. This may be-
come an issue if the baseline algorithm is used for much larger
test circuits, since it may mean that for the same level of effort
(region_place_count), the QoR is worse. To fix this issue, and
to align the placer with normal VPR conventions, the baseline
algorithm was modified to employ the inner_num parameter
instead of region_place_count. Since each inner loop iteration
performs 0.9 x num_blocks swaps, the number of inner loop
iterations is set to 1.1 *inner_num*num_blocks%. Based on
these equations, an inner_num of 4.7 in our algorithm gives
an effective region_place_count of 90, the value used in Wang
and Lemieux’s results.

Biasing of Annealing Phases: The baseline algorithm uses
different o values during phases of the annealing schedule.
The weightings are selected so that more time is spent on
earlier phases of the annealing, compared to VPR. Wang and
Lemieux explain that this is done to “alleviate the effect of
restricted block movement”.

Experimentation was performed using different o weights
during the four phases of the annealing schedule. Four differ-
ent biased annealing schedules were considered, and for each
case « = 5 for one of the four phases and o = 1 for the
other three phases. A fifth experiment was performed with
no biasing, where o = 1 for all four phases. For all tests,
inner_num = 20, which is twice the effort used by VPR. This
was done to explore the limits of the QoR. The results of the
experiment are presented in Table III.

The results with no « biasing showed an improvement over
the baseline algorithm, with the bounding box cost degraded

4.8% compared to VPR and the critical path delay degraded
2.9%. This shows that with additional effort and a modified
annealing schedule, the parallel placer can achieve QoR levels
closer to VPR. In addition, the results of biasing different
phases of the annealing schedule do not have a large impact
on quality. We observed that biasing the later phases slightly
improves quality, while biasing earlier phases slightly lowers
quality. This is the opposite of what is suggested in Wang
and Lemieux’s paper. However, this does support the findings
of the initial placement experiment (Section IV-C), which
suggested that the QoR loss occurs in the later phases of the
annealing schedule, not during the early randomization phase.
More investigation is needed to investigate this discrepancy
and the full effect on quality.

A Modified Annealing Schedule: Based on the previous
findings, a modified annealing schedule was created that
spends less effort on the early annealing phases and more
effort on the later phases (Table IV). This schedule is very
similar to the VPR annealing schedule, with the exception of
faster temperature cooling in the first phase. Results of the
improved algorithm are provided in the following section.

V. FINAL RESULTS

Experiments were performed to compare the baseline algo-
rithm to the improved algorithm that uses both the Half-Box
technique and the new annealing schedule. Both 16-thread and
25-thread versions of the baseline and improved algorithms
were tested. The 16-thread version was included here because
low-cost, 16-core workstations will soon be widely available,
while more than 16 cores will likely be more exotic and more
expensive. The methodology described in Section III-E was
used. In order to generate QoR versus runtime data, inner_num
values were varied from 0.1 to 20. The results are illustrated
in Figures 10 and 11. Finally, the speedup of the improved
algorithm versus the baseline algorithm was calculated for
various fixed levels of bounding box QoR. The speedup results
are presented in Figure 12. The results show that both the
16-thread and 25-thread versions of the improved algorithm
achieve up to a 70% speedup over the 25-thread baseline
algorithm.

Testing was performed with fewer than 16 threads, but the
results obtained were worse. Although the results show little
improvement from 16 to 25 threads, this is likely due to the rel-
atively small size of the benchmark circuits. As more threads
are used, the region size decreases, restricting movement of
blocks. The benchmarks use roughly 40,000 LUTSs, whereas
modern FPGAs support circuits up to 2,000,000 LUTs. Larger
benchmarks would be required to properly evaluate the benefit
of using more than 16 threads. Unfortunately, benchmarks of
this size are not readily available.

In [5], Wang and Lemieux achieved a 123x speedup over
VPR with approximately a 10% QoR degradation. However,
these experiments were performed on an older architecture
processor, the Sun Niagara 2, which has very slow single-
thread performance. On the more modern 32-core AMD
processor system used for these experiments, Wang and

Lemieux’s algorithm achieves only a 35x speedup for equiv-
alent QoR degradation. In contrast, the improved algorithm
presented in this paper achieves a 51x speedup over VPR
(a speedup of 1.46x), and requires only 16 threads instead
of 25. Hence, our new algorithm better exploits lower-cost
workstations with fewer cores.

VI. CONCLUSION

This paper provides two significant enhancements to the
FPGA parallel placer designed by Wang and Lemieux [5].
First, a new data decomposition scheme, the Half-Box tech-
nique is introduced, which reduces the number of synchro-
nization barriers by 50%. This modification improves run time
while providing the same quality of results (QoR). Secondly,
this paper outlines the development of an improved annealing
schedule, which spends less time in the early phases of
annealing and more time during the later cooling phases, an
approach contrary to Wang and Lemieux’s experience. This

-®-Baseline Algorithm (25 threads)
1.22 Blmproved Algorithm (25 threads)

-+ Improved Algorithm (16 threads)

1.20

Bounding Box (normalized to VPR)

1.04
10 30 50 70 90 110 130
Execution Time (s)

Fig. 10. QoR degradation of the bounding box cost versus run time for the
baseline and improved algorithms.

-®-Baseline Algorithm (25 threads)
Blmproved Algorithm (25 threads)
--Improved Algorithm (16 threads)

1.08
1.06

1.04

Critical Path Delay (normalized to VPR)

1.02

1.00
0 20 40 60 80 100
Execution Time

Fig. 11. QoR degradation of the critical path delay versus run time for the
baseline and improved algorithms.

modification further improves run time, as well as providing
slight QoR improvements.

The paper shows that even with a high level of placement
effort, the QoR achieved does not equal that of VPR. However,
it is closer than the original algorithm. The best QoR achieved
is a 5% degradation in bounding box cost and 3% degradation
in critical path compared to VPR, versus 8% and 3% with the
original algorithm. We believe some of this residual QoR loss
may be recovered by further tuning to the annealing schedule
and algorithm tweaking, e.g., by range limiter adjustments
during the low-temperature phase. However, we also believe
that the limits of using stale data may eventually be reached
before matching VPR’s original QoR.

The combined effect of improving QoR slightly and re-
ducing barrier synchronizations leads to significant run-time
reductions. The Half-Box domain decomposition technique
coupled with the improved annealing schedule provides up to
70% speedup over the original design at fixed levels of QoR
using 25 threads. Furthermore, this 70% speedup can also be
achieved with fewer threads, requiring only 16 threads in the
improved algorithm compared to 25 threads in the original
design. For a 10% degradation in QoR, our 16-thread improved
algorithm achieves a 51x speedup over VPR, compared to only
35x speedup achieved by the 25-thread original algorithm.
Hence, in addition to a performance improvement, a more
modest, low-cost workstation can be used to achieve these
good results.

ACKNOWLEDGEMENT

The authors would like to thank Chris Wang for providing
his parallel placement source code and for assistance he
provided in using it. In addition, we would like to thank the
many contributors to VPR 5.0, particularly Vaughn Betz and
Jason Luu, for making their source available. All of our source
code changes will be made available, and ideally integrated
into the new VPR 6.0 tree.

1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
1.35
1.30
1.25
1.20
1.15
1.10
1.05
1.00

Speedup over Baseline Algorithm

--Improved Algorithm (25 threads)

Blmproved Algorithm (16 threads)

124 122 12 118 116

1.14
Bounding Box Cost QoR Degradation Normalized to VPR

112 11 108

Fig. 12. Speedup of the improved algorithm over the 25-thread baseline
algorithm for various bounding box QoR degradation levels.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Y. Chin and S. J. Wilton, “Towards scalable FPGA CAD through
architecture,” in ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, 2011.

V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic Publishers,
1999.

K. Vorwerk, A. Kennings, and J. Greene, “Improving simulated
annealing-based FPGA placement with directed moves,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 28, no. 2, pp. 179 —192, 2009.

R. Tessier, “Fast placement approaches for FPGAs,” ACM Transactions
on Design Automation of Electronic Systems, vol. 7, pp. 284-305, 2002.
C. C. Wang and G. G. Lemieux, “Scalable and deterministic timing-
driven parallel placement for FPGAs,” in ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, 2011.

Altera Corporation, “Quartus I 10.1 handbook,”
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf, 2010.
M. Santarini, “Xilinx tailors four tool flows to cus-
tomer design disciplines in ISE design suite 11.1,”
http://xilinx.com/support/documentation/white_papers/wp307.pdf,
2009.

A. Ludwin, V. Betz, and K. Padalia, “High-quality, deterministic par-
allel placement for FPGAs on commodity hardware,” in ACM/SIGDA
Symposium on Field Programmable Gate Arrays, 2008.

M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “Parallel algo-
rithms for FPGA placement,” in Great Lakes Symposium on VLSI, 2000.
P. Banerjee, M. Jones, and J. Sargent, “Parallel simulated annealing
algorithms for cell placement on hypercube multiprocessors,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 1, no. 1, pp. 91
—-106, 1990.

A. Choong, R. Beidas, and J. Zhu, “Parallelizing simulated annealing-
based placement using GPGPU,” International Conference on Field
Programmable Logic and Applications, 2010.

S. Kravitz and R. Rutenbar, “Placement by simulated annealing on
a multiprocessor,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 6, no. 4, pp. 534 — 549, 1987.
W.-J. Sun and C. Sechen, “A loosely coupled parallel algorithm for
standard cell placement,” in IEEE/ACM International Conference on
Computer-Aided Design, 1994, pp. 137-144.

J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose, “VPR 5.0: FPGA CAD and architecture exploration tools with
single-driver routing, heterogeneity and process scaling,” in ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2009.
M. G. Wrighton and A. M. Dehon, “Hardware-assisted simulated
annealing with application for fast FPGA placement,” in International
Symposium on Field-Programmable Gate Arrays, 2003.

M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: re-clustering of
large system-on-chip designs with interconnect variation for low-cost
FPGASs,” in IEEE/ACM International Conference on Computer-Aided
Design, 2006.

