
VIPERS II

A Soft-core Vector Processor with Single-copy Data
Scratchpad Memory

by

Christopher Han-Yu Chou

B.A.Sc., The University of British Columbia, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2010

c© Christopher Han-Yu Chou 2010

Abstract

Previous work has demonstrated soft-core vector processors in FPGAs can be applied to

speed up data-parallel embedded applications, while providing the users an easy-to-use

platform to tradeoff performance and area. However, its performance is limited by load

and store latencies, requiring extra software design effort to optimize performance. This

thesis presents VIPERS II, a new vector ISA and the corresponding microarchitecture, in

which the vector processor reads and writes directly to a scratchpad memory instead of the

vector register file. With this approach, the load and store operations and their inherent

latencies can often be eliminated if the working set of data fits in the vector scratchpad

memory. Moreover, with the removal of load/store latencies, the user doesn’t have to use

loop unrolling to enhance performance, reducing the amount of software effort required

and making the vectorized code more compact. The thesis shows the new architecture

has the potential to achieve performance similar to that of the unrolled versions of the

benchmarks, without actually unrolling the loop. Hardware performance results of VIPERS

II demonstrated up to 47× speedup over a Nios II processor with only 13× more resources

used.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . viii

List of Figures . x

Acknowledgements . xii

Glossary . xiii

1 Introduction . 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Thesis Outline . 5

2 Background . 6

2.1 Vector Processing Overview . 6

2.2 VIPERS Architecture . 7

2.2.1 Architecture Overview . 8

2.2.2 Vector Lane Datapath . 10

2.2.3 Memory Interface Unit . 14

2.3 Related Works . 17

iii

Table of Contents

2.3.1 Scratchpad Memory . 17

2.3.2 Address Registers . 18

3 VIPERS II Architecture . 20

3.1 System Overview . 20

3.2 New Pipeline Structure . 23

3.3 Address Registers . 26

3.3.1 Address Register Usage . 26

3.3.2 Auto-Increment/Decrement and Circular Buffer 29

3.3.3 Implementation . 31

3.4 Vector Scratchpad Memory . 33

3.4.1 Memory Interface . 33

3.4.2 Performance Advantage . 34

3.4.3 Implementation . 36

3.5 Data Alignment Crossbar Network . 38

3.5.1 Permutation Requirements . 39

3.5.2 Implementation . 39

3.5.3 Misalignment Detection and Auto Correct Mechanism 41

3.6 Fracturable ALUs . 43

3.6.1 Fracturable Adder . 44

3.6.2 Fracturable Multiplier . 45

3.7 Summary . 47

4 Impact of Architectural Changes and Resource Usage 49

4.1 Address Registers . 49

4.2 Vector Scratchpad Memory . 51

4.3 Data Alignment Crossbar Network . 54

4.4 Fracturable ALUs . 55

iv

Table of Contents

4.5 Resource Usage . 56

4.6 Scalability . 60

4.7 Design Verification . 60

5 Benchmark Results . 62

5.1 Benchmark . 62

5.1.1 16-Tap Finite Impulse Response Filter 62

5.1.2 Block Matching Motion Estimation 63

5.1.3 Image Median Filter . 67

5.2 Performance . 71

5.2.1 Simulated Performance . 71

5.2.2 Hardware Performance . 73

6 Conclusion . 76

6.1 Future Work . 77

References . 80

Appendices

A VIPERS II Instruction Set Architecture (ISA) 84

A.1 Introduction . 84

A.1.1 Configurable Architecture . 85

A.2 Vector Register Set . 85

A.2.1 Vector Address Registers . 85

A.2.2 Vector Scalar Registers . 86

A.2.3 Vector Flag Registers . 86

A.2.4 Vector Control Registers . 86

A.2.5 Vector Address Increment/Decrement Registers 88

v

Table of Contents

A.2.6 Vector Window Registers . 88

A.2.7 Vector Sum Reduction . 88

A.3 Instruction Set . 90

A.3.1 Data Types . 90

A.3.2 Data Alignment . 91

A.3.3 Flag Register Use . 91

A.3.4 Instructions . 91

A.4 Instruction Set Reference . 92

A.4.1 Integer Instructions . 93

A.4.2 Logical Instructions . 96

A.4.3 Vector Move Instructions . 97

A.4.4 Vector Manipulation Instructions 98

A.4.5 Vector Flag Processing Instructions 101

A.4.6 Miscellaneous Instructions . 103

A.5 Special Cases . 104

A.5.1 Three Different Locations . 104

A.5.2 Destination Overwrite . 104

A.5.3 Source Reused . 105

A.6 Nios II Custom Instruction Formats . 105

A.7 VIPERS II Instruction Formats . 106

A.7.1 Vector-Vector and Vector-Scalar Instructions 107

A.7.2 Vector Move Instructions . 108

A.7.3 Control Register Instructions . 109

A.7.4 Instruction Encoding . 110

B Data Alignment Crossbar Network Background 112

B.1 Multistage Networks . 112

vi

Table of Contents

B.1.1 Clos Network . 112

B.1.2 Benes Network . 114

B.2 Control Algorithm . 114

B.3 Tag Generation . 117

vii

List of Tables

2.1 VIPERS Specific Instructions (Source: [29]) 9

4.1 Memory Usage Comparison of Median Filter Benchmark 52

4.2 Largest Median Filter Benchmark with 64kB Budget 53

4.3 Resource Usage Comparison between Data Alignment Crossbar Network and

Crossbar . 54

4.4 VIPERS Crossbar at MemWidth = 128 . 55

4.5 Cycle Count Comparison of Median Filter Benchmark 55

4.6 Resource usage of VIPERS II with different number of lanes 56

4.7 VIPERS II Resource Usage Breakdown . 58

4.8 Resource usage of VIPERS II, without MAC/multipliers 58

4.9 Memory Efficiency . 59

5.1 VIPERS II Simulated Performance Results 72

5.2 VIPERS II Performance in hardware . 74

A.1 List of configurable processor parameters 85

A.2 List of vector flag registers . 87

A.3 List of control registers . 87

A.4 Instruction qualifiers . 92

A.11 Nios II Custom Instructions . 106

A.12 Nios II Opcode Usage . 107

viii

List of Tables

A.13 Increment/Decrement Encoding . 108

A.14 Scalar register usage as source or destination register 109

A.15 vControl Field Encoding . 110

A.16 Vector register instruction function field encoding 111

A.17 Scalar-vector instruction function field encoding 111

A.18 Flag and miscellaneous instruction function field encoding 111

ix

List of Figures

2.1 VIPERS Vector Assembly code for 8-tap FIR Filter [30] 8

2.2 VIPERS Architecture (Source: [29]) . 10

2.3 Chaining and Hybrid Vector-SIMD Model (Source: [29]) 11

2.4 VIPERS Vector Lane Datapath (Source: [29]) 12

2.5 ALU Implementation (Source: [29]) . 13

2.6 Memory Interface Unit (Source: [29]) . 14

2.7 VIPERS Write Interface Datapath (Source: [29]) 15

2.8 Data Alignment Example (Source: [29]) . 16

3.1 VIPERS II Architecture . 21

3.2 New Pipeline Structure . 24

3.3 VIPERS II Pipeline . 25

3.4 Vector Memory & Vector Lane Connections 27

3.5 Example of VIPERS II Operations . 28

3.6 Median Filter Example: (a) VIPERS assembly; (b) VIPERS II assembly . . 30

3.7 Address Generation Logic . 32

3.8 Memory Interface Comparison . 34

3.9 Memory block with depth of 12K words . 37

3.10 Example of Misaligned VIPERS II Operation 38

3.11 VIPERS II Move Operations . 40

3.12 Misalignment Correction Logic . 42

x

List of Figures

3.13 Processing Unit with Variable Width . 44

3.14 Fracturable Adder . 45

3.15 fracturable Multiplier Implementation . 46

3.16 32B Multiply Result by Partial Product Method 47

4.1 Median filter in VIPERS assembly: (a) rolled; (b) unrolled 50

4.2 Median filter in VIPERS II assembly . 50

5.1 FIR Filter Benchmark in VIPERS II Assembly 64

5.2 Vector Scratchpad Memory setup for 16-tap FIR Filter 65

5.3 Motion estimation C code (Source: [29]) . 66

5.4 Motion Estimation Benchmark in VIPERS Assembly (Source: [29]) 67

5.5 Motion Estimation Benchmark in VIPERS II Assembly 68

5.6 Two Window Motion Estimation (Source: [29]) 68

5.7 5× 5 Median Filter C code (Source: [29]) 69

5.8 Vectorizing Median Filter Benchmark (Source: [29]) 69

5.9 Median Filter Benchmark in VIPERS II Assembly 70

5.10 Speedup: VIPERS II vs. Nios II . 75

A.1 Sum-Reduction Tree and Accumulator . 89

A.2 MAC Chain . 90

B.1 Clos Network . 113

B.2 8x8 Benes Network . 114

B.3 Offset Move in 8× 8 Benes Network . 116

B.4 Strided Move in 8× 8 Benes Network . 117

xi

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Guy Lemieux, for providing me

directions and support in my research project. Also, thank you for the time you spent

proofreading my thesis.

Thanks to Altera and NSERC for providing the funding that made this project possible,

and to Altera for donating the DE3 development system.

I would also like to thank Aaron Severance for his work, which helped speed up the

system level development of VIPERS II.

Finally, I would like to thank my family and my fiance Stella for their support over the

years.

xii

Glossary

MACL - Multiply Accumulate Chain Length, refers to the number of sum-accumulate

units connected in a chain for sum-reduction operations.

MemWidth - Memory Width, refers to the width of the vector scratchpad memory in

context of VIPERS II; refers to the width of main memory in context of VIPERS.

MemWidthByte - Memory width expressed in number of bytes.

MVL - Maximum Vector Length, refers to the maximum number of elements allowed in a

data vector. In VIPERS, MVL is proportional to NLane. VIPERS II has no natural limit

on MVL.

NLane - Number of vector lanes in the vector processor.

OpSize - Operand Size, refers to the size of the data elements in the vector. VIPERS II

supports operand size of byte (8b), halfword (16b), and word (32b).

VL - Vector Length, refers to the number of elements in a data vector.

VPUW - Vector processing unit width, refers to the width of the processing unit in each

vector lane.

xiii

Chapter 1

Introduction

The demand for high-performance embedded systems is driven by today’s embedded appli-

cations, many of which involve heavy signal processing and multimedia algorithms. More-

over, the wide variety of products and requirements such as low cost and short time-to-

market call for a rapid development platform. Embedded systems employ microprocessors,

digital signal processors (DSPs), or field-programmable gate arrays (FPGAs) to perform

intensive computations. However, hardware design expertise is required to implement em-

bedded systems using FPGA platforms. This presents a barrier to productivity and cost,

as hardware design is usually slower and require engineers with specialized skills.

Modern FPGAs offer soft processor cores, such as the Nios II [2] by Altera and the

MicroBlaze by Xilinx, which can be incorporated into the embedded system to help sim-

plify the design process. These soft-core processors, however, are not ideal for the heavy

computational workload required by signal processing-rich embedded applications. Signal

processing and multimedia algorithms typically involve only a few operations performed

over a large amount of data. The soft-core processors achieve this by iteration, which often

fails to deliver the desired performance. Many solutions have been proposed to improve soft

processor performance, but most of them require the user to have parallel programming and

hardware design skills.

Recent works on VIPERS [29–31] and VESPA [26–28], proposed to utilize vector process-

ing to enhance the performance of soft-core processors in FPGA-based embedded systems.

The idea of vector processing is to operate on vectors, a collection of data elements, by

using multiple parallel datapaths. This can be applied to exploit the data-level parallelism

1

1.1. Motivation

that exists in signal processing and multimedia algorithms.

1.1 Motivation

VESPA, Vector-Extended Soft Processor Architecture, provides an average speedup over

a single lane vector processor from 1.8× up to 6.3×, when scaling the design from 2 to

16 lanes. It was also demonstrated in [26], when comparing against custom accelerators,

VESPA can reduce the performance gap of 432× between scalar soft processor and custom

hardware down to 17× with only software development effort.

VIPERS, Vector ISA Processors for Embedded Reconfigurable Systems, demonstrated

how vector processing can help enhance the performance of soft processors on FPGAs.

With the 16 vector lane instance of the design, the VIPERS achieved a speedup of 25×

over the Nios II processor with 14× more resources. Not only does VIPERS provide better

performance, it also offers many advantages over other performance enhancement solutions.

The highly parameterized Verilog source code used to implement VIPERS provides the

benefit of soft processor configurability. This allows the user to accelerate an application

without any hardware design knowledge; all the user needs is to set the desired configuration

and develop a vectorized version of the software. Moreover, VIPERS, a general-purpose

architecture, can be used for a wide range of applications. However, there is also the option

for application-specific customization to reduce the amount of resource usage.

Despite the many advantages VIPERS offers, there are still areas in which it could be

improved. A major performance bottleneck of the VIPERS architecture is the high load

and store latencies that occurs when copying data from memory to the register file. The

speedup improvement shown by loop-unrolled versions over the original rolled up codes [30]

prove that the load and store latencies are big factors in performance, even when the vector

operations and vector memory accesses execute concurrently. On top of that, although

loop unrolling improves performance, it also generates much larger code and takes up more

2

1.2. Contribution

instruction memory space.

Another imperfection is the data duplication in memory. The vector register file data in

VIPERS is duplicated to allow for simultaneous reads of two vectors as input operands. This

traditional way of providing dual read ports is adequate for scalar processors due to their

small register files. However, for a vector processor, the register file is much larger, making

the duplication extremely costly in terms of using precious on-chip memory. Furthermore,

if the main memory or a data cache is implemented on the FPGA as well, each vector

will then reside in three different locations in the on-chip memory blocks, which is very

inefficient usage of the limited on-chip memory resources.

Finally, the scalar core of the soft vector processor was implemented with the UTIIe [13],

an open source processor, and it was modified to work with the vector processor. Unfor-

tunately, the UTIIe was pipelined for multithreaded use and does not contain forwarding

multiplexers needed to operate as a single thread processor. Therefore, it takes four cycles

to execute each scalar instruction, which degrades the performance of the entire system.

More significantly, unlike the Nios II, the UTIIe is not equipped with a debug-core, making

validation of the VIPERS hardware system much more difficult.

The work in this thesis focuses on reducing, if not eliminating, the effects of these

shortcomings on the performance and resource usage of VIPERS, while keeping all of its

positive features.

1.2 Contribution

The main contribution of this research is the development of VIPERS II, the second gen-

eration of configurable soft-core vector processor. The VIPERS II architecture contains

modifications intended to overcome several shortcomings of the original VIPERS.

As mentioned in the previous section, load and store latencies when copying data from

memory to register file can limit performance in the rolled-up loops with the original

3

1.2. Contribution

VIPERS. Since modern FPGAs offer integrated memory blocks with high operating fre-

quencies, the VIPERS II architecture takes advantage of the fast on-chip memory and

reads vector data directly from a scratchpad memory, whose content is loaded via a DMA

engine. This removes the vector data register files and eliminates the need for the slow load

and store operations when the working set fits inside the scratchpad buffer. The removal

of the register file also resolves the data duplication issue and helps VIPERS II to achieve

more efficient memory usage. Moreover, this also allows the size of the scratchpad buffer to

be scaled up very easily by moving the design to a FPGA device with higher capacity.

The VIPERS II architecture accesses the scratchpad memory through address registers,

which point to the starting address of each data vector. The architecture offers 32 address

registers with post-increment, pre-decrement, and circular buffer features. These features

modify the address register contents in preparation for subsequent instructions, thus lower-

ing the loop overhead required to setup the address registers. This allows rolled-up code to

achieve the performance of unrolled code without the instruction bloat or creating pressure

on the number of vector data registers needed.

Along with the direct accessing of vector scratchpad memory, fracturable ALUs are

introduced into the vector datapath to execute vector instructions with varying operand

size. This provides more computational power for smaller operand sizes.

Performance of VIPERS II is maximized when vector data are aligned in the scratchpad

memory. In cases where the vectors are not aligned, they are first moved to aligned loca-

tions in the scratchpad memory prior to execution. This is accomplished by a single data

alignment crossbar network, which replaces the function provided by two separate read and

write crossbars in the original VIPERS. The single crossbar saves area compared to two

separate crossbars.

Outside of the scope of this thesis, two other major modifications were done by a fellow

student, Aaron Severance, to complete the VIPERS II system. One is to use the VIPERS

II as an extended custom instruction of Nios II. This allows an actual Nios II to be used

4

1.3. Thesis Outline

as the scalar core for the soft vector processor, providing a fully pipelined scalar unit with

debug capability. The other is the development of a direct memory access (DMA) engine

in charge of populating the vector scratchpad memory from off-chip DDR2 memory.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 provides an overview of vector

processing and presents the original VIPERS architecture. Chapter 3 describes in detail

the new VIPERS II architecture, focusing on the major changes made, the advantages of

these changes and how they are implemented. Chapter 4 provides experimental results to

demonstrate the impact of the individual changes and discusses the overall resource usage of

VIPERS II. Chapter 5 describes the benchmark preparation and presents the simulated and

hardware performance results. Chapter 6 summarizes the work in this thesis and provides

suggestions for future work.

5

Chapter 2

Background

This chapter provides some background information relevant to the work in this thesis.

The chapter starts by giving an overview of vector processing and how it helps to accelerate

data-parallel computations. Next, an overview of the original VIPERS architecture [31] and

its implementation is presented. Finally, previous work in on-chip scratchpad memory and

address registers are examined.

2.1 Vector Processing Overview

Vector processing has been applied in supercomputers for computing scientific workloads

since the 1970s. The key advantage of vector processing over traditional computing methods

is its ability to exploit the data-level parallelism readily available to scientific and engineering

applications.

The basis of vector processing, as indicated by the name, is to operate on vectors of

data. Each vector instruction defines a single operation to be executed on all data elements

of the source vectors. Being able to perform a single operation on multiple data elements

makes vector processing the ideal candidate for exploiting data-level parallelism, which has

the same properties. The inherently parallel vector operations can be realized in vector

processors by having multiple datapaths, called vector lanes, that execute in parallel.

A typical vector architecture contains a vector processing unit and a scalar core. The

scalar core is required to execute the control flow instructions, such as loops, and the non-

vectorizable code. The vector processing unit, containing the vector lanes, performs the

6

2.2. VIPERS Architecture

data processing operations by executing each instruction over all vector elements.

Each vector instruction can specify tens of operations and produce tens of results at

once. Vector instructions are governed by the vector length register, VL, which specifies

the number of elements to operate on. The VL register can be modified at run time

between vector instructions. However, most architectures are also subject to a maximum

vector length, or MVL, usually in the range of 32 to 256 elements. When software requires

even larger vectors, the data must be broken up into sizes the hardware can handle.

To demonstrate how vector processing exploits data parallelism, let’s look at the example

of an 8-tap finite impulse response (FIR) filter, which is described by:

y[n] =
7∑

k=0

x[n− k]h[k].

This can be implemented in a scalar processor using two nested loops: the inner loop

performs eight multiply-add operations using the input data and filter coefficients, and the

outer loop iterates over the entire input data set. With the Nios II assembly, 65 instructions

are required to produce one output datum.

The same FIR filter can be implemented with the VIPERS instruction set as shown

in Figure 2.1. The inner loop of the scalar code is replaced by the VMAC/VCCZACC

instruction pair, which computes a single result by multiplying a vector all filter coefficients

with a data sample vector of length eight. The vectorized FIR filter requires only 10

instructions per result, and performs better than the scalar version.

2.2 VIPERS Architecture

This section provides details on the architecture and the implementation of the original

VIPERS soft-core vector processor [29–31]. The VIPERS soft vector architecture defines

a family of soft vector processors with variable performance and resource utilization, and

a set of configurable features to suit different applications. The users can configure the

7

2.2. VIPERS Architecture

movi r12, N ; Total samples to process
movi r6, NTAPS ; Number of filter taps
vld v2, vbase1 ; Load filter coefficients once

.L4:
movi r11, 2*NTAPS ; Window size of samples to load 5

vmstc VL, r11 ; Set VL to window size
vld v1, vbase0, vinc0 ; Load x[] data vector

.L5:
vmstc VL, r6 ; Reset VL to number of taps
VMAC v1, v2 ; Multiply−accumulate VL values 10

VCCZACC v3 ; Copy result from accumulator and zero
vmstc vindex, zero ; Set vindex to 0
vext.vs r3, v3 ; Extract sum result from element ’vindex’

stw r3, 0(r10) ; Store filtered result
VUPSHIFT v1, v1 ; Vector element shift by 1 position 15

addi r10, r10, 4 ; Increment y[] buffer position
addi r11, r11, −1
bne r11, r6, .L5

sub r12, r12, r6 ; Repeat for next NTAPS samples 20

bne r12, zero, .L4

Figure 2.1: VIPERS Vector Assembly code for 8-tap FIR Filter [30]

highly parameterized Verilog source code and generate an application-specific instance of

the processor.

The VIPERS instruction set architecture (ISA) borrows heavily from the VIRAM [16]

instruction set, except a few extensions are made to make use of FPGA resources to accel-

erate certain applications. Table 2.1 lists the additional instructions that are included in

the VIPERS ISA.

2.2.1 Architecture Overview

Figure 2.2 gives a high-level view of the VIPERS architecture, consisting of a scalar core, a

vector core, and a memory interface unit. The scalar core is implemented with the UTIIe

[13], a 32-bit soft processor compatible with the Nios II instruction set. The VIPERS

instructions are 32-bit and can be mixed with scalar instructions in the instruction stream.

8

2.2. VIPERS Architecture

Instruction Description Application

VMAC Multiply-accumulate FIR, motion estimation

VCCZACC Compress copy from accumulator and zero FIR, motion estimation

VUPSHIFT Vector element up-shift FIR

VABSDIFF Vector absolute difference motion estimation

VLDL Load from local memory AES

VSTL Store to local memory AES

Table 2.1: VIPERS Specific Instructions (Source: [29])

The different scalar and vector instructions can be executed concurrently. For operations

that require both processors, the FIFO queues are used to transfer and synchronize data

between the two cores.

The pretested UTIIe was chosen to speed up the development of VIPERS. Also, since

its Verilog source is available, it was modified to allow close coupling between the scalar and

vector cores, which share the same instruction memory. However, the multithreaded design

of the UTIIe has no hazard detection or forwarding, so it can only issue a new instruction

after the previous one has completed, causing it to take 4 cycles per scalar instruction.

Moreover, the lack of a JTAG debug core made it hard to debug the system in hardware.

Traditional vector processors tend not to have a large number of vector lanes; therefore,

high performance is achieved through pipelining and instruction chaining. Figure 2.3(a)

illustrates instruction chaining, which refers to the passing of partial results between func-

tional units for data-dependent instructions. This adds to the size and complexity of the

vector register file as multiple read and write ports cannot be implemented efficiently on

FPGAs.

The VIPERS architecture takes advantage of the programmable fabric on FPGAs to

provide a large number of vector lanes, allowing the vector instructions to be executed

across the vector lanes in SIMD fashion, and pipelined over several cycles in traditional

vector fashion. Figure 2.3(b) illustrates this hybrid vector-SIMD execution model. The

number of clock cycles required to execute a vector instruction is the vector length divided

9

2.2. VIPERS Architecture

Figure 2.2: VIPERS Architecture (Source: [29])

by number of vector lanes. With a large number of vector lanes, the number of cycles

required to execute a vector operation is decreased. As a result, instruction chaining can

be removed, simplifying the design of the vector register file.

2.2.2 Vector Lane Datapath

Figure 2.4 illustrates the vector lane datapath of the vector core. The vector unit consists

of a configurable number of vector lanes, as defined by the NLane parameter; each lane is

10

2.2. VIPERS Architecture

Figure 2.3: Chaining and Hybrid Vector-SIMD Model (Source: [29])

completed with a full set of functional units, a partitioned vector register file, vector flag

registers, a load-store unit, and an optional local memory. NLane is the primary parameter

in scaling the vector processor’s performance and area. A vector processor instance of more

lanes can process the same vector in fewer clock cycles, but will require more resources to

implement.

The vector core has a 4 stage pipeline plus the shared instruction fetch stage in the

scalar core. As shown in Figure 2.2, the vector unit has two instruction decoders (ID), one

to decode all vector instructions, and another to decode the vector memory instructions.

The extra decoder allows for concurrent execution of vector computation and vector memory

access to lower the effects of the slower load and store operations. Read after write (RAW)

hazards are resolved by pipeline interlocking; the decode stage stalls the later instructions

if it detects data dependency between the instructions.

The set of functional units inside each vector lane includes an ALU, a barrel shifter,

11

2.2. VIPERS Architecture

Figure 2.4: VIPERS Vector Lane Datapath (Source: [29])

and a optional hardware multiplier. The ALU supports arithmetic, logical, and comparison

operations; extensions such as maximum/minimum, merge, absolute value, and absolute

difference are implemented as well. Figure 2.5 shows the implementation of the ALU.

The first adder performs most of the arithmetic operations, and the second adder is used

to execute the logical and the min/max, absolute value/difference operations. The barrel

shifter is implemented by log(n) levels of multiplexers controlled using a dedicated shift

decoder. The hardware multiplier is implemented using the DSP blocks in Stratix III [4].

The multiply-accumulate (MAC) unit is another piece of logic that utilizes the DSP blocks;

it is used to realize the multiply-accumulate operations, which are quite common in signal

12

2.2. VIPERS Architecture

Figure 2.5: ALU Implementation (Source: [29])

processing algorithms.

VIPERS features a distributed vector register file, where a partition of the register file

resides in each vector lane. The register file is element-partitioned, so each vector lane has

access to all registers in the vector register file, but only a few elements of each register. This

divides the register file so they can fit nicely into the on-chip memory blocks. The VIPERS

ISA defines 64 vector registers. The Altera M9K memory blocks are used in 256× 32 mode

to implement the vector register file, allowing four 32-bit elements to fit naturally in each

lane. Hence, the default maximum vector length is 4 × NLane. The register file data in

each lane is duplicated to provide two read ports.

Two FIFO queues are used to buffer load and store data between the vector lanes and the

memory crossbar. For vector memory store, the datapath can accept the next instruction

after data is transferred from the register file to the store data buffer. For vector memory

load, the memory interface loads data into the load queue independently from the vector

lane operations. Once all data has been loaded into the buffer, a non-pipelined micro-

operation interrupts the current vector operation and moves the data from the load buffers

13

2.2. VIPERS Architecture

Figure 2.6: Memory Interface Unit (Source: [29])

to the vector register file.

2.2.3 Memory Interface Unit

The memory interface unit, shown in Figure 2.6, is in charge of memory accesses for both

the scalar and vector cores. The memory unit consists of a load/store controller, a read

interface and a write interface. It supports all three vector addressing modes: unit stride,

constant stride and indexed access. This is implemented with separate read and write

crossbars to align the data from memory to vector lanes and vice versa.

The load/store controller is a state machine controlling the memory unit operations.

It handles memory access requests from both the scalar and vector cores sequentially, and

stalls the requesting core if it is busy. A FIFO queue is used to order the memory access

request coming from the two cores. The controller also generates control signals for the

load and store address generators and the memory crossbars.

The read interface includes the read address generator and the read crossbar, which is

14

2.2. VIPERS Architecture

Figure 2.7: VIPERS Write Interface Datapath (Source: [29])

MemWidth bits wide and MinDataWidth bits in granularity. MemWidth defines the width

of external memory and MinDataWidth defines the smallest data size that can be used for

memory access. The address generator calculates how many data elements can be aligned

and stored into the vector lane. For unit and constant stride loads, the read interface aligns

up to MemWidth
MemDataWidth number of elements per cycle, where MemDataWidth is the operand

size as defined by the vector load instruction. For example, at the maximum memory width

of 128-bit, the unit stride and constant stride loads can align 16 byte-size data elements per

cycle.

The write interface consists of the write address generator and the write interface dat-

apath, shown in Figure 2.7. The write interface datapath consists of three stages: input

data selection, data compression, and data alignment. The multiplexer between the vector

lanes and the data compress block is only needed when NLane × V PUW > MemWidth,

because the amount of data to store will be larger than the available memory space that

can be written to in one cycle. The write interface concatenates the selected VPUW wide

elements into a MemWidth wide memory word, where VPUW is the width of the vector

lane processors. The data compress block truncates the memory word based on the operand

15

2.2. VIPERS Architecture

Figure 2.8: Data Alignment Example (Source: [29])

size. The memory word is then aligned by passing through the selectable delay network [5]

and the crossbar before written into memory.

The write address generator can generate a memory address each cycle, writing up to as

many data elements as can be fit into a single memory slice. With unit stride and constant

stride access, not all data from the vector lanes are written in the same cycle due to the

offset of memory location. Therefore, the selectable delay network is introduced to buffer

the data accordingly so they can be written to the correct memory slice. The example in

Figure 2.8 illustrates how data element 3 is delayed to be written to the same memory slice

as elements 4, 5 and 6. As the selectable delay network controls the timing of memory

writes, the crossbar is in charge of the rearranging of data elements. The unit and constant

stride stores can store up to MemWidth
MemDataWidth number of elements per cycle. The indexed load

and store operations executes at one element per cycle. Note the alignment crossbar control

16

2.3. Related Works

logic contains the critical path of the system.

The memory interface connects to an on-chip main memory, located on the bottom right

of Figure 2.6, implemented with several Altera M144K memory blocks. Depending on the

Stratix III device used, the M144Ks offer an overall capacity between 96kB and 768kB,

which should be sufficient to buffer most embedded applications. In cases where higher

capacity is required, the memory interface can be connected to an off-chip 128-bit SDRAM,

which is capable of burst reading and writing of long vectors.

2.3 Related Works

VIPERS II utilizes on-chip scratchpad memory to replace the vector register file. It also

utilizes address registers to index the scratchpad memory. This section considers the prior

use of these two architectural features.

2.3.1 Scratchpad Memory

In today’s embedded system, memory plays a major role in both cost and performance [11].

Moreover, as the demand for low power portable devices increases, researchers have con-

sidered replacing cache with on-chip scratchpad memories. Software-managed scratchpad

memory, without the added hardware for tag matching, has area and power advantages

over cache, provided that there is an efficient compiler for allocating data in the scratchpad

memory. The area and power savings were quantified in [7], where scratchpad memory

demonstrated an average energy reduction of 40% and average area-time reduction of 46%

over cache memory.

Since then, many scratchpad-based embedded processors have been developed in both

academia and industry. The CELL processor [10, 12, 23] from IBM, which is designed for

streaming multimedia computations, features 8 synergistic processor elements each hav-

ing its own SRAM scratchpad which is filled and emptied using DMA operations. The

17

2.3. Related Works

Signal-Processing On-Demand Architecture (SODA) [18, 19] for 3G wireless protocols has

a global scratchpad memory and local scratchpad memory for each of its 4 SIMD processors.

ARM processors, such as the ARM1136, ARM926, and Cortex-R4, support both cache and

scratchpad memory, so the user can tune the processors based on the needs of a specific

application.

With the introduction of scratchpad memories, researchers also investigated in efficient

data allocation strategies and on-chip memory organization to enhance performance. For

a joint cache and scratchpad system, [21] presents a scheme for partitioning the scalar

and array variables into the off-chip memory (cached) and scratchpad memory to minimize

cache misses. In [6], a technique for static data allocation to heterogeneous memory units

at compile time is presented. Dynamic memory allocation approaches are also discussed in

[14, 25].

Due to the large size of vector register files, it makes sense to have it replaced by

a vector scratchpad memory. To the best of our knowledge, VIPERS II is the first vector

processor to feature an on-chip scratchpad memory. The scratchpad memory in the VIPERS

II microarchitecture is most similar to the local memory of the CELL processor. The

scratchpad memory in these two architectures are distributed and local to each of the

processing units, and both are accessed using address registers and are populated via DMA

operations. However, the VIPERS II offers variable vector lengths, which can lower loop

overhead.

Due to the large size of vector register files, it makes sense to have it replaced by a

vector scratchpad memory. It was also demonstrated in [20], that using software managed

data allocation with array variable rotation makes a hardware register file unnecessary.

2.3.2 Address Registers

Address registers have long been used in processors for indirect accessing of memories, where

the effective address of an operand is computed based on the address register content and

18

2.3. Related Works

the addressing mode. There are many addressing modes and the available addressing modes

depend on the processor architecture. Auto-increment and auto-decrement, which modify

the address register contents as a side effect, can be used in a loop to step forward/backward

through all elements in an array or vector; together they can also implement a stack.

Indirect access of memory via address registers can also be found in vector processors.

The Cray-1 [24] uses eight dedicated address registers for memory accesses. The Torrent-0

[5] supports unit-stride (with auto-increment) and strided memory accesses by computing

the effective address from its scalar registers, and indexed memory accesses by computing

the effective address from its vector registers. The VIRAM [15, 16] also supports unit-

stride, strided, and indexed accesses, but the base addresses and stride values are stored in

a separate register file to comply with the MIPS ISA.

The register pointer architecture (RPA) [22] proposed using register pointers to indi-

rectly access a larger register file without modifying the instruction set architecture. It also

demonstrated that by changing the register pointer contents dynamically, the need for loop

unrolling to exploit data locality can be reduced. The same technique can be applied to

address registers, as they are essentially pointers to the memory.

The address registers in VIPERS II architecture and RPA have very similar features.

Both architectures can dynamically modify the pointer values using auto-increment or cir-

cular addressing, which decrease the number of pointer value update thus lowering the loop

overhead. The implementation of the circular addressing mode is different in the two archi-

tectures. The RPA uses two registers to store the begin and end addresses of the circular

addressing region, where as the circular buffer feature in VIPERS II is implemented with

only one register defining the size of the circular buffer region.

19

Chapter 3

VIPERS II Architecture

This chapter describes the design and implementation of VIPERS II, targeted to the Altera

Stratix III family of FPGAs. The chapter first gives an overview the VIPERS II architecture,

outlining the system-level connections to the Nios II scalar processor and the external DDR2

memory. Then, each of the major architectural changes are examined, explaining why

the changes were made and what advantages they provide, and describing the design and

implementation of these modifications.

3.1 System Overview

The previous chapter described the original VIPERS architecture and how it was able to

accelerate data-parallel operations. It also pointed out some areas that the VIPERS could

be improved upon, such as the load/store latencies and inefficient memory usage. The

design of the new VIPERS II architecture aims to reduce, if not eliminate, the effects of

the above mentioned shortcomings of the original VIPERS. This is accomplished with the

use of a scratchpad memory that can be accessed directly by the vector core. Since on-

chip memory resources are scarce, data are transferred by DMA into the scratchpad buffer

instead of using a vector data cache.

Figure 3.1 shows the system-level view of the VIPERS II architecture, consisting of

a Nios II processor, a vector processor, an external DDR2 memory, and a DMA engine.

VIPERS II is designed to work as a coprocessor accelerator to Altera’s Nios II soft processor.

The Nios II is in charge of dispatching vector instructions to VIPERS II and controlling the

20

3.1. System Overview

Figure 3.1: VIPERS II Architecture

DMA engine to load the appropriate data from the external DDR2 memory into the on-

chip vector memory. The vector processor does not access the instruction memory; vector

instructions are treated as extended custom instructions of the Nios II processor. Vector

instructions are usually multi-cycle, depending on the vector length, so a vector instruction

queue is used to dispatch the vector instructions from the Nios II to allow concurrent

execution of scalar and vector instructions. The scalar and vector data queues are used to

synchronize the data transfers between the scalar and vector cores for vector instructions

that requires both cores. For vector instructions that write back to the Nios II register file,

the Nios II processor is stalled until the result is generated by the vector core.

21

3.1. System Overview

Instead of using a vector register file to hold the working set as vector data, VIPERS

II uses address registers to directly access the vector scratchpad memory. The data read

from vector memory are sent directly to the vector lanes for processing and the results are

written back into the memory. This direct coupling of memory and vector lanes simplifies the

memory access as it does not require the read crossbar. A data alignment crossbar network

replaces the write crossbar and is used automatically whenever vector data alignment is

required.

The system-level connection between the VIPERS II vector processor, the Nios II scalar

processor, and the external DDR2 memory was designed by a fellow student, Aaron Sever-

ance. The Nios II processor communicates with VIPERS II via its custom instructions [3].

The Nios II provides a synchronous custom instruction interface that can be used to imple-

ment external hardware with low latency access to the Nios II register file and immediate

values encoded into the custom instruction. Since there are not enough immediate bits in

a Nios II custom instruction to encode the VIPERS II ISA, each VIPERS II instruction is

issued by executing two Nios II custom instructions, the first sending the least significant

16 bits, the second sending the most significant 16 bits. This extended custom instruction

includes an 8-bit field to specify the vector operation to execute; therefore, allowing up

to 256 different operations to be defined. In the VIPERS II architecture, other than the

dispatching of vector instructions, custom instructions are also defined for writing to and

reading from VIPERS II control registers and DMA Engine control registers.

The DMA Engine encapsulates a queue of outstanding DMA requests and hardware to

service them. DMA requests are serviced in order, but not sequentially with respect to the

VIPERS II instruction stream, allowing computation to overlap with communication. The

user can guarantee ordering if needed by polling the number of outstanding DMA requests

until it reaches 0, at which point all memory transfers have completed, before issuing a

VIPERS II instruction; or by issuing a vector control register read that sends a scalar result

to a Nios II register, which will synchronize the two instruction streams, before issuing a

22

3.2. New Pipeline Structure

DMA request. The DMA engine does not have access to the Nios II data cache, so the user is

responsible for either allocating data as uncached or flushing the data from its cache before

initiating a DMA transfer. The user is also responsible for aligning the start addresses in

VIPERS II local memory and external memory to the correct alignment. This alignment is

adjustable by a top level parameter from 1 byte, allowing for any alignment but with the

most resource usage, to the memory width in bytes. The DMA engine generates a full set

of the memory signals including: data input/output, write enable, and byte enable, which

are connected to dedicated ports on the scratchpad memory. Having a dedicated channel

for external access simplifies the interfacing of DMA and the scratchpad memory, as there

is no contention or waiting when the DMA needs to access vector memory.

Just like VIPERS, the new VIPERS II architecture offers scalable performance and

area by allowing the user to set the primary parameter NLane, the number of vector lanes,

to include in the design. However, as the vector lanes are coupled directly to the vector

memory, the number of lanes directly determines the memory width, MemWidth. For a four

lane vector processor, the memory width is fixed at 4 × 32 = 128 bits. Other fine-tuning

parameters will be pointed out in the following sections.

3.2 New Pipeline Structure

As can be seen from Figure 3.1, quite a bit has changed from the original VIPERS architec-

ture to the new VIPERS II architecture. The motivation behind all these changes was the

performance bottleneck in the original design: the high latency that occurs when copying

data from memory to the vector register file [30].

This disadvantage can be reduced or eliminated by changing the pipeline structure of

VIPERS. Looking at modern FPGAs, most of the devices offer high speed on-chip memories,

which can be accessed without much concern over memory latency. For example, the

TriMatrix memory in Altera’s Stratix III and IV family of devices can operate up to 600MHz;

23

3.2. New Pipeline Structure

Figure 3.2: New Pipeline Structure

the integrated block memory in Xilinx’s Virtex 4 and 5 can be accessed at 500MHz and

550MHz respectively. Utilizing these on-chip memories, the vector processor can access

data directly from the memory instead of going through the vector register file.

In VIPERS II, the general pipeline structure is changed from the classical 5-stage

pipeline as shown in Figure 3.2 to allow direct access of the vector scratchpad memory.

The change involves swapping the execute and memory access stages. In the resulting

pipeline, the instructions are decoded and the source operand locations are fetched from

the address registers during the instruction decode stage. The memory read stage retrieves

the vectors from memory over several cycles and send them to the execution stage for pro-

cessing in a pipelined fashion. The results are written directly back into the scratchpad

memory at the memory write stage. The actual number of pipeline stages in VIPERS II

varies from five to sixteen or more because the depth of the data alignment network changes

with the memory width. Figure 3.3 shows where the pipeline registers (indicated by the

dash lines) are located in each of the major components in the VIPERS II architecture.

The scratchpad memory operates at twice the frequency of the vector core, allowing

both the read and write to occur in a single cycle. The FPGA memories are naturally dual

ported, so this double pumping allows a total of four memory ports. These are allocated as

shown in Figure 3.3: memory read 1 and 2, memory write, and DMA (read or write).

The VIPERS II resolves read after write (RAW) hazards through pipeline interlocking.

The decode stage detects data dependency by comparing the address register names used

24

3.2. New Pipeline Structure

Figure 3.3: VIPERS II Pipeline

in the instructions. If an instruction reads from an address register that is being written to

by a previous instruction that has yet to pass through the pipeline, the later instruction is

stalled until the hazard is resolved. Note that the actual read and write addresses are not

compared, only the address register names; therefore, it is up to the user to ensure that

address registers are pointing to non-overlapping regions in the vector scratchpad memory.

To realize this new pipeline structure, four major architectural changes are made in the

VIPERS II:

1. Use of a vector address register file instead of a vector data register file,

2. Vector scratchpad memory,

3. Data alignment crossbar network (DACN), and

4. Fracturable ALUs.

25

3.3. Address Registers

The subsequent sections will provide details on the implementation of these changes.

3.3 Address Registers

In the original VIPERS, each vector lane holds a partition of the vector data register file.

Vector load and store instructions are used to copy data from memory and distribute them

into the vector register file. Other than the latency of the load/store operations, the register

file also causes unnecessary data duplications. Most vector instructions require two input

operands, so an extra copy of the register file was implemented to provide dual read ports

for the vector lanes. As a result, prior to being processed, each datum in the working set

resides in 3 different locations: 2 copies in the register file plus the original in the main

memory or a cache. This is an inefficient usage of the precious on-chip memory resources.

3.3.1 Address Register Usage

The VIPERS II architecture replaces the partitioned vector register file with a set of 32

address registers for accessing the scratchpad memory. This provides us with three key

advantages:

1. Performance gain by eliminating the slow load/store operations,

2. Only one copy of the vector data resides in the memory, and

3. Greatly increased maximum vector length, which can grow to fill the entire scratchpad.

These address registers point to locations in the scratchpad buffer where the vector data

are stored. This allows the vector data to be fetched directly from the scratchpad memory,

eliminating the need for load and store operations, which results in an improvement in

performance. Moreover, since there is no register file and data are read directly from

memory, the vector processor would need just one set of data to reside in the on-chip

memory, resulting in a much more efficient usage of the limited on-chip memory resources.

26

3.3. Address Registers

Figure 3.4: Vector Memory & Vector Lane Connections

The output of the vector scratchpad memory feeds directly into the vector datapath.

Each 32 bit sector of the memory outputs to a corresponding vector lane as shown in Figure

3.4; therefore, VIPERS II does not require a read crossbar to distribute data among the

vector lanes. Figure 3.5 shows an example of vector operations with the new VIPERS II

instruction set architecture.

Performance gain from the elimination of load/store operations is maximized when the

vector sources and destination are residing in aligned locations in the scratchpad memory.

As shown in Figure 3.5, the elements of vectors pointed to by address registers va1 and va2

are aligned, so their first element is feed into lane 1 for processing, second element to lane

2, etc. Elements 3 to 6 are processed on the next cycle and the final element on the third

cycle. With this architecture, each instruction will take V L×OpSize+Offset
MemWidth cycles to finish,

where VL stands for vector length, OpSize is the operand size, and the Offset is the starting

location from MemWidth in number of bits.

27

3.3. Address Registers

Figure 3.5: Example of VIPERS II Operations

When vectors are not aligned, a move instruction, similar to the load/store operation,

is necessary to move the data into alignment. This will be described later in Section 3.5.

To efficiently fit the vector registers into on-chip memory blocks, VIPERS limits the

maximum vector length to a multiple of 4 ×NLane, where NLane represents the number

of lanes in the design. For VIPERS II, since all data are stored in the vector memory

and address registers are used instead, the limit on vector length is the size of the entire

scratchpad memory. This makes VIPERS II more favourable in applications where long

vectors can be used.

However, in VIPERS II there is another shorter limit on the maximum vector length

determined by the length of the vector flag registers. The vector flag registers store the

1-bit result from conditional operations on vectors. In the current implementation, vector

flag registers are implemented using MLABs, and are limited to 32-elements long because of

the number of available MLABs. Although there are many MLABs on the chip, the current

implementation uses each one as a single 16× 1 memory. Even though they are capable of

implementing a 16 × 20 memory, Quartus does not automatically add the logic needed to

modify this into a 320× 1 memory as needed by the vector flag registers. With more time

28

3.3. Address Registers

and effort, surrounding logic can be built to better utilize the MLAB resources, allowing

much longer vector flag registers to be implemented.

3.3.2 Auto-Increment/Decrement and Circular Buffer

The address registers are designed with some useful features: automatic post-increment or

pre-decrement of addresses and the capability to be used as a circular buffer. Both of these

features provide more flexibility to the address registers and help lower loop overhead in

the vector code.

To use the address registers, their contents need to be set and changed by the user at run

time using the VMSTC instruction, which copies a given scalar register value to the vector

control registers (including address registers). The VMSTC instruction takes 4 cycles to

execute and is not pipelined.

In many embedded applications, although the data can be vectorized to exploit data-

level parallelism, iterations are still needed to go over the entire range of data due to

limitations on vector length. For these cases, address registers need to be set at the start

of each loop, which adds significant amounts of overhead. To avoid this overhead, the

post-increment and pre-decrement allows the address registers to be set automatically in

preparation for the next instruction.

The post-increment and pre-decrement happens at the beginning or at the end of a

vector operation, and should not be confused with the increment that is needed to step

through the entire vector. As mentioned in the previous section, vector instructions may

take several cycles to finish because the vectors can span over a few memory slices. The

reading of successive memory slices is accomplished by temporarily incrementing the address

register by MemWidth and takes place during the execution of an instruction.

To demonstrate the use of post-increment, Figure 3.6 shows the inner loop of the median

filter benchmark. This code implements the bubble sort algorithm, in VIPERS and VIPERS

II assembly language. In the VIPERS assembly code, the vector is loaded into register v2

29

3.3. Address Registers

Figure 3.6: Median Filter Example: (a) VIPERS assembly; (b) VIPERS II assembly

at the beginning of the loop, then the maximum and minimum values are written into v31

and v4, respectively. Finally, the maximum result in v31 is stored back into memory and

vbase2, which points to the memory location, is incremented. In the VIPERS II assembly,

with direct accessing of the scratchpad memory, the load operation at the start of the

loop is no longer required. The VMAXB and VMINB instructions perform the exact same

operations as their counter parts, with the B suffix indicating the operand size is a byte.

The VMOVAB instruction replaces the vector store operation. It performs an aligned move,

which moves the maximum data at aligned location va31 to va2; the plus sign denotes post-

increment of va2, so va2 would point to the next vector in memory in preparation for the

next loop iteration. The auto-increment feature sets up va2 so no VMSTC instruction is

required, thus reducing the amount of loop overhead. A more detailed explanation on the

implementation of the median filter benchmark is presented in Section 4.1.

Note that writing the VMINB result is achieved with the address registers va4 and va3

pointing to the same location in the vector scratchpad memory. This is because the contents

of the address register change as it steps through a vector in memory. Since the write back

happens later in the pipeline, va4 is no longer pointing to the start of the vector, so address

register va3 is used to ensure the VMINB result is written into the correct location.

The auto-increment/decrement feature also provides the potential to use much fewer

address registers than needed by the loop-unrolled code. This is demonstrated later in

Section 4.1.

The circular buffer feature resets the address register to its starting location when its

30

3.3. Address Registers

incremented value exceeds the user-determined window size. This is useful when a set of

vectors needs to be reused as instructions execute in a loop. Examples of how these features

are applied will be shown later with benchmark development in Section 5.1. By decreasing

the number of VMSTC instructions required, the auto-increment/decrement and circular

buffer features help reduce the loop overheads, as well as the instruction code size.

3.3.3 Implementation

To implement the address registers and their features, four sets of registers are used in the

design as shown in Figure 3.7. The base register holds the vector memory address of the

vector it points to. The incr register stores the amount, in number of bytes, to increment

or decrement the content of an address register between vector operations. The window

register indicates the size of the circular buffer. The next register stores the value of the

incremented/decremented address. Each address register has its corresponding incr and

window registers, so the vector instructions do not require extra bits to indicate which incr

or window registers to use, keeping the vector instruction width to 32-bits.

In addition to the address registers, the scratchpad vector memory is accessed using

three address generators, one for each of the two source operands and one for the destina-

tion operand. After a vector instruction is decoded, the correct set of base address, incr,

and window values are selected and sent to the address generators for computation. The

resulting addresses are then output to the vector scratchpad memory so the correct read

and write sequence can be carried out.

Typical vector instructions are multi-cycle and the address generators perform different

computations at different stages of the instruction. During the instruction execution, the

base register value is directly incremented by MemWidth each cycle to step through the

vector stored in the scratchpad memory. This eliminates the need for an extra copy of the

address to be kept in the address generator itself. The auto increment/decrement feature is

accomplished with the next register. In the first cycle of execution, the next register content

31

3.3. Address Registers

Figure 3.7: Address Generation Logic

is computed based on the unmodified base register value and the incr register value; if the

address register is to be pre-decremented, the decremented value is used as the starting

address of the read/write sequence. In the final cycle of the execution, the address value

stored in the next address register is loaded into the base register to set the address register

pointing to the leading element of the next vector in memory.

Concurrent access to 3 of the 32 address registers is required for most vector instructions;

therefore, flip-flops are used for the implementation of these registers to meet the accessi-

bility demands. However, the flip-flop implementation consumes more logic resources than

if the address registers are implemented with memory blocks. To save logic, it is also pos-

sible for the VIPERS II processor to be constructed with fewer than 32 address registers.

However, this feature is not currently implemented.

32

3.4. Vector Scratchpad Memory

3.4 Vector Scratchpad Memory

In the previous section, we demonstrated how the vector scratchpad memory works with the

address registers in eliminating load and store operations and resolving the data duplication

issues. This section explains the performance gain from eliminating load/store operations

in terms of the memory interface design. On top of that, the use of a scratchpad buffer

provides a much more flexible storage medium for vector data, allowing the VIPERS II

architecture to deliver both performance and memory efficiency.

3.4.1 Memory Interface

By replacing the vector register file with a single scratchpad memory, the interaction be-

tween the vector core and main memory in the VIPERS II design is also very different from

the original VIPERS.

In VIPERS, the main memory interfaces with the vector lanes via separate read and

write crossbars, as shown in Figure 3.8(a). The read crossbar distributes the vector elements

to the partitioned register files inside each vector lane, and based on the operand size, the

elements are zero/sign-extended to fit the VPUW. The write crossbar concatenates the data

from the distributed register file and stores them into the main memory. When the size of

the elements to store is smaller than VPUW, the write crossbar also compresses the data

by discarding the most significant bits. With the read and write crossbars, VIPERS can

handle three types of memory accesses, unit stride, constant stride, and indexed, along with

three memory data sizes, byte, halfword, and word.

VIPERS II, on the other hand, uses a DMA engine to load the vector data from main

memory into the vector scratchpad memory, as shown in Figure 3.8(b). The DMA engine

acts as a buffer, it collects data from the main memory and then writes them to specific

addresses in the scratchpad memory. Different from the crossbars, the DMA engine does

not perform strided or indexed access of the main memory, it simply copies blocks of data

33

3.4. Vector Scratchpad Memory

Figure 3.8: Memory Interface Comparison

into the scratchpad memory. In cases where rearrangement of data is required, e.g. vector

elements are scattered, the data in the vector scratchpad memory are passed through a

data alignment crossbar network (DACN) to form continuous vectors. The data alignment

crossbar network is explained in Section 3.5.

3.4.2 Performance Advantage

The scratchpad memory offers improved performance potential over VIPERS in three ways:

reduced load and store latencies, fewer load and store instructions, and improved on-chip

data capacity through single-copy data storage and the ability to operate directly on byte

or halfword data instead of sign-extending it to fit VPUW. These features are discussed

further below.

34

3.4. Vector Scratchpad Memory

The latency in the load and store operations in VIPERS is partly due to the complexity

of the memory interface design; in order to implement the strided and indexed accesses,

each load/store instruction requires multiple cycles to execute. In comparison, the VIPERS

II memory interface, which accesses memory via a DMA engine, is much simpler in design

and operation, and offers much faster data transfer between the external main memory and

the on-chip scratchpad buffer. Moreover, VIPERS II, which uses the DACN to accomplish

strided and indexed moves, does not require data to pass through the slower DACN for

all operations. This allows the common case, where vector elements reside in contiguous

locations in the memory, to execute without any added delays, and thus resulting in better

performance.

Just like VIPERS, the performance of VIPERS II scales with the number of vector lanes

in the design; more vector lanes means more data elements can be executed in parallel. The

number of vector lanes defines the memory width requirement for the vector scratchpad

memory. Moreover, the performance of VIPERS II is maximized when the entire working

set fits inside the scratchpad memory. Therefore, both the width and size of the vector

scratchpad memory contributes to the performance of VIPERS II. The configurability of

FPGAs allows the scratchpad memory to be scaled as needed to deliver the desired per-

formance. In cases where the scratchpad memory cannot fit in a particular FPGA device,

there is the option to move to a device with higher capacity.

The configurability of the vector scratchpad memory allows VIPERS II to have as many

data vectors as can be fit into an FPGA device. This provides an advantage over the original

VIPERS, which can only have a maximum of 64 vectors before resorting to vector load or

store operations. For example, in the unrolled version of the median filter benchmark, 25

vectors were used to store the data needed for a 5 × 5 window. Therefore, the original

VIPERS would not be able to unroll median filter benchmarks with a window size larger

than 7× 7, unless the ISA is changed, which is infeasible. On the other hand, VIPERS II is

not limited by its ISA, so it can be used for a median filter benchmark with a large window

35

3.4. Vector Scratchpad Memory

size, as long as there is an FPGA with a big enough on-chip memory.

The vector elements are stored in the scratchpad memory in their natural length of 8

bits, 16 bits, or 32 bits. As these data elements are fetched directly from the scratchpad,

fracturable ALUs are used to operate on elements with varying sizes. This allows more

results to be computed in parallel when the data is halfword or byte-sized, enhancing the

performance of VIPERS II. Details on the fracturable ALUs are presented in Section 3.6.

3.4.3 Implementation

The direct coupling between vector scratchpad memory and vector lanes makes the design

of vector memory extremely important. The vector memory must have enough bandwidth

to meet the demands of the vector datapath. Typical vector instructions require two reads

and 1 write in each operation. A three-port memory can be used to meet this requirement.

However, because a three-port memory is typically implemented with two identical copies

of the memory, it wastes precious on-chip memory.

Another way to achieve the required bandwidth is to operate the memory at twice the

clock frequency of the vector processor. Using the original VIPERS’s operating frequency

of 100 MHz as an approximation, the vector memory would need to operate at 200 MHz,

which is well below the advertised frequency of 600 MHz for TriMatrix RAM blocks. These

RAM blocks are already dual-ported, so operating at twice the frequency provides four

memory ports to VIPERS II.

The vector memory uses two bidirectional ports to support both reads and writes.

Combined with the doubled clock frequency, the vector memory allows four accesses per

cycle. The reading of operands and writing of result vector uses three of the four channels.

The last channel is reserved for loading and storing of data to the external memory via

DMA. Currently, the reading of two operands takes place in the second half of the cycle,

whereas the writing back of one result and DMA access (read or write) takes place in the

first half of the cycle.

36

3.4. Vector Scratchpad Memory

Figure 3.9: Memory block with depth of 12K words

Register banking is another alternative to provide two read ports to the register file

without duplication, but it adds restrictions to the register usage. Moreover, by running the

scratchpad memory at twice the frequency provides a dedicated channel for DMA access;

therefore, the over clocking of memory is selected over register banking to achieve the

necessary bandwidth..

The vector memory is implemented using the M9K RAM blocks that are integrated

on-chip in the Stratix III family of FPGAs. In bidirectional dual port mode, the widest

possible configuration of the M9K is 512×16 bits; therefore, the smallest scratchpad memory

depth is set to 512 words to fully occupy a M9K block. This provides a vector memory

with capacity of 512 × MemWidth bits, which is 8kB for a four lane vector processor.

The widest configuration was selected to keep the M9K usage minimal; however, should an

application require more memory, the depth could be easily increased up to 8192 memory

words. Even deeper scratchpad memory can be realized by stacking the M9K blocks. Figure

3.9 illustrates how a memory with 12K words can be implemented by stacking three M9Ks,

two in 8192× 1 configuration and one in 4096× 2 configuration.

37

3.5. Data Alignment Crossbar Network

3.5 Data Alignment Crossbar Network

Since the vector scratchpad memory couples directly to the vector lanes in VIPERS II

as shown in Figure 3.4, the vectors involved (sources and destination) in a single vector

instruction must reside in aligned locations in the scratchpad memory. When the vectors

are not aligned, a move instruction, similar to the load/store operation, is necessary to move

the data into alignment.

Figure 3.10: Example of Misaligned VIPERS II Operation

Figure 3.10 illustrates how misaligned vectors can be operated on by adding a VMOV

instruction. In this example, we want to achieve a vector add of misaligned vectors va1

and va4. If the vectors referenced by va1 and va4 are added without moving, the first

element of va1 will be added to the second element of va4 which produces an incorrect

result. Therefore, the VMOV instruction is required to move the vector at va4 into an

aligned location referenced by va2, which is then operated on to produce the correct results.

Although the misaligned operation would suffer a loss in performance due to the extra move

instruction, it is expected to be similar in performance to that of the original VIPERS, which

needs a vector load and vector store pair to achieve the same result.

38

3.5. Data Alignment Crossbar Network

The vector move instruction can be achieved using a full crossbar, but these are costly

in resource usage. This rearrangement of data can also be accomplished by multistage

switching networks, such as the Clos network [9], Benes network [8], or Omega network,

which trades off performance for resources. These networks can achieve all (or some) of

the permutations possible with a crossbar, but they require less resources to implement.

However, the multistage nature of these networks tend to result in longer delays, and it is

harder to generate the control signals.

3.5.1 Permutation Requirements

The VIPERS II employs a fixed set of permutations with its move instructions. The switch-

ing network must be able to achieve the permutation needed for these three types of move

operations:

1. Offset Moves

2. Strided Moves

3. Indexed Moves

Figure 3.11 gives an example of the permutation needed for each of these three types

of moves. The offset moves (equivalent to unit stride load/store) are the most common

case; it moves contiguous vector elements to an offset (unaligned) location. The strided

move collects elements that are scattered by a fixed distance and stores them in contiguous

locations to form a vector. The indexed move is a random move of elements to an indexed

location. Due to time constraints, the strided and indexed moves are not implemented in

this work.

3.5.2 Implementation

The data alignment crossbar network consists of a tag generation logic and a multistage

switching network. In the current VIPERS II microarchitecture, the Benes network is chosen

39

3.5. Data Alignment Crossbar Network

Figure 3.11: VIPERS II Move Operations

to implement the multistage switching network because of its rearrangeably non-blocking

characteristic, which allows it to satisfy all three permutation requirements listed above.

However, the Benes network requires a control algorithm to effectively route data through

the network without blocking. Due to time constraints, only control for vector offset moves

is implemented in this work.

Since the minimum operand size is a byte, the granularity of the Benes network is set

to byte-size. The tag generation logic computes the destination tags, which are required for

controlling the Benes network, for each byte-size element of the input data. A destination

tag is the numerical designation for an output, in binary representation. For example, a

N × N network would have its outputs labeled from 0 to N-1, and each valid input is

assigned a destination tag showing which output it is going to. Details on tag generation

and the control algorithm for a Benes network can be found in Appendix B.

Alternative Implementations

The Benes network is not the smallest switching network available. It uses N
2 (2 log2N − 1)

2-by-2 switching elements, where N is the number of inputs/outputs of the network. Smaller

networks such as the Omega network and Banyan network, which have N
2 (log2N) switch-

ing elements, typically have blocking characteristics [1] and cannot realize all permutations

40

3.5. Data Alignment Crossbar Network

listed in Section 3.5.1. However, performance can be traded off for area by lowering the per-

mutation requirements, allowing the data alignment network to be implemented by smaller

networks. For example, if the VIPERS II requires only the offset moves, it can be easily

realized by the Omega network, which is about half the size of the Benes network. The

Omega network also offers simpler control, as offset moves can be achieved without blocking

by bit-controlling the switching elements with the destination tag.

Moreover, since the Omega network has identical connection patterns in every stage, if

a longer delay through the data alignment network is tolerable, the data alignment network

can even be implemented with a time-multiplexed Omega network. This lowers the resource

cost to as low as N
2 switching elements. Despite the benefits, an Omega network was not

implemented because it cannot realize strided vector moves.

3.5.3 Misalignment Detection and Auto Correct Mechanism

As mentioned in Section 3.3.1, the performance of VIPERS II is maximized when the vectors

are stored in aligned locations in the scratchpad buffer. Moreover, incorrect results would

be computed if the data alignment is not satisfied. To help lower the learning curve in

software development, misalignment detection and auto-correction logic is implemented in

the VIPERS II design.

The misalignment detection logic compares the lower log2MemWidth bits of the source

and destination addresses, and generates three signals: misaligned src, misaligned dstA, and

misaligned dstB based on the comparison results. If the two source addresses are misaligned,

misaligned src is asserted; if the destination and source A is misaligned, misaligned dstA is

asserted; if the destination and source B is misaligned, misaligned dstB is asserted. Based

on the state of these signals, the vector data are moved into alignment to enable the vector

core to carry out the correct computation.

Figure 3.12 shows in a flowchart the actions taken by the VIPERS II to correct the

misalignment. At the top of the flow chart, if the two sources are misaligned with each

41

3.5. Data Alignment Crossbar Network

Figure 3.12: Misalignment Correction Logic

other, a vector move must take place so the processor is stalled and waits for a move

instruction to be automatically inserted by the correction logic. When the sources are not

aligned, if the destination is not aligned with source A only, it means the destination and

source B are in alignment so source A needs to be moved; the opposite applies for misaligned

destination and source B. If all three addresses are different, the sources are first moved into

alignment for computation, then the result is passed through the data alignment network

again before it can be written correctly into the destination address. When the sources are

aligned with each other but not to the destination, computation is carried out as normal,

and the result is passed through the alignment network to align it with the destination

42

3.6. Fracturable ALUs

address.

The alignment correction of a source operand is done by performing offset moves of

the unaligned vector to an aligned location pointed to by va0, an address register reserved

specifically for alignment correction purposes. The base value of va0 can be set by the user

via the VMSTC instruction like all address registers, but its lower log2MemWidth bits are

updated with every alignment request to achieve the correct alignment. The user should

reserve a section of scratchpad memory for reference by va0, because the data in this region

may be overwritten at anytime.

Although the auto-correction could prevent mistakes in the computation due to mis-

alignment of data, it erases any performance gain achievable with the new VIPERS II

architecture. To help users fine-tune the software, counters are implemented for each of the

three signals to keep track of how many misalignment cases there are in the vectorized code.

The user can retrieve the counter values via control registers, and utilize this information

to optimize the performance of the application.

3.6 Fracturable ALUs

The processing units in the original VIPERS can be compiled to have a fixed width of 8,

16, or 32 bits according to the VPUW parameter. The size of the vector elements in the

register file is always VPUW, but the size in memory may be smaller; the vector load and

store instructions perform sign-extension or clip the most significant bits when moving data

to memory. In contrast, the VIPERS II architecture does not sign-extend on memory reads

to match VPUW. The direct coupling between the scratchpad memory and the vector

lanes gives a fixed input width of 32 bits for each lane. However, it still needs to have

the capability of operating on halfword and byte sized elements. Therefore, each lane must

have a processing unit that can execute on operands with varying widths as shown in Figure

3.13. Furthermore, each instruction must specify the operand size to the processing units.

43

3.6. Fracturable ALUs

Figure 3.13: Processing Unit with Variable Width

In order to accomplish this, fracturable ALUs are introduced into the vector lanes and all

arithmetic and logic vector instructions in VIPERS II carry an operand size indicator.

The fracturable ALUs perform arithmetic operations using a fracturable adder, and the

multiply and shift operations are executed with a fracturable multiplier. The following

subsections describe the implementation of the fracturable adder and multiplier.

3.6.1 Fracturable Adder

Figure 3.14 shows the fracturable adders as four 8-bit adders connected together via the

carry-in and carry-out ports. The multiplexers on the carry-in ports are controlled by

the operand size indicators in the instructions, setting the length of the adder chains. The

implementation of the fracturable ALU overall is similar to that of VIPERS, which is shown

in Figure 2.5, but with the two adders replaced by fracturable adders. As mentioned in

Section 2.2.2, the two adders are required for the enhanced instructions such as minimum,

maximum and absolute difference. If the particular application does not benefit from these

instructions, VIPERS II can be configured so the second fracturable adder is removed to

reduce resource usage.

44

3.6. Fracturable ALUs

Figure 3.14: Fracturable Adder

3.6.2 Fracturable Multiplier

Design of the fracturable multipliers are not as straight forward as the fracturable ALUs. It

is important to tailor the design so the FPGA resources are efficiently utilized. If the multi-

plier arrays are implemented by logic elements on the FPGA, it would be very flexible and

the fracturable features can be added easily. However, the resource usage and performance

might not be as good as using the hardware multipliers in Stratix III’s DSP blocks.

The hardware multipliers, as black boxes, do not provide access to the internal signals

necessary to make it fracturable. Therefore, the fracturable multipliers have to be built from

smaller hardware multiplier blocks, whose results are combined using the partial product

45

3.6. Fracturable ALUs

Figure 3.15: fracturable Multiplier Implementation

method to generate results for larger operand sizes. In VIPERS II, 16-bit multipliers are

chosen as basic building blocks of the fracturable multipliers, because they are most suitable

given the Stratix III’s DSP block architecture. Each DSP block can be used to implement

eight 8-bit multipliers, four 16-bit multipliers, or two 32-bit multipliers.

Figure 3.15 illustrates two possible implementations of the fracturable multiplier. The

approach in Figure 3.15(a) has the advantage that the input operands can be fed directly

into each multiplier block; however, it would cost one and a half DSP blocks and extra logic

to compute a 16-bit multiply result. Figure 3.15(b) shows the current implementation,

which consists of four 16-bit hardware multipliers, that fits nicely into a single DSP block.

The only disadvantage is that the inputs need to be reorganized for computing 8-bit multiply

results.

The inputs are arranged based on operand size so the four multipliers can be used to

directly perform four byte-size or two halfword-size multiplies.

For word-size multiply, Figure 3.16 illustrates how the result can be obtained. The

upper 16-bit multiply result is right shifted by 32 bits and the middle multipliers’ results

are shifted by 16 bits. The output of the shifters are then summed with the lower 16-bit

results to form the final product.

The fracturable multipliers also serve as fracturable shifters for the shift operations.

The multiplier output are arranged to generate the shift and rotate results. The logic and

46

3.7. Summary

Figure 3.16: 32B Multiply Result by Partial Product Method

arithmetic shift is accomplished with unsigned and signed multiplies, respectively.

Obviously, the fracturable processing unit is implemented at the cost of FPGA resources,

but this cost provides more gains than just being able to compute results for various operand

sizes. Each vector lane in VIPERS II can generate 4 byte-size, 2 halfword-size, or 1 word-size

results; making a 4 lane VIPERS II design equivalent to a 16 lane VIPERS when operating

on byte-size vector elements. Furthermore, precious on-chip memory is not wasted by

expanding byte-sized data to the VPUW -wide register file as done in VIPERS.

3.7 Summary

The VIPERS II microarchitecture employs a new pipeline structure to improve perfor-

mance by providing the vector core with direct access to a vector scratchpad memory. This

eliminates the load and store latencies which were a performance bottleneck of the origi-

nal VIPERS. The pipeline structure is realized by four major architectural changes: ad-

dress registers, vector scratchpad memory, data alignment crossbar network, and fracturable

ALUs; each of them bringing different advantages to make the VIPERS II architecture more

47

3.7. Summary

favourable than VIPERS.

The address register and scratchpad memory combines to eliminate the load/store opera-

tions and provide better memory efficiency. The post-increment and pre-decrement features

of the address register help lower loop overheads. The vector scratchpad memory also makes

the VIPER II ISA more tolerant to scaling applications as the number of on-chip vectors can

increase without changing the ISA. Operating the scratchpad at twice the clock frequency

provides four read/write ports with the efficiency of just a single copy of data on-chip. The

data alignment crossbar network is required to align vectors in memory, and it trades off

performance for area by using the smaller switching networks instead of crossbars. The

fracturable ALUs allow the vector lanes to process vector data of different sizes; on top of

that, they also provide added computational power for the smaller operand sizes and more

efficient usage of on-chip memory.

48

Chapter 4

Impact of Architectural Changes

and Resource Usage

This chapter presents the impact of the architectural changes mentioned in Chapter 3 and

resource usage results of the VIPERS II architecture. First, the impact of each of the four

key architectural changes is examined in terms of resource usage and performance. Then,

the overall resource usage of the different instances of VIPERS II is presented and discussed.

Finally, the scalability of VIPERS II is discussed.

4.1 Address Registers

In the original VIPERS, benchmarks often need to be unrolled in order to optimize perfor-

mance. By unrolling the loops in the benchmarks, the number of load and store operations

are reduced by keeping the entire working set of data in the register file and reusing the

data, resulting in an increase in performance. Figure 4.1 uses the inner loop of the me-

dian filter benchmark to illustrate how the loop unrolling improves performance. The inner

loop of the median filter implements the bubble sort algorithm. In the unrolled version of

the code, the working set of data is first loaded into 25 different vectors, which are then

operated on by repeating the set of three instructions (VMAX, VMIN, and VADD) 222

times as shown in the bottom half of Figure 4.1(b). For the median filter benchmark with

a 5 × 5 window, the inner loop at L14 in Figure 4.1(a) would be executed 222 times. By

unrolling the loop, the number of load instructions was reduced from 222 down to just 25,

49

4.1. Address Registers

Figure 4.1: Median filter in VIPERS assembly: (a) rolled; (b) unrolled

Figure 4.2: Median filter in VIPERS II assembly

thus improving performance.

With the direct scratchpad memory access of the new VIPERS II architecture, load and

store operation are eliminated, so the performance of VIPERS II is expected to be similar

to that of the unrolled VIPERS code without the instruction overhead of unrolling. Figure

4.2 shows the same median filter inner loop vector assembly written in the new VIPERS II

instruction set architecture, which can be found in Appendix A.

The VIPERS II approach to the median filter benchmark is very similar to the unrolled

version of VIPERS assembly. The first loop at L9 sets up the working set of data in aligned

locations in memory, and the second loop performs the bubble sort on the vector data.

50

4.2. Vector Scratchpad Memory

The vector instructions used in the second loop are similar to the three instructions used in

the unrolled VIPERS code. This is evidence to show that VIPERS II can achieve similar

performance to that of the VIPERS unrolled code without unrolling the loop. Taking the

loop overheads into account, the VIPERS II version may be slightly lower. However, since

the VIPERS II assembly does not require unrolling, the code can be written in 8 lines

instead of the 247 lines that is needed for the unrolled code, providing the advantage of a

more compact code that occupies less instruction memory space. Also, loop overhead can

be reduced by unrolling a small amount, or by improving concurrent execution of the scalar

and vector cores, or both.

The auto increment and decrement features of the address register helps to reduce loop

overhead and make the code more compact. In the VMOVAB instruction, the contents of

address register va2 are incremented to point to the head of the next vector in preparation

for the VMAXB and VMINB instructions in the following loop. Without the post-increment

feature, a VMSTC instruction would be needed at the start of L14 to set up the address

register for each loop. This demonstrates how the auto-increment/decrement feature can

help reduce the amount of loop overhead. Another key advantage of the post-increment/pre-

decrement feature is that it requires fewer address registers to be implemented. For the

median filter benchmark, although 25 vectors are set up in the vector memory, only 4

address registers are required to execute the benchmark because va2 is incremented in each

loop to subsequently reference each of the 25 memory locations. This can be used to reduce

the resource usage of VIPERS II.

4.2 Vector Scratchpad Memory

In the original VIPERS, the memory usage was inefficient because each vector resides in

3 different on-chip locations: 2 copies in the register file for dual-port reads, plus a third

possible copy in the main memory if it resides on-chip. By replacing the register file, the

51

4.2. Vector Scratchpad Memory

Architecture VIPERS VIPERS II
Rolled Unrolled

VPUW 8-bit 32-bit 8-bit 32-bit

of vectors used 3 3 26 26 26

of data bits used 3072 12288 26624 106496 13312

of addr. reg. used 4
Total # of addr + data bits 13632

Table 4.1: Memory Usage Comparison of Median Filter Benchmark

new VIPERS II architecture requires only one copy of the vector in the on-chip memory. To

quantify the memory usage, a median filter benchmark with byte-size elements and vector

length of 64 is used as an example to compare the memory usage of the two generations of

VIPERS. Table 4.1 shows the number of bits used in each of the three versions of median

filter code shown above. To provide a fair comparison, these numbers assume that the

VIPERS uses an off-chip main memory just like the VIPERS II.

The number of vectors used is determined from the assembly code. The unrolled version

of VIPERS uses 25 vector registers to store the entire data set, and 1 extra vector to store

the temporary maximum result. For VIPERS II, although it uses only four address registers

to access the data, it also stores 26 vectors in the scratchpad memory.

The number of bits used for VIPERS can be calculated using the equation: NBits =

2×NV ectors×V L×V PUW , where the VL and VPUW stands for vector length and vector

processor width. The factor of 2 in the equation accounts for the two copies of register file in

the original VIPERS. The VPUW parameter defines the VIPERS architecture at compile

time. VIPERS with VPUW = 8 is implemented with 8-bit wide register file and ALUs and

can only operated on byte-size data elements, which is sufficient for the byte-size median

filter inputs. However, a VIPERS design with VPUW = 32 would be able to execute vector

instructions on all of the supported data sizes, making it much more flexible. The number of

bits used for VIPERS II is given by the equation:NBits = NV ectors×V L×OpSize, where

OpSize represents the operand size. Operand size refers to the size of the data elements use

52

4.2. Vector Scratchpad Memory

Architecture VIPERS VIPERS II
Rolled Unrolled

VPUW 8-bit 32-bit 8-bit 32-bit

Window Size any any 7× 7 7× 7 22× 22

Vector Length 1024 256 4096
W 2+1

1024
W 2+1

(65536÷OpSize)
W 2+1

Table 4.2: Largest Median Filter Benchmark with 64kB Budget

at this point in the program and can be changed at run time. The number of bits used in

the address registers are also included. Accounting for the storage required to implement

the auto-increment and circular buffer features, each address register in VIPERS II takes

up 80 bits.

The unrolled version of the VIPERS code uses 23 more vectors than the looped version,

so the performance gain comes at the cost of memory usage. VIPERS II uses only half as

many bits as the 8-bit VIPERS, which is entirely due to the elimination of data duplication

in the register file. However, since the same VIPERS II design can also operate on all

supported operand sizes, we must also compare it to a 32-bit implementation of VIPERS,

which requires about 8 times as many bits to implement. This advantage comes from the

use of fracturable ALUs in the VIPERS II architecture. With more efficient memory usage,

the VIPERS II architecture is able to achieve performance similar to the unrolled code,

while keeping the memory usage comparable to the rolled version of the code.

Looking at the memory efficiency from another perspective, Table 4.2 shows the largest

median filter that can be built given a 64kb budget for the on-chip memory (register file

in VIPERS and scratchpad memory in VIPERS II). First, we look at the largest window

size that can be supported by each architecture. The rolled version of VIPERS loads the

vector from main memory in every loop, so the on-chip memory budget does not limit the

window size. As mentioned in Section 3.4, the unrolled version of the VIPERS, limited to

the 64 vector registers defined in the ISA, can only support a window size up to 7 × 7. In

contrast, the VIPERS II can support a maximum 22 × 22 window with a vector length of

16.

53

4.3. Data Alignment Crossbar Network

Architecture VIPERS - Crossbars VIPERS II - DACN VIPERS II /
MemWidth 128 256 512 128 256 512 VIPERS

V4 1177 - - 768 - - 768
1177 = 0.653

V8 - 5372 - - 1718 - 1718
5372 = 0.315

V16 - - 18730 - - 2942 2942
18730 = 0.160

Table 4.3: Resource Usage Comparison between Data Alignment Crossbar Network and
Crossbar

The second indicator used is the maximum vector length that can be supported. This

can be calculated from dividing the available memory by the number of vectors needed for

the implementation. The rolled version of VIPERS requires a total of three vector registers

to implement, so vector registers would support up to a vector length of 1024 for the 8-

bit implementation, and 256 for the 32-bit implementation. For the unrolled version of

VIPERS and VIPERS II, the number of registers used depends on the window size, so the

maximum vector length supported is shown as a function of window size, W. For VIPERS,

the available memory in the numerator can be calculated by 32768
V PUW ; due to the duplicate

register file, 32kb is used instead of 64kb. For a window size of 7× 7 bytes, the maximum

vector length for VIPERS is 81 and for VIPERS II is 163.

4.3 Data Alignment Crossbar Network

In VIPERS II, the rearrangement of data is achieved using the data alignment crossbar

network instead of the read and write crossbars. This decision is made in an attempt to

trade off some performance for resource usage. Table 4.3 shows the resource usage in number

of ALMs for the read/write crossbars and the data alignment network. The resource usage

is shown for different combinations of memory width and number of vector lanes. These

results confirm that the data alignment network consumes less resources than the crossbars.

The read crossbar in the original VIPERS distributes data into the vector lanes, so the

memory width doesn’t have to match the width of vector lanes. Table 4.4 shows that by

keeping the memory width fixed at 128-bits, the VIPERS can keep the size of its crossbars

54

4.4. Fracturable ALUs

Architecture VIPERS

NLanes 4 8 16

of ALMs used 1177 1131 1189

Table 4.4: VIPERS Crossbar at MemWidth = 128

Architecture VIPERS(V4)-Unrolled VIPERS II(V4)

Operand Size ALL 32-bit 16-bit 8-bit

Total # cycles 3024 4480 3296 2815

cycles/pixel 189 280 206 176

Table 4.5: Cycle Count Comparison of Median Filter Benchmark

relatively constant regardless of the number of vector lanes in the design. So the VIPERS

design still has an area advantage when the memory width is narrow and fixed, but it would

also be slower because of the limited bandwidth.

4.4 Fracturable ALUs

As mentioned in Section 3.6, the fracturable processing units of VIPERS II is not only

capable of computing operands of different width, but also capable of computing on more

elements when using byte-size or halfword-size data. Table 4.5 shows the cycle count result

from ModelSim simulations of the median filter benchmark with a vector length of 16.

These results demonstrate the improvement in performance as the operand size decreases.

The VIPERS result shown here is the result for the unrolled version of the benchmark.

As mentioned in Section 3.3, the VIPERS II is expected to provide performance similar

to the unrolled versions of VIPERS, but in reality, the word-size result of VIPERS II is

actually slightly slower due to the loop overheads. Despite the overhead, with the added

computational power, the fracturable ALUs are able to provide better performance in terms

of cycle counts when byte-size operands are used. It is also worth noting that the numbers

shown in the table assume the worst-case scenario where no concurrency exists between

scalar and vector operations. The concurrency is not captured by the simulation results

55

4.5. Resource Usage

Architecture VIPERS VIPERS II

Configuration V4 V8 V16 V4 V8 V16

Fmax (MHz) 113.05 115.49 108.99 47.70 48.92 44.88

M9Ks 15 23 39 9 17 64

ALMs 6239 8190 12214 10520 15548 24737

DSP Blocks* 4 6 11 4 8 16

36-bit Mult. 4 8 16 - - -

18-bit Mult. 6 10 18 16 32 64

12-bit Mult. - 1 1 - - -

9-bit Mult. 1 - - - - -

* One Stratix III DSP block fits 2×36b multipliers, 4×18b multipliers, 6×12b multipliers,
or 8×9b multipliers.

Table 4.6: Resource usage of VIPERS II with different number of lanes

because the setup does not include the Nios II processor. The concurrent execution of scalar

and vector instructions will actually help provide a slight improvement on these results.

The vector length of 16 is chosen for comparison between the two designs. However,

since the fracturable processing units can operate on more elements, the VIPERS II pipeline

is underutilized for byte and halfword operands. If the vector length is increased to 64 to

fully utilize the pipeline, VIPERS II takes as little as 70 cycles per pixel to execute the

median filter benchmark.

4.5 Resource Usage

The different configurations of the new VIPERS II architecture are compiled using Quartus

II to measure their resource usage and compare them against the equivalent VIPERS de-

signs. Both generations of VIPERS are compiled targeting the Stratix III EP3SL150F1152C3ES

device that is found on the Altera DE3 development board, which will be used to implement

the system in hardware.

Table 4.6 shows the resource usage of fully featured VIPERS II processors with a different

number of vector lanes and how they compare to the original VIPERS. The resource usage

results for VIPERS is slightly different from the results shown in [30] because the target

56

4.5. Resource Usage

device for compilation is different. For fair comparison, VIPERS was configured with all

features except the local memory, which VIPERS II does not offer. Furthermore, the

processing width of the VIPERS is set to 32 bits in order to be capable of computing

vectors at all three operand sizes.

As expected, VIPERS II consumes much more logic than the original VIPERS; it was

pointed out in Section 3.2 that the address registers and the fracturable processing units are

responsible for most of the increase in ALM and DSP block consumption. The fracturable

multipliers in VIPERS II are implemented using four 18-bit multipliers, which take up an

entire DSP block; on the other hand, the original VIPERS uses one 36-bit multiplier per

lane, which consumes only half a DSP block. The VIPERS also used DSP blocks for its

memory interface and multiply-accumulate (MAC) units, so the number of DSP blocks used

is not exactly half of VIPERS II’s usage.

To further examine the resource usage of VIPERS II, Table 4.7 breaks down the resource

usage in VIPERS II to four major components: vector lanes, address generation, data

alignment network, and vector memory. Note that the resource usage of the data alignment

network shown here is higher than the values in Table 4.3 because it includes the tag

generation logic and selectable delay network [5]. The difference of one in the number of

M9Ks shown in Tables 4.6 and 4.7 comes from control register storage. With the exception of

the vector length (VL) register, which is read on every execution, all other control registers

are read only when required; therefore, the control registers can be implemented more

efficiently with memory blocks instead of flip-flops.

The address generation logic implemented using flip-flops takes up 56% of the logic

elements used in the V4 design. However, since the number of address registers do not

change with the number of lanes, the resources consumed by address generation become

less of a factor for large designs, accounting for only 25% of the overall usage of the V16

device.

On the other hand, as the table shows, the vector lanes and data alignment crossbar

57

4.5. Resource Usage

Configuration Component ALMs DSP Blocks M9Ks

V4 Vector Lane 3549 4 0
Address Gen. 5740 0 0
Align Network 1019 0 0
Vector Memory 0 0 8

V8 Vector Lane 7132 8 0
Address Gen. 5897 0 0
Align Network 2358 0 0
Vector Memory 0 0 16

V16 Vector Lane 14205 16 0
Address Gen. 6264 0 0
Align Network 4260 0 31
Vector Memory 0 0 32

Table 4.7: VIPERS II Resource Usage Breakdown

Architecture VIPERS II - no MAC VIPERS II - no MAC, no Multipliers

Configuration V4 V8 V16 V4 V8 V16

ALMs 10219 14972 24648 8355 11161 16920

DSP Blocks 4 8 16 0 0 0

M9Ks 9 17 33 9 17 33

Table 4.8: Resource usage of VIPERS II, without MAC/multipliers

network will grow proportionally as the number of vector lanes increase. The fracturable

processing units account for most of the added ALM usage in the vector lanes, especially

with the implementation of fracturable multipliers. The partial product method described

in Section 3.6 requires multiplexers for input and output selection and adders to sum up the

partial products, resulting in added resources. Another source of the increased ALM usage

is the sum-reduction tree, which also involves adders, in the MAC unit. Table 4.8 quantifies

the amount of resource savings achievable by removing the MAC unit and multipliers. The

results reveal an average cost of 120 ALMs/lane for the MAC units, and 330 ALMs/lane

for the multipliers.

Although the resource usage numbers are larger than anticipated, there are a few modifi-

cations that can be made to reduce resource consumption. One way is to reduce the number

of address registers. As it was pointed out in Section 4.1, the auto-increment/decrement

58

4.5. Resource Usage

feature allows the same benchmark to be implemented using fewer address registers. From

our experience in developing benchmarks with the VIPERS II assembly, the number of ad-

dress registers required to implement the benchmarks is no more than eight. Reducing the

number of address registers from thirty-two down to sixteen would result in approximately

3000 less ALMs in each of the VIPERS II designs, making the smaller four-lane designs of

VIPERS and VIPERS II comparable in area.

Another key resource to examine is the amount and the efficiency of memory usage.

Table 4.6 shows that VIPERS II uses 6 fewer M9Ks than VIPERS in the V4 and V8 con-

figurations, this difference is due to the UTIIe scalar processor and the VIPERS memory

interface. In the V16 configuration, VIPERS II consumes more M9Ks than VIPERS, be-

cause 31 extra M9Ks are used in the alignment network as shift registers. If only the vector

registers and vector memory are concerned, the number of M9Ks consumed are exactly the

same for both architectures, but the register file in VIPERS has less capacity due to data

duplication. Table 4.9 shows the efficiency of the memory in each design using the four lane

configuration and VIPERS architecture with a VPUW of 32 bits.

VIPERS VIPERS II

Operand Size ALL 32-bit 16-bit 8-bit

M9Ks 8 8

Elem. in memory 1024 2048 4096 8192

Elem./M9K 128 256 512 1024

Table 4.9: Memory Efficiency

The register files in VIPERS have a fixed width equal to VPUW ; therefore, their capacity

is also fixed regardless of operand size. With word-size operands, the register files are

fully utilized, so the factor-of-two difference shown in the capacity is the result of data

duplication in the original VIPERS. Having the advantage of storing data at their natural

length, VIPERS II can provide up to 8 times more capacity than VIPERS when using byte-

size data. These results demonstrate that by replacing physical register files with address

registers, the VIPERS II architecture can utilize the on-chip memory resources much more

59

4.6. Scalability

efficiently.

4.6 Scalability

This section discusses the scaling of VIPERS II and scaling-induced stress on FPGA re-

sources.

As the VIPERS II design scales up to more lanes, the first resource bottleneck is the

number of MLABs available on a given Stratix III device. This is due to the underutilization

of the MLABs, which can be improved by adding some surrounding logic as mentioned in

Section 3.3.1. For the purpose of scaling, the flag register depth is reduced to two to relieve

the MLAB bottleneck.

The next resource bottleneck is the DSP blocks. The Stratix III family of devices offers

up to 112 DSP blocks in a single FPGA, which can be used to implement a 64-lane instance

of the VIPERS II.

The DSP blocks are used to implement the fracturable multipliers in the VIPERS II.

To bypass the DSP bottleneck, VIPERS II can be configured to have no multipliers. In this

mode, the amount of M9K memory becomes the bottleneck. Based on estimates, a 256-lane

design should fit in the largest Stratix III chip, but due to lengthy compile times results are

not yet available.

4.7 Design Verification

The top priority in the design of VIPERS II is its functionality, so extensive testing was

performed at various stages of the design to verify the correctness of the design.

The major components of VIPERS II, such as the vector address registers, data align-

ment crossbar network, and the fracturable ALUs, have all been tested individually before

being integrated into the final design. For the 4, 8, and 16-lane instances of VIPERS II,

the DACN was verified using various combinations of offset and operand sizes, for vector

60

4.7. Design Verification

lengths up to 128 elements. The fracturable adders and multipliers were exhaustively tested

for byte-size and halfword-size operands. For word-size operands, 100,000 random input test

cases were verified for each of the signed and unsigned operations.

The fully integrated VIPERS II design was tested for each of the supported vector

instructions at all three operand sizes. The design was also verified against a scalar Nios II

processor in hardware using the three benchmark applications, which will be introduced in

Chapter 5.

61

Chapter 5

Benchmark Results

This chapter presents the benchmark performance results of VIPERS II. First, the bench-

mark preparation is described for each of the three benchmarks. Next, both the simulated

performance results from ModelSim and the hardware performance results as implemented

on the Altera DE3 development board are presented.

5.1 Benchmark

Three benchmarks are chosen to compare the performance of VIPERS II and VIPERS:

• 16-tap FIR filter

• Image median filter

• Block matching motion estimation

Both the median filter and motion estimation were part of the original VIPERS benchmark

suite. The AES encryption benchmark was replaced by the 16-tap FIR filter because the

AES benchmark does not involve many load/store operations and is not expected to benefit

much from the changes to the ISA. In the following sections, the operation and preparation

of each benchmark is presented.

5.1.1 16-Tap Finite Impulse Response Filter

The 8-tap FIR filter was introduced earlier as an example to demonstrate the vector pro-

cessing programming model. Once again, the operation of the FIR filter is described by the

62

5.1. Benchmark

equation:

y[n] =
7∑

k=0

x[n− k]h[k].

A scalar implementation of the 8-tap FIR filter would consists of an inner loop that

performs eight multiply-add operations on the input data and filter coefficients, and an

outer loop to iterate over the entire sample size. The inner loop can be vectorized to exploit

data-level parallelism. Figure 2.1 shows the same FIR filter implemented with the vector

assembly of the original VIPERS. The code uses the VMAC instruction to multiply the

vector of filter coefficients with data samples, and the VCCZACC instruction sums up the

multiplication results. To prepare for the next operation, the VUPSHIFT instruction is

used to shift the data samples by one element.

Vector assembly of the FIR filter for VIPERS II uses the same VMAC/VCCZACC

instruction pair to compute the results. However, since the vectors are stored in memory,

an up-shifting of the vector would be the same as moving the vector to a new location and

will take longer to execute. Therefore, a different approach must be taken to iterate over

the entire range of data samples.

Figure 5.1 shows a 16-tap FIR filter benchmark implementation using the VIPERS II

architecture. To maximize performance, the data samples and filter coefficients must be

aligned in the vector memory. This is accomplished by having multiple copies of the filter

coefficients inside the memory, one at each aligned location as shown in Figure 5.2. Once

the coefficients are in place, the address registers will be incremented to step through all of

the data samples as illustrated by the curved arrows in Figure 5.2.

5.1.2 Block Matching Motion Estimation

The block matching motion estimation calculates the displacement of an image block using

the sum of absolute differences (SAD) metric:

63

5.1. Benchmark

Figure 5.1: FIR Filter Benchmark in VIPERS II Assembly

64

5.1. Benchmark

Figure 5.2: Vector Scratchpad Memory setup for 16-tap FIR Filter

65

5.1. Benchmark

for(n=−16; n<16; n++)
for(m=−16; m<16; m++) {

sad = 0;
for(j=0; j<16; j++)

for(i=0; i<16; i++) { 5

temp = c[j][i] − s[n+j][m+i];
sad += ((temp >> 31) == 1)? (−temp) : temp;

}
result[n][m] = sad;

} 10

Figure 5.3: Motion estimation C code (Source: [29])

SAD[m,n] =
N−1∑
i=0

N−1∑
j=0

|c[i][j]− s[i + m][j + n]|.

Figure 5.3 shows the C implementation of the full search block matching algorithm

(FSBMA), which computes the SADs within a 32×32 search window for a 16×16 reference

image block. The two nested inner loops calculate the absolute difference of each pixel

between two 16× 16 images. The two outer loops iterate over the entire search window.

This algorithm can be vectorized by replacing the innermost loop with a sixteen-element

vector. Figure 5.4 illustrates the FSBMA implemented with VIPERS assembly. The inner

loop of the code computes the absolute difference of a row of pixels in the image block using

the VABSDIFF instruction and iterates through all 16 rows. At the end of each loop, the

VMAC/VCCZACC instructions are used to sum up all elements in the resulting vector.

This is referred to as the one-window version of the motion estimation benchmark.

For VIPERS II, the motion estimation benchmark can be implemented using the same

set of instructions, as shown in Figure 5.5. However, with the new architecture, the two

load instructions at the beginning of the loop (L15) are eliminated, providing significant

improvement in performance. This saves programmers the extra effort to unroll the loops

for optimal performance.

66

5.1. Benchmark

vmstc va1, r1 ; load va1

vmstc vbase2, r6 ; load y base
vadd v5, v0, v0 ; zero sum

.L15: ; innermost loop over rows 5

vld.b v2, vbase1, vinc1 ; macroblock pixels, vinc1 = 16
vld.b v3, vbase2, vinc2 ; frame pixels, vinc2 = IMGWIDTH
vabsdiff v4, v2, v3
vadd v5, v5, v4 ; accumulate to sum
addi r2, r2, −1 ; j++ 10

bne r2, zero, .L15 ; loop again if (j<15)

vfld vfmask1, vbase4, vinc4 ; load flag mask
vmac.1 v6, v5 ; accumulate across sum
vcczacc v6 ; copy from accumulator 15

vmstc VL, r9 ; reset VL after vcczacc
vext.vs r3, v6 ; extract result to scalar core

Figure 5.4: Motion Estimation Benchmark in VIPERS Assembly (Source: [29])

In the one-window version, the vector length is limited to 16 because of the size of the

reference image. However, it is possible to increase the vector length to 32 by matching two

copies of the reference block as illustrated by Figure 5.6. In order to support a vector length

of 32, the two-window version of motion estimation must be implemented on VIPERS with

at least 8 vector lanes. The same approach can be applied to improve performance in the

VIPERS II architecture. However, since the maximum vector length for VIPERS II is more

relaxed than for VIPERS, the two-window version can be executed with any number of

lanes. Note that it is possible to implement the two-window motion estimation benchmark

with a 4-lane instance of VIPERS by increasing the number of data elements in the register

file from 4 to 8. However, this would double the number of M9Ks consumed by the design.

5.1.3 Image Median Filter

The median filter is commonly used in image processing to filter out unwanted noise in an

image. It works by replacing each pixel with the median value of surrounding pixels. Figure

5.7 shows the C implementation of a median filter that searches for the median within a

67

5.1. Benchmark

Figure 5.5: Motion Estimation Benchmark in VIPERS II Assembly

Figure 5.6: Two Window Motion Estimation (Source: [29])

68

5.1. Benchmark

for (i=0; i<=12; i++) {
min = array[i];
for (j=i; j<=24; j++) {

if (array[j] < min) {
temp = min; 5

min = array[j];
array[j] = temp;

}
}

} 10

Figure 5.7: 5× 5 Median Filter C code (Source: [29])

Figure 5.8: Vectorizing Median Filter Benchmark (Source: [29])

5× 5 window using bubble sort.

Different from the FIR filter, the median filter benchmark can be vectorized to exploit

outer-loop parallelism. Figure 5.8 illustrates how the vectorizing is achieved. A total of 25

vectors with length VL are created, each containing a row of pixel data in the image. The

starting element of each vector is offset by one pixel, such that the first element of the 25

vectors would present a 5× 5 image window.

The VIPERS II vector assembly of median filter is shown in Figure 5.9. The inner

bubble sort algorithm is the same as the scalar implementation; however, every instruction

computes VL number of results. Note that the median filter benchmark can use vector

lengths up to the width of the image, making it a good match for the relaxed MVL available

in VIPERS II.

69

5.1. Benchmark

Figure 5.9: Median Filter Benchmark in VIPERS II Assembly

70

5.2. Performance

5.2 Performance

This section presents the performance of the new VIPERS II architecture on the three

benchmarks: FIR filter, motion estimation, and median filter. First, the performance re-

sult from ModelSim simulations are presented and compared against that of the original

VIPERS. Then, the performance of the VIPERS II system in hardware is compared to the

Nios II scalar processor.

5.2.1 Simulated Performance

Table 5.1 lists the simulated performance results for the three benchmarks in terms of

instruction count and cycle count. Each benchmark was simulated for V4, V8, and V16

configurations and all simulation runs use byte-size operands.

The table shows results for several different versions of the benchmarks. For the motion

estimation benchmark, two versions of the code were used: the one-window version using a

vector length of 16 and the two-window version using a vector length of 32. Motion estima-

tion in the original VIPERS used the one-window version for V4, because it has a vector

length limit of 16, and the two-window version was used for V8 and V16; therefore, the

two-window version must be introduced for fair comparison. The VIPERS II vector assem-

bly codes do not have unrolled versions, because they are expected to achieve performance

that are similar to the unrolled VIPERS code without unrolling. The table is structured to

show the corresponding results in the two architectures side-by-side.

Table 5.1 shows the speedup of VIPERS II over VIPERS based on the simulated cycle

counts. As expected, the new VIPERS II architecture demonstrates improved performance

over the rolled versions of the benchmarks. When comparing the unrolled versions, the

added computational power from the fracturable ALUs help overcome the loop overheads,

so the VIPERS II actually delivered slightly better results than that of the unrolled code.

When factoring in the operating frequency, the speedup is not as good because the

71

5.2. Performance

Architecture VIPERS VIPERS II

Configuration V4 V8 V16 V4 V8 V16

Fmax (MHz) 113.05 115.49 108.99 47.70 48.92 44.88

Dynamic Instruction Count

FIR-16 - 1315 1300 1048 996 988

Median Filter 93 47 23 84 42 21

Median Filter unrolled 44 22 11

Motion Est. 1 Win 111840 - - 77420 77420 77420

Motion Est. 1 Win unrolled 37568 - -

Motion Est. 2 Win - 56232 56232 38716 38716 38716

Motion Est. 2 Win unrolled - 37568 37568

Simulated Cycle Count

FIR-16 - 6128 5964 1392 1496 1612

Median Filter 496 256 141 176 90 46

Median Filter unrolled 189 95 48

Motion Est. 1 Win 717120 - - 152173 155245 159341

Motion Est. 1 Win unrolled 157792 - -

Motion Est. 2 Win - 346203 269214 96581 81221 84293

Motion Est. 2 Win unrolled - 88288 55328

Speedup (cycle counts only)

FIR-16 - 4.096 3.700
Median Filter 2.818 2.844 3.065
Median Filter unrolled 1.074 1.056 1.043
Motion Est. 1 Win 4.713 - -
Motion Est. 1 Win unrolled 1.037 - -
Motion Est. 2 Win 7.425 4.262 3.194
Motion Est. 2 Win unrolled 1.634 1.087 0.656

Speedup (including Fmax)

FIR-16 - 1.735 1.523
Median Filter 1.189 1.205 1.262
Median Filter unrolled 0.453 0.447 0.430
Motion Est. 1 Win 1.988 - -
Motion Est. 1 Win unrolled 0.438 - -
Motion Est. 2 Win 3.133 1.806 1.315
Motion Est. 2 Win unrolled 0.689 0.460 0.270

Table 5.1: VIPERS II Simulated Performance Results

72

5.2. Performance

VIPERS II can only operate at about half the clock speed of the original VIPERS. This

initial design of the VIPERS II focuses more on the functionality of the vector processor,

so not much effort was put into operating at a high frequency. Based on the static timing

analysis of Quartus, the critical path was found to be within the address generation logic.

Since the vector scratchpad memory is operating at twice the frequency of the vector core,

the address generation logic failed to keep up with demands. Introducing a deeper pipeline

would increase the operating frequency of VIPERS II, but cannot be included in this thesis

due to time constraints.

Comparing the different configurations of VIPERS II, the results show that the per-

formance actually drops as the number of lanes increases for the FIR filter and motion

estimation benchmarks. This unexpected behaviour is the result of the benchmarks’ limi-

tation on vector length. The 16-tap FIR filter only has a natural vector length of 16. The

motion estimation benchmark has a natural vector length of 32 when scanning two windows

at a time; however, that is as high as it can go because the search range is only a 32 × 32

block. As a result, although VIPERS II offers four times as much computational power

at byte-size granularity, the vectors in these two benchmarks are not long enough to fill

the pipeline and benefit from the large number vector lanes. Especially in the FIR filter

benchmark, the extra overhead required to setup the vectors in a wider scratchpad memory

actually degrades performance as the number of vector lanes increases.

5.2.2 Hardware Performance

The VIPERS II system was implemented in hardware using the Altera DE3 development

board. The vector processor, the Nios II, and the DMA engine was implemented in the

Stratix III EP3SL150F1152C3ES device, and the system-level connections between these

components are accomplished with the Avalon fabric. An external DDR2 memory is con-

nected as the main memory via the provided interface on the DE3 board. On the system

level, the clock network generates an extra 7ns of delay, lowering the operating frequency

73

5.2. Performance

Benchmark FIR-16 Motion Estimation Median Filter
Time(ms) Speedup Time(ms) Speedup Time(ms) Speedup

Nios II/f 1.39 1.00 5.23 1.00 94.43 1.00

V4+Nios II/f 0.24 5.76 1.31 4.00 7.88 11.98

V8+Nios II/f 0.24 5.83 1.11 4.70 3.98 23.76

V16+Nios II/f 0.25 5.49 1.91 2.75 2.01 47.07

Table 5.2: VIPERS II Performance in hardware

of VIPERS II down to 37.5 MHz.

Table 5.2 illustrates the hardware performance of the VIPERS II comparing against the

performance of the fastest Nios II processor, operating at 166 MHz, on the DE3 board. The

benchmarks are slightly different from what was used for the simulations in the previous

section. The FIR filter uses 16 taps with 1024 data elements. The median filter benchmark

times are for the computation of a 512×16 image. Only the one-window motion estimation

benchmark is used, and the execution times are recorded for a 32× 32 search range. More-

over, in order to ensure the correctness of the design, the VIPERS II results were verified

using the Nios II outputs. Although the benchmarks were written for byte-size data, the

operand size is set to half-word for the hardware runs to avoid any overflow issues and

ensure correctness versus the Nios II output.

Figure 5.10 plots the speedup of VIPERS II over the Nios II. For the median filter

benchmark, as expected, the speedup increases as the number of vector lanes increases.

However, for the FIR filter and motion estimation benchmark, the limitation on vector

length and setup overhead degrades the amount of achievable speedup as the number of

vector lanes increases.

74

5.2. Performance

Figure 5.10: Speedup: VIPERS II vs. Nios II

75

Chapter 6

Conclusion

In [30, 31], the VIPERS soft vector processor demonstrated the potential of vector processing

to improve performance of data-parallel embedded applications. The VIPERS architecture

provides scalable performance and area without hardware design effort. However, it has a

few shortcomings:

• load and store latencies

• data duplication

• high instruction count for unrolled code

This thesis proposed the new VIPERS II architecture, which aims to overcome these short-

comings of the original VIPERS.

The VIPERS II architecture takes advantage of the fast on-chip memory available in

modern FPGAs to allow the vector processor to access data directly from memory. This

is made possible by replacing the vector register file with address registers that point to

locations in memory where vector data are stored. The removal of the vector register file

eliminates the need for vector load/store operations, and it also reduces the number of

copies of vector data in the on-chip memory down to one. With the load and store latencies

removed, there is no need to spend the extra design effort in unrolling the applications, and

the vector instruction code remains compact.

With the direct coupling of vector memory to the vector datapath, fracturable processing

units are introduced to allow execution on different operand sizes. These fracturable pro-

cessing units also provides twice or four times as much computational power with operand

76

6.1. Future Work

sizes of 16 bits and 8 bits, respectively. By implementing the VIPERS II instruction set as

an extended custom instruction of Nios II, the soft vector processor can utilize Nios II as

its scalar core, providing a fully pipelined scalar unit with debug capability.

The VIPERS II is not yet tuned for high operating frequency, so it is only operating

at about half the frequency of the original VIPERS. Assuming we can bring the operating

frequency of VIPERS II to be similar to the original VIPERS, the new architecture can

achieve 3x speedup over the rolled benchmarks of VIPERS at a cost of 2x the number of

ALMs used. Compared against the unrolled code, the VIPERS II would provide similar

performance without actually unrolling the loop. Moreover, the VIPERS II soft vector

processor is able to provide up to 40x speedup over the scalar Nios II processor.

6.1 Future Work

The VIPERS II architecture presented in this thesis demonstrated its advantage over the

original VIPERS architecture. However, there is still much fine tuning that can be done to

further improve the design.

Operating Frequency

As mentioned earlier, the VIPERS II has a much lower operating frequency than the original

VIPERS. This may be improved by a deeper, more balanced pipeline. The current critical

path is in the address generation logic. Because the vector memory is operating at double

the frequency of the vector core, the source address generation logic only has half a cycle

to output the read address to vector memory. It would greatly enhance the performance

of VIPERS II if the address generation logic can be pipelined to improve the operating

frequency of the vector processor.

77

6.1. Future Work

Data Alignment Crossbar Network

The control and tag generation for strided and indexed vector moves need to be added to the

VIPERS II implementation to provide all the features of the original VIPERS. Implementing

the DACN using the Omega network and its time-folded version, and comparing the area

and performance against the current Benes network implementation may save resources.

Moreover, if a generic control algorithm can be developed, the DACN can be utilized to

support vector permutation instructions for some common permutations, such as perfect

shuffle, unshuffle, and vector reversal.

Address Registers

Although the flip-flop implementation of address register provides the flexibility needed, the

cost in resources is much higher than anticipated. It would be beneficial to devise a way to

implement the address registers more efficiently, perhaps using on-chip memory. This might

be difficult for the base address register because of all the surrounding logic. However, the

incr registers and the window registers are both read-only for most vector operations. It

should be relatively easy to implement these supplementary registers with on-chip memory.

Finally, the current VIPERS II implements all 32 vector address registers; since applications

rarely use more than 8 address registers, reducing the number of address registers in the

architecture can also provide area savings.

MLAB Usage

As mentioned in Section 3.3.1, the MLABs are not fully utilized when used as 16 × 1

memory blocks, surrounding logic needs to be implemented to allow much longer vector

flag registers. The MLABs in the Stratix III FPGA can be configured, forming memory

blocks of size 16 × 8 up to 16 × 20. The wider memory can be read via a multiplexer to

emulate a deeper memory block.

78

6.1. Future Work

Design Verification

Although the individual building blocks of VIPERS II, such as the fracturable ALUs and

the data alignment crossbar network, have been tested extensively, the fully integrated

design has only been verified for the three benchmark applications. More extensive, full-

scale testing have to be carried out with other benchmarks to ensure the functionality and

validity of the VIPERS II architecture.

79

References

[1] H. Ahmadi and W. E. Denzel. A survey of modern high-performance switching tech-

niques. IEEE Journal on Selected Areas in Communications, 7(7):1091–1103, 1989.

[2] Altera. Nios II. http://www.altera.com/products/ip/processors/nios2/

ni2-index.html.

[3] Altera. Nios II custom instruction user guide. http://www.altera.com/literature/

ug/ug_nios2_custom_instruction.pdf.

[4] Altera. Stratix III device handbook, volume 1. http://www.altera.com/literature/

hb/stx3/stx3_siii5v1.pdf, July 2009.

[5] Krste Asanovic. Vector microprocessors. PhD thesis, University of California, Berkeley,

1998.

[6] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for

scratch-pad-based embedded systems. ACM Transactions on Embedded Computing

Systems (TECS), 1(1):6–26, 2002.

[7] R. Banakar, S. Steinke, B. S Lee, M. Balakrishnan, and P. Marwedel. Scratchpad mem-

ory: design alternative for cache on-chip memory in embedded systems. In Proceedings

of the Tenth International Symposium on Hardware/Software Codesign, pages 73–78,

2002.

[8] V. E Benes. Optimal rearrangeable multistage connecting networks. Bell Systems

Technical Journal, 43(7):1641–1656, 1964.

80

http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.altera.com/products/ip/processors/nios2/ni2-index.html
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf
http://www.altera.com/literature/hb/stx3/stx3_siii5v1.pdf

Chapter 6. References

[9] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal,

32(2):406–424, 1953.

[10] S. H. Dhong, O. Takahashi, M. White, T. Asano, T. Nakazato, J. Silberman, A. Kawa-

sumi, H. Yoshihara, and A. IBM. A 4.8 GHz fully pipelined embedded SRAM in

the streaming processor of a CELL processor. In 2005 IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), pages 486–487, 2005.

[11] R. Ernst. Codesign of embedded systems: Status and trends. In Readings in Hard-

ware/Software Co-Design, page 54, 2001.

[12] B. Flachs, S. Asano, S. H. Dhong, P. Hotstee, G. Gervais, R. Kim, T. Le, P. Liu,

J. Leenstra, J. Liberty, et al. A streaming processing unit for a CELL processor. In

2005 IEEE International Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), pages 134–135, 2005.

[13] Blair Fort, Davor Capalija, Zvonko G. Vranesic, and Stephen D. Brown. A multi-

threaded soft processor for SoPC area reduction. In Proceedings of the 14th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines, pages 131–

142. IEEE Computer Society, 2006.

[14] M. Kandemir, J. Ramanujam, M. J Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh.

A Compiler-Based approach for dynamically managing Scratch-Pad memories in em-

bedded systems. IEEE Transaction on Computer-Aided Design of Integrated Circuits

and Systems, 23(2):243–260, 2004.

[15] Christoforos Kozyrakis. Scalable Vector Media Processors for Embedded Systems. PhD

thesis, University of California at Berkeley, May 2002. Technical Report UCB-CSD-

02-1183.

[16] Christoforos E. Kozyrakis and David A. Patterson. Scalable vector processors for

embedded systems. IEEE Micro, 23(6):36–45, 2003.

81

Chapter 6. References

[17] K. Y. Lee. A new benes network control algorithm. IEEE Trans. Comput., 36(6):768–

772, 1987.

[18] Y. Lin, H. Lee, Y. Harel, M. Woh, S. Mahlke, T. Mudge, and K. Flautner. A system

solution for High-Performance, low power SDR. In SDR Technical Conference, 2005.

[19] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,

Chaitali Chakrabarti, and Krisztian Flautner. SODA: a low-power architecture for

software radio. SIGARCH Comput. Archit. News, 34(2):89–101, 2006.

[20] Binu Mathew and Al Davis. An energy efficient high performance scratch-pad memory

system. Proceeding of 2004 International Design Automation Conference (DAC’04),

2004.

[21] P. R Panda, N. D Dutt, and A. Nicolau. On-chip vs. off-chip memory: the data

partitioning problem in embedded processor-based systems. ACM Transactions on

Design Automation of Electronic Systems (TODAES), 5(3):704, 2000.

[22] JongSoo Park, Sung-Boem Park, James D. Balfour, David Black-Schaffer, Christos

Kozyrakis, and William J. Dally. Register pointer architecture for efficient embed-

ded processors. In Proceedings of the Conference on Design, Automation and Test in

Europe, pages 600–605, Nice, France, 2007. EDA Consortium.

[23] D. Pham, E. Behnen, M. Bolliger, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama,

J. Keaty, B. Le, Y. Masubuchi, et al. The design methodology and implementation of

a first-generation CELL processor: a multi-core SoC. In Proceedings of the IEEE 2005

Custom Integrated Circuits Conference, pages 45–49, 2005.

[24] Richard M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63–72,

1978.

82

[25] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory allocation for

scratch-pad based embedded systems. In Proceedings of the 2003 International Con-

ference on Compilers, Architecture and Synthesis for Embedded Systems, page 286,

2003.

[26] P. Yiannacouras, J. G Steffan, and J. Rose. Data parallel FPGA workloads: Soft-

ware versus hardware. In Proceedings of the 2009 International Conference on Field

Programmable Logic and Applications., pages 51–58, Progue, Czech Republic, 2009.

[27] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. VESPA: portable, scal-

able, and flexible FPGA-based vector processors. In Proceedings of the 2008 Interna-

tional Conference on Compilers, Architectures and Synthesis for Embedded Systems,

pages 61–70, Atlanta, GA, USA, 2008. ACM.

[28] Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. Fine-grain performance

scaling of soft vector processors. In Proceedings of the 2009 International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, pages 97–106, Grenoble,

France, 2009. ACM.

[29] Jason Yu. Vector processing as a soft-cpu accelerator. Master’s thesis, University of

British Columbia, 2008.

[30] Jason Yu, Christopher Eagleston, Christopher Han-Yu Chou, Maxime Perreault, and

Guy Lemieux. Vector processing as a soft processor accelerator. ACM Trans. Recon-

figurable Technol. Syst., 2(2):1–34, 2009.

[31] Jason Yu, Guy Lemieux, and Christpher Eagleston. Vector processing as a soft-core

CPU accelerator. In Proceedings of the 16th International ACM/SIGDA Symposium

on Field Programmable Gate Arrays, pages 222–232, Monterey, California, USA, 2008.

ACM.

83

Appendix A

VIPERS II Instruction Set

Architecture (ISA)

A.1 Introduction

VIPERS II is a single-instruction-multiple-data (SIMD) array of processors organized into

parallel datapaths called vector lanes. The number of lanes is the based on the vector

scratchpad memory width (MemWidth). All lanes execute the same operation specified by

a single vector instruction. Each vector lane hosts a complete copy of all functional units,

and connects directly to its own 32-bit section of the vector scratchpad memory.

The VIPERS II ISA supports all of the original VIPERS instructions, except for the

vupshift, which is replaced by vector moves in the new architecture. The differences of this

ISA from the VIPERS ISA are:

• uses vector address registers instead of vector registers,

• auto post-increment/pre-decrement and circular buffer features,

• different instruction encoding,

• fracturable processing units,

• vector move instructions for data alignment,

• no VUPSHIFT instruction,

• no instruction modifies VL as a side effect.

84

A.2. Vector Register Set

Table A.1: List of configurable processor parameters

Parameter Description Typical

MemWidth Scratchpad memory width (bits) 128, 256, 512
MACL MAC chain length in words (0 is no MAC) 0,2,4,8
Vmult Vector lane hardware multiplier On/Off
Vmanip Vector manipulation instructions (vector insert/extract) On/Off

A.1.1 Configurable Architecture

This ISA specifies a set of features for an entire family of soft vector processors with vary-

ing performance and resource utilization. The ISA is intended to be implemented by an

instance of the processor generated by a CPU generator using a few user-selectable con-

figuration parameters. An implementation or instance of the architecture is not required

to support all features of the specifcation. Table A.1 lists the configurable parameters and

their descriptions, as well as typical values. These parameters will be referred to throughout

the specification.

MemWidth is the the primary determinant of performance of the processor. It controls

the number of parallel vector lanes and functional units that are available in the processor.

The remaining parameters are used to enable or disable optional features of the processor.

A.2 Vector Register Set

The following sections define the registers in the VIPERS II architecture. Control registers

and distributed accumulators will also be described.

A.2.1 Vector Address Registers

The architecture defines thirty-two 20-bit vector address registers directly addressable from

the instruction opcode. The vector address registers store scratchpad memory locations

of vectors to be accessed by the instruction. The size of 20 bits is sufficient to address a

85

A.2. Vector Register Set

scratchpad memory implemented using all of the on-chip memory blocks available in the

EP3SL150 device that we are using. Auto post-increment, pre-decrement, and circular

buffer features are implemented to lower loop overhead.

Vector address register va0 is reserved for misalignment correction. It must be initialized

to point to a free region within the scratchpad memory. This free region must be sufficiently

large to hold an entire vector plus MemWidth extra bits.

A.2.2 Vector Scalar Registers

Scalar registers are read for vector-scalar instructions which require both a vector and a

scalar operand. Scalar registers of the vector processor are located in the scalar core, which

are implemented within Altera’s Nios II soft processor. The Nios II ISA defines thirty-two

32-bit scalar registers. Scalar register values can also be transferred to and from vector

registers or vector control registers using the vins.vs, vext.vs, vmstc, vmcts instructions,

respectively.

A.2.3 Vector Flag Registers

The architecture defines 8 vector flag registers. The flag registers are written to by compar-

ison instructions and by flag logical instructions. Most instructions in the instruction set

support conditional execution using one of two vector masks, determined by a mask bit in

the instruction opcodes. The vector masks are stored in the first two vector flag registers.

A value of 1 in a vector lane’s mask register will disable the lane processor from executing

the instruction. Table A.2 shows a complete list of flag registers.

A.2.4 Vector Control Registers

Table A.3 lists the vector control registers in the soft vector processor.

The vindex control register holds the vector element index that controls the operation

of vector insert and extract instructions. The register is writeable. For vector-scalar in-

86

A.2. Vector Register Set

Table A.2: List of vector flag registers

Hardware Name Software Name Contents

$vf0 vfmask0 Primary mask; 1 disables lane operation
$vf1 vfmask1 Secondary mask; 1 to disables lane operation
$vf2 vfgr0 General purpose
...
$vf6 vfgr4 General purpose
$vf7 Integer overflow

Table A.3: List of control registers

Hardware Name Software Name Description

$vc0 VL Vector length
$vc1 vindex Element index for insert (vins) and extract (vext)
...
$vc13 vmissrc Num. of occurrences for misaligned sources
$vc14 vmisdsta Num. of occurrences for misaligned src A to dest.
$vc15 vmisdstb Num. of occurrences for misaligned src B to dest.

$vc16 vstride0 Stride register 0
...
$vc31 vstride15 Stride register 15

87

A.2. Vector Register Set

sert/extract, vindex specifies which data element within the vector register will be written

to/read from by the scalar core. For vector-vector insert/extract, vindex specifies the index

of the starting data element for the vector insert/extract operation.

The vmissrc, vmisdsta, and vmisdstb control registers count the number of occurences

for each type of misalignment. These are intended to aid the user when performance tuning

software.

A.2.5 Vector Address Increment/Decrement Registers

The architecture defines 32 20-bit vector address increment/decrement registers (vi0–vi31).

These registers hold the auto post-increment or pre-decrement amount of their correspond-

ing vector address registers.

A.2.6 Vector Window Registers

The architecture defines 32 20-bit vector window registers (vw0–vw31). These registers hold

the window size of their corresponding vector address registers, when used in circular buffer

mode. A vector window register with value of zero indicates the corresponding address

register is not in circular buffer mode. Setting a bit to one in the window register prohibits

the corresponding address bit from being updated by a post-increment or pre-decrement

operation.

A.2.7 Vector Sum Reduction

The fracturable multiplier described in the previous section uses the DSP blocks in individ-

ual multiplier mode, so the accumulator and sum reduction hardware can not be utilized

for the multiply-accumulate feature. Figure A.1 shows the sum-accumulate unit, which

consists of a sum-reduction tree and an accumulator, designed for each of the vector lanes.

For byte-size data, the sum-reduction starts at the first level of adders; for halfword-size

operands, the multiplier results enters the tree at the second level. At the output of the

88

A.2. Vector Register Set

Figure A.1: Sum-Reduction Tree and Accumulator

adder tree, a 32-bit accumulator is used to store the sum-reduced results. The chain adder

in the sum-accumulate unit is used to sum reduce the results across vector lanes. Unlike the

original VIPERS, the VIPERS II’s implementation of the multiply-accumulate operation

reuses the multipliers, making it more efficient in terms of resource usage.

The compress copy operation (VCCACC/VCCZACC) is accomplished by summing up

all the accumulator results by connecting multiple sum-accumulate units together. In

the original VIPERS, the compress copy operation may require multiple iterations of the

VMAC/VCCACC instructions to produce a single result. Since the sum-accumulate units

of VIPERS II do not use the fixed DSP blocks, internal signals are fully accessible and are

utilized to implement a simpler compress copy operation.

Figure A.2 illustrates how the sum-accumulate units are connected in a 4-lane instance

of VIPERS II, with MAC chain length (MACL) of 2. The MACL defines how many sum-

accumulate units are connected in series via the chain adder. With a MACL of 2, the

VCCACC instruction can sum-reduce the accumulator results to a single 32-bit result in

2 cycles. In the first cycle, the accumulator results of sum-accumulate units 0 and 1 is

summed up by the chain adder and stored in the accumulator of sum accum0, and the

accumulator results of sum-accumulate units 2 and 3 is summed and stored in sum accum1.

In the second cycle, the results generated in the previous cycle is summed up and written

89

A.3. Instruction Set

Figure A.2: MAC Chain

back in to the vector scratchpad memory. When the number of lanes is less than or equal

to MACL, the sum-reduction completes in one cycle. If NLane is greater than MACL, the

sum-reduction will require logMACLNLane (round up) cycles to finish.

A.3 Instruction Set

The following sections describe in detail the instruction set of VIPERS II soft vector pro-

cessor, and different variations of the vector instructions.

A.3.1 Data Types

The VIPERS II processor supports data widths of 32-bit words, 16-bit halfwords, and 8-bit

bytes, and both signed and unsigned data types. The data width of an instruction is defined

90

A.3. Instruction Set

by the opcode.

A.3.2 Data Alignment

Since vector lanes are connected directly to the vector memory, data to be operated on

must be aligned. When misalignment occurs, vector move instructions are used to move

the data into alignment.

The instruction set supports three types of vector move:

1. Offset move

2. Strided move (not yet implemented)

3. Indexed move (not yet implemented)

A.3.3 Flag Register Use

Almost all instructions can specify one of two vector mask registers in the opcode to use as

an execution mask. By default, vfmask0 is used as the vector mask. Writing a value of 1

into the mask register will cause that lane to be disabled for operations that use the mask.

Some instructions, such as flag logical operations, are not masked.

A.3.4 Instructions

The instruction set includes the following categories of instructions:

1. Vector Integer Arithmetic Instructions

2. Vector Logical Instructions

3. Vector Flag Processing Instructions

4. Vector Manipulation Intructions

5. Vector Move Instructions

91

A.4. Instruction Set Reference

A.4 Instruction Set Reference

The following sections list the complete instruction set for each of the instruction type.

Table A.4 describes the possible qualifiers in the assembly mnemonic of each instruction.

Table A.4: Instruction qualifiers

Qualifier Meaning Notes

op.vv Vector-vector
Vector arithmetic and logical instructions may take
one source operand from a scalar register. A vector-
vector operation takes two vector source operands; a
vector-scalar operation takes its second operand from
the scalar register file; a scalar-vector operation takes
its first operand from the scalar register file. The .sv in-
struction type is provided to support non-commutative
operations.

op.vs Vector-scalar
op.sv Scalar-vector

op.1 Use vfmask1 as the mask By default, the vector mask is taken from vfmask0.
This qualifier selects vfmask1 as the vector mask.

In the following tables, instructions in italics are not yet implemented. The term ’VP’

stands for ’virtual processor’, which represents the set of functional units for a lane. Note

that the width of the VP depends upon the operand size, either byte, halfword, or word.

92

A.4. Instruction Set Reference

A.4.1 Integer Instructions

Name Mnemonic Syntax Summary

Absolute
Value

vabsb

vabsh

vabsw

.vv[.1] vD, vA Each unmasked VP writes into
vD the absolute value of vA.

Absolute Dif-
ference

vabsdiffb

vabsdiffh

vabsdiffw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, vB

Each unmasked VP writes into
vD the absolute difference of vA
and vB/rS.

Add vaddb

vaddh

vaddw

vaddub

vadduh

vadduw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into
vD the signed/unsigned integer
sum of vA and vB/rS.

Subtract vsubb

vsubh

vsubw

vsubub

vsubuh

vsubuw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into
vD the signed/unsigned integer
result of vA/rS minus vB/rS.

Multiply
High

vmulhib

vmulhih

vmulhiw

vmulhiub

vmulhiuh

vmulhiuw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP mul-
tiplies vA and vB/rS and
stores the upper half of the
signed/unsigned product into
vD.

Multiply Low vmullob

vmulloh

vmullow

vmulloub

vmullouh

vmullow

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP mul-
tiplies vA and vB/rS and
stores the lower half of the
signed/unsigned product into
vD.

Integer Di-
vide

vdiv
vdivu

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into
vD the signed/unsigned result
of vA/rS divided by vB/rS,
where at least one source is a
vector.

Shift Right
Arithmetic

vsrab

vsrah

vsraw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into
vD the result of arithmetic right
shifting vB/rS by the number of
bits specified in vA/rS, where at
least one source is a vector.

93

A.4. Instruction Set Reference

Name Mnemonic Syntax Summary

Minimum vminb

vminh

vminw

vminub

vminuh

vminuw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into
vD the minimum of vA and
vB/rS.

Maximum vmaxb

vmaxh

vmaxw

vmaxub

vmaxuh

vmaxuw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into
vD the maximum of vA and
vB/rS.

Compare
Equal, Com-
pare Not
Equal

vcmpeb

vcmpeh

vcmpew

vcmpneb

vcmpneh

vcmpnew

.vv[.1] vF, vA, vB

.vs[.1] vF, vA, rS

Each unmasked VP writes into
vF the boolean result of com-
paring vA and vB/rS.

Compare
Less Than

vcmpltb

vcmplth

vcmpltw

vcmpltub

vcmpltuh

vcmpltuw

.vv[.1] vF, vA, vB

.vs[.1] vF, vA, rS

.sv[.1] vF, rS, vB

Each unmasked VP writes into
vF the boolean result of whether
vA/rS is less than vB/rS, where
at least one source is a vector.

Compare
Less Than or
Equal

vcmpleb

vcmpleh

vcmplew

vcmpleub

vcmpleuh

vcmpleuw

.vv[.1] vF, vA, vB

.vs[.1] vF, vA, rS

.sv[.1] vF, rS, vB

Each unmasked VP writes into
vF the boolean result of whether
vA/rS is less than or equal to
vB/rS, where at least one source
is a vector.

Multiply Ac-
cumulate

vmacb

vmach

vmacw

vmacub

vmacuh

vmacuw

.vv[.1] vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP calculates
the product of vA and vB/rS.
The products of vector elements
are summed, and the summa-
tion results are added to the dis-
tributed accumulators.

94

A.4. Instruction Set Reference

Name Mnemonic Syntax Summary

Compress
Copy from
Accumulator

vccaccw vD The contents of the distributed
accumulators are reduced by a
chain adder, and the result writ-
ten into vD. To avoid result
overflow, the instruction only
has word-size version, and only
the bottom 32 bits of the result
are written. This instruction is
not masked and remaining ele-
ments of vD are not modified.

Compress
Copy and
Zero Accu-
mulator

vcczaccw vD The operation is identical to
vccacc, except the distributed
accumulators are zeroed as a
side effect.

95

A.4. Instruction Set Reference

A.4.2 Logical Instructions

Name Mnemonic Syntax Summary

And vandb

vandh

vandw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into
vD the logical AND of vA and
vB/rS.

Or vorb

vorh

vorw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into
vD the logical OR of vA and
vB/rS.

Xor vxorb

vxorh

vxorw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

Each unmasked VP writes into
vD the logical XOR of vA and
vB/rS.

Shift Left
Logical

vsllb

vsllh

vsllw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into
vD the result of logical left shift-
ing vB/rS by the number of
bits specified in vA/rS, where at
least one source is a vector.

Shift Right
Logical

vsrlb

vsrlh

vsrlw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into
vD the result of logical right
shifting vB/rS by the number of
bits specified in vA/rS, where at
least one source is a vector.

Rotate Right vrotb

vroth

vrotw

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each unmasked VP writes into
vD the result of rotating vA/rS
right by the number of bits spec-
ified in vB/rS, where at least
one source is a vector.

96

A.4. Instruction Set Reference

A.4.3 Vector Move Instructions

Name Mnemonic Syntax Summary

Offset Move vmovb

vmovh

vmovw

[.1] vD, vA The VPs perform a contiguous
vector move from offset loca-
tions vA to vD. This opera-
tion moves unaligned data into
alignment via the DACN. In
cases where vA is aligned to vD,
the DACN is bypassed to avoid
adding unecessary delay to the
instruction. The size of each el-
ement in memory is given by the
opcode.

Constant
Stride Move

vsmovb
vsmovh
vsmovw

[.1] vD, vA, vstride The VPs perform a strided vec-
tor move from memory loca-
tion in vA to vD contiguously.
The signed stride is given by
vstride control register (default
is vstride0). The stride is in
terms of elements, not in terms
of bytes. The size of each ele-
ment in memory is given by the
opcode.

Constant
Stride Scat-
ter

vssctb
vsscth
vssctw

[.1] vD, vA, vstride The VPs perform a contiguous
vector move from location vA to
strided locations starting at vD.
The signed stride is given by the
vstride control register (default
is vstride0). The stride is in
terms of elements, not in terms
of bytes. The width of each ele-
ment in memory is given by the
opcode.

97

A.4. Instruction Set Reference

Name Mnemonic Syntax Summary

Indexed
Move

vxmovb
vxmovh
vxmovw

[.1] vD, vA, vB The VPs perform an indexed-
vector move from memory loca-
tion vA to vD contiguously. The
signed offsets are given by vB
and are in units of bytes, not
in units of elements. The effec-
tive addresses must be aligned
to the width of the data in mem-
ory. The size of each element in
memory is given by the opcode.

Indexed Scat-
ter

vxsctb
vxscth
vxsctw

[.1] vD, vA, vB The VPs perform an indexed-
vector scatter of vA. The base
address is given by vbase (de-
fault vbase0). The signed off-
sets are given by vB. The off-
sets are in units of bytes, not
in units of elements. The effec-
tive addresses must be aligned
to the width of the data being
accessed.

A.4.4 Vector Manipulation Instructions

Name Mnemonic Syntax Summary

Merge vmergeb

vmergeh

vmergew

.vv[.1] vD, vA, vB

.vs[.1] vD, vA, rS

.sv[.1] vD, rS, vB

Each VP copies into vD either
vA/rS if the mask is 0, or vB/rS
if the mask is 1. At least
one source is a vector. Scalar
sources are truncated to the VP
width.

98

A.4. Instruction Set Reference

Vector Insert vinsb

vinsh

vinsw

.vv vD, vA The leading portion of vA is
inserted into vD. vD must
be different from vA. Lead-
ing and trailing entries of vD
are not touched. The lower
log2(MemWidthByte) bits of
vector control register vcvindex
specifies the starting position in
vD. The vector length speci-
fies the number of elements to
transfer. This instruction is not
masked.

Vector Ex-
tract

vextb

vexth

vextw

.vv vD, vA A portion of vA is extracted to
the front of vD. vD must be dif-
ferent from vA. Trailing entries
of vD are not touched. The
lower log2(MemWidthByte)
bits of vector control register
vcvindex specifies the starting
position in vD. The vector
length specifies the number
of elements to transfer. This
instruction is not masked.

Scalar Insert vinsb

vinsh

vinsw

.vs vD, rS The contents of rS are
written into vD at posi-
tion vcvindex. The lower
log2(MemWidthByte) bits of
vcvindex are used. This instruc-
tion is not masked and does not
use vector length.

Scalar Ex-
tract

vextb

vexth

vextw

vextub

vextuh

vextuw

.vs rS, vA Element vcvindex of vA is
written into rS. The lower
log2(MemWidthByte) bits
of vcindex are used to deter-
mine the element in vA to
be extracted. The value is
sign/zero-extended. This in-
struction is not masked and
does not use vector length.

99

A.4. Instruction Set Reference

Compress vcomp [.1] vD, vA All unmasked elements of vA
are concatenated to form a vec-
tor whose length is the popula-
tion count of the ask (subject
to vector length). The result is
placed at the front of vD, leav-
ing trailing elements untouched.
vD must be different from vA.

Expand vexpand [.1] vD, vA The first n elements of vA are
written into the unmasked posi-
tions of vD, where n is the pop-
ulation count of the mask (sub-
ject to vector length). Masked
positions in vD are not touched.
vD must be different from vA.

100

A.4. Instruction Set Reference

A.4.5 Vector Flag Processing Instructions

Name Mnemonic Syntax Summary

Scalar Flag
Insert

vfins .vs vF, rS The boolean value of rS is
written into vF at position
vcvindex. The lower vclogmvl

bits of vcvindex are used. This
instruction is not masked and
does not use vector length.

And vfand .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD
the logical AND of vFA and
vFB/rS. This instruction is not
masked, but is subject to vector
length.

Or vfor .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD the
logical OR of vFA and vFB/rS.
This instruction is not masked,
but is subject to vector length.

Xor vfxor .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD
the logical XOR of vFA and
vFB/rS. This instruction is not
masked, but is subject to vector
length.

Nor vfnor .vv vFD, vFA, vFB

.vs vFD, vFA, rS

Each VP writes into vFD
the logical NOR of vFA and
vFB/rS. This instruction is not
masked, but is subject to vector
length.

Clear vfclr vFD Each VP writes zero into vFD.
This instruction is not masked,
but is subject to vector length.

Set vfset vFD Each VP writes one into vFD.
This instruction is not masked,
but is subject to vector length.

Flag Load vfld vF, vA The VPs perform a contiguous
vector flag load from memory lo-
cation in vA into vF. The LSB
of each byte-size data is loaded
into vF. The address in vA must
be aligned to MemWidth. This
instruction is not masked.

101

A.4. Instruction Set Reference

Flag Store vfst vD, vF The VPs perform a contiguous
vector flag store of vF to mem-
ory location in vD. The flag data
in vF are written into the LSB
of each byte in vD. The ad-
dress in vD must be aligned to
MemWidth. This instruction is
not masked.

Population
Count

vfpop rS, vF The population count of vF is
placed in rS. This instruction is
not masked.

Find First
One

vfff1 rS, vF The location of the first set bit
of vF is placed in rS. This in-
struction is not masked. If there
is no set bit in vF, then the vec-
tor length is placed in rS.

Find Last
One

vffl1 rS, vF The location of the last set bit of
vF is placed in rS. The instruc-
tion is not masked. If there is
no set bit in vF, then the vector
length is placed in rS.

Set Before
First One

vfsetbf vFD, vFA Register vFD is filled with ones
up to and not including the first
set bit in vFA. Remaining posi-
tions in vF are cleared. If vFA
contains no set bits, vFD is set
to all ones. This instruction is
not masked.

Set Including
First One

vfsetif vFD, vFA Register vFD is filled with ones
up to and including the first set
bit in vFA. Remaining positions
in vF are cleared. If vFA con-
tains no set bits, vFD is set to
all ones. This instruction is not
masked.

Set Only
First One

vfsetof vFD, vFA Register vFD is filled with ze-
ros except for the position of the
first set bit in vFA. If vFA con-
tains no set bits, vFD is set to
all zeros. This instruction is not
masked.

102

A.4. Instruction Set Reference

A.4.6 Miscellaneous Instructions

Name Mnemonic Syntax Summary

Move Scalar
to Control

vmstc vc, rS Register rS is copied to vc.
Writing vcvpw changes vcmvl,
vclogmvl as a side effect.

Move Control
to Scalar

vmcts rS, vc Register vc is copied to rS.

103

A.5. Special Cases

A.5 Special Cases

This section describes the behaviour of some special cases of the VIPERS II instruction.

The general VIPERS II syntax is:

vop (−)vaD(+), (−)vaA(+), (−)vaB(+)

where vop is the vector instruction, vaA and vaB are the address registers pointing to

the source vectors, and vaD is the address register pointing to the destination vector.

A.5.1 Three Different Locations

The typical case where all three vectors are in different locations in the memory, there is

no restriction on the auto-increment/decrement combinations that may be applied to the

operands.

vaddw.vv − va1, −va2, va3+

A.5.2 Destination Overwrite

In cases where the destination location is the same as one or both of the source locations:

vaddw.vv va1+, −va1, va2 + (1)

vaddw.vv va1+, va1, va1 (2)

The overwriting of data in the original source location is allowed, but the user must

assign a different address register pointing to the same location as the destination address

register. As explained in Section 3.3.2, the base register value changes throughout the

execution of an instruction, so another destination register must be used to ensure data is

written to the correct location in the scratchpad memory. With a new destination address

register assigned, any combination of auto-increment/decrement can be realized. For correct

operation, VIPERS II instructions (1) and (2), must be rewrote as (3) and (4), respectively.

104

A.6. Nios II Custom Instruction Formats

vaddw.vv va3+, −va1, va2 + (3)

vaddw.vv va3+, va1, va1 (4)

A.5.3 Source Reused

For cases where the two source locations are the same:

vaddw.vv va2, va1+, va1 + (5)

vaddw.vv va2, va1, −va1 (6)

vaddw.vv va2, −va1, va1 + (7)

These instructions can be carried out and the reading of input vectors will be correct;

however, only the auto-increment/decrement on source A is performed. Therefore, if the

auto-increment/decrement designators are the same for both sources as in (5), the instruc-

tion can be executed correctly as is. If the sources have different increment/decrement

requests, a different address register must be used for referencing the source to achieve the

desired increment/decrement sequence. For example, VIPERS II instructions (6) and (7),

must be rewrote as (8) and (9), respectively, for correct increment/decrement.

vaddw.vv va2, va1, −va3 (8)

vaddw.vv va2, −va1, va3 + (9)

A.6 Nios II Custom Instruction Formats

The VIPERS II instructions are processed as custom instructions of Nios II. The format of

the Nios II custom instruction is shown below.

The 6-bit opcode field contains the Nios II custom instruction opcode, 0x32. The 8-

bit custom instruction field is used to define up to 256 different operations. Currently,

105

A.7. VIPERS II Instruction Formats

Table A.11: Nios II Custom Instructions

Custom Instr. Field Description

0x00 Read from DMA control registers

0x01 Write the least significant 16-bit of VIPERS II instruction

0x02 Write the most significant 16-bit of VIPERS II instruction

0x03 Write to DMA control registers

0x04 Read from vector to scalar queue

0x05 Write to scalar to vector queue

custom instructions are defined for vector instruction transfer and DMA control register

read/write as listed in Table A.11. The 16-bit immediate field is used to dispatch the vector

instruction to the vector core, each vector instruction is transferred using two Nios II custom

instructions, with the least significant 16-bit sent first.

A.7 VIPERS II Instruction Formats

A 32-bit VIPERS II instruction is formed from the execution of two Nios II custom instruc-

tions. The encoding of these VIPERS II instructions is presented in this section.

VIPERS II instructions can be divided in to three classes: vector-vector instructions,

vector-scalar instructions, and vector flag instructions. The vector-vector and vector-scalar

instructions are defined for each of the three operand sizes. The vector instruction class

is defined by using 6-bit opcodes from the unused/reserved Nios II opcode space – this

maintains compatibility with the Nios II encoding should the need arises to directly mix

instruction streams. Table A.12 lists the Nios II opcode values used by the soft vector

processor instructions.

106

A.7. VIPERS II Instruction Formats

Table A.12: Nios II Opcode Usage

Nios II Opcode Vector Instruction Type

0x19 Vector-Vector instructions (Byte)

0x1D Vector-Vector instructions (Halfword)

0x1F Vector-Vector instructions (Word)

0x39 Vector-Scalar instructions (Byte)

0x3D Vector-Scalar instructions (Halfword)

0x3F Vector-Scalar instructions (Word)

0x3E Vector flag, misc instructions

A.7.1 Vector-Vector and Vector-Scalar Instructions

The vector-vector format (VV-type) covers most vector arithmetic, logical, and vector pro-

cessing instructions. It specifies three vector address registers, a 4-bit increment/decrement

indicator field, 1-bit mask select, a 6-bit vector opcode FUNC, and the 6-bit Nios II opcode

shown in Table A.12. Instructions that take only one source operand use the vaA field.

Six bits are required to define the auot-increment/decrement for all three operands in

the instruction, which makes the VIPERS II instruction 34-bit. To keep the instruction

at 32-bit, the common auto-increment/decrement combinations are encoded using 4 bits as

shown in Table A.13.

Vector-scalar instructions that take one scalar register operand have two formats, de-

pending on whether the scalar register is the source (SS-Type) or destination (SD-Type) of

the operation.

Table A.14 lists which instructions use a scalar register as a source and as a destination.

107

A.7. VIPERS II Instruction Formats

Table A.13: Increment/Decrement Encoding

Inc/Dec Field Destination Source A Source B

0x0 - - -

0x1 - - inc

0x2 - inc -

0x3 - inc inc

0x4 inc - -

0x5 inc - inc

0x6 inc inc -

0x7 inc inc inc

0x8 - - dec

0x9 - dec -

0xA - dec dec

0xB dec - -

0xC - inc dec

0xD - dec inc

0xE inc dec inc

0xF dec inc inc

A.7.2 Vector Move Instructions

The vector move instruction has the same format as the vector-vector instruction with a

single input operand. The strided and indexed vector moves have their own instruction

format: VMS and VMX-type, respectively.

108

A.7. VIPERS II Instruction Formats

Table A.14: Scalar register usage as source or destination register

Instruction Scalar register usage

op.vs Source

op.sv Source

vins.vs Source

vext.vs Destination

vmstc Source

vmcts Destination

Strided vector move instructions use the vaB field to indicate which control register

(vstride0–15) contains the stride information. Indexed move instructions use the vaB field

to indicate which vector holds the indexes.

A.7.3 Control Register Instructions

The address registers, increment/decrement registers, and window registers are accessed

as control registers via the VMSTC/VMCTS instructions using the Nios II opcode 0x3E.

Therefore, a 7-bit field, vControl, is required in the VMSTC/VMCTS instruction format

to access the 128 control registers. The encoding of vControl is shown in Table A.15.

109

A.7. VIPERS II Instruction Formats

Table A.15: vControl Field Encoding

vControl Register Accessed

0x00 Control Register 0 (VL)
... ...

0x1F Control Register 31 (vstride15)

0x20 Address Register 0
... ...

0x3F Address Register 31

0x40 Increment/Decrement Register 0
... ...

0x5F Increment/Decrement Register 31

0x60 Window Register 0
... ...

0x7F Window Register 31

A.7.4 Instruction Encoding

Arithmetic/Logic/Move Instructions

Table A.16 lists the function field encodings for vector register instructions. Table A.17 lists

the function field encodings for vector-scalar and scalar-vector operations. These instruc-

tions use the vector-scalar instruction format. The same instruction mapping applies to all

operand sizes.

Flag and Miscellaneous Instructions

Table A.18 lists the function field encoding for vector flag logic and miscellaneous instruc-

tions.

110

A.7. VIPERS II Instruction Formats

Table A.16: Vector register instruction function field encoding

[2:0] Function bit encoding for .vv

[5:3] 000 001 010 011 100 101 110 111

000 vadd vsub vmac vand vor vxor

001 vaddu vsubu vmacu vabsdiff

010 vsra vcmpeq vcmplt vdiv vcmple

011 vmerge vcmpneq vsll vsrl vrot vcmpltu vdivu vcmpleu

100 vmax vext vins vmin vmulf vmulh

101 vmaxu vminu vmulfu vmulhu

110 vccacc vcomp vexpand vmov vabs vsmov vxmov

111 vcczacc vssct vxsct

Table A.17: Scalar-vector instruction function field encoding

[2:0] Function bit encoding for .vs

[5:3] 000 001 010 011 100 101 110 111

000 vadd vsub vmac vand vor vxor

001 vaddu vsubu vmacu vabsdiff

010 vsra vcmpeq vcmplt vdiv vcmple

011 vmerge vcmpneq vsll vsrl vrot vcmpltu vdivu vcmpleu

100 vmax vext vins vmin vmulhi vmullo

101 vmaxu vextu vminu vmulhiu vmullou

[2:0] Function bit encoding for .sv

[5:3] 000 001 010 011 100 101 110 111

110 vsra vsub vcmplt vdiv vcmple

111 vmerge vsubu vsll vsrl vrot vcmpltu vdivu vcmpleu

Table A.18: Flag and miscellaneous instruction function field encoding
[2:0] Function bit encoding for flag/misc instructions

[5:3] 000 001 010 011 100 101 110 111

000 vfclr vfset vfand vfnor vfor vfxor

001 vfff1 vffl1

010 vfsetof vfsetbf vfsetif

011 vfins.vs vfand.vs vfnor.vs vfor.vs vfxor.vs

100

101 vmstc vmcts

110 vfld vfst

111

111

Appendix B

Data Alignment Crossbar Network

Background

B.1 Multistage Networks

Multistage switching/interconnect networks can be found in a wide variety of communi-

cation systems, from the early telecommunication systems to today’s parallel computing

systems. This section presents a few examples of multistage switching networks as back-

ground on the development of the data alignment crossbar network.

B.1.1 Clos Network

One of the earlier multistage switching networks is the Clos network, first formalized by

Charles Clos in 1953 [9]. Designed for telephone switching systems, the Clos network

provides a way to realize large crossbar switching systems by multiple stages of smaller, more

feasible crossbar switches. The Clos network consists of three stages: input stage, middle

stage, and output stage; each stage is made up of a number of crossbars, as illustrated in

Figure B.1. Note that the middle stage can be broken down further to form a 3-stage Clos

network of its own. By repeating this, the Clos network can contain any odd number of

stages. An example of this is the Benes network, which will be discussed in the next section.

The Clos networks are defined by three integers m, n, and r. The input stage is made

up of r crossbars, each with n number of input and m number of outputs. The middle stage

consists of m crossbars, each with r number of inputs and outputs. Finally, the output

112

B.1. Multistage Networks

Figure B.1: Clos Network

stage consists of r crossbars, each with m number of inputs and n number of outputs. The

blocking characteristic of Clos networks are defined by the relationship between m and

n. Blocking refers to when two or more signals routing through the switching network

contends for a physical link in the network causing the routing to fail. In [9], Clos stated

that if m ≥ 2n − 1 the network is strict-sense nonblocking, meaning that an unused input

on the input stage crossbars can always connect to an unused output of the output stage

crossbar without having to rearrange already established connections. A Clos network with

m ≥ n is rearrangeably nonblocking, meaning that an unused input can always connect to

an unused output, but existing connections may have to be rerouted through a different

middle stage. With m < n, blocking could occur and not all input/output pairing can be

realized.

113

B.2. Control Algorithm

B.1.2 Benes Network

The Benes network is a special case of the Clos family of networks, with m = n = 2, and

is rearrangeably nonblocking as defined above. A N × N Benes network has 2 logN − 1

stages, each stage made up of N
2 2× 2 crossbars. Figure B.2 shows an 8× 8 Benes network.

The Benes network can be constructed recursively, moving from the outside in as shown

by the dash lines in Figure B.2. First, the input and output stages are built with 2 × 2

switching elements, leaving the two middle stages each with N
2 inputs and outputs. Then

repeat this step for each of the two middle crossbars, until the middle stage is a single 2× 2

switching element. This recursive construction will help provide some insight to how the

control algorithm for VIPERS II’s permutation network is derived.

Figure B.2: 8x8 Benes Network

B.2 Control Algorithm

All switching networks require some form of control algorithm to help guide the inputs to

their corresponding outputs. The simplest control scheme is bit control, where the inputs

of a N × N network are assigned a destination tag showing its destination as a binary

number. Each bit of the destination tag is then used to control the switching element at

114

B.2. Control Algorithm

certain stages of the network. Bit control is the natural control scheme for the Omega and

Banyan networks; however, both the Omega and Banyan are blocking networks, so they are

not capable of realizing all of VIPERS II’s permutation requirements.

In order to meet these requirements, the bigger, rearrangeably non-blocking Benes net-

work is chosen to implement the N × N data alignment network in the VIPERS II archi-

tecture. Since the network will be implemented in hardware, an efficient and simple control

algorithm must be developed.

In [17], a control algorithm for the Benes network was proposed. Lee viewed the Benes

network as two subnetworks: the first logN − 1 stages is a distribution network controlled

by a Complete Residue Partition Tree (CRPT), and the remaining logN stages is bit

controlled. The paper demonstrated that if the destination tags of groups of 2j inputs at

the latter logN stages form a Complete Residue System (CRS), it would be passable using

bit control. For example, in a 8 × 8 network with destination tag b2b1b0, each set of two

inputs at the switching element must have a (0, 1) pair for b2 and the group of four inputs

must have (00, 01, 10, 11) quadruples for b2b1.

Using the results from [17], a simple control algorithm for VIPERS II’s data alignment

network is devised. The control algorithm targets only the first logN − 1 stages of the

network, setting up the inputs so the latter logN stages can be bit controlled.

For offset moves, the first logN − 1 stages are set to pass the data straight through

as shown in Figure B.3. The contiguous nature of vector elements and the reverse shuffle

interconnect pattern through the first 2 stages ensure that the inputs at the third stage

has CRS form as shown by the circles. The reverse shuffle at the input stage makes sure

that each pair of inputs will not end up in the same half network; one will be routed to the

top half and the other to the lower half. With the contiguous destination tags, this means

successive tags such as 000 and 001 will not be routed through the same half network.

Applying the same analogy to each of the half network repeatedly, it can be seen that the

inputs at the middle stage will have CRS form and can be routed through the final logN

115

B.2. Control Algorithm

stages by bit control.

Figure B.3: Offset Move in 8× 8 Benes Network

For strided moves, the first logN − 1 stages are set as follows:

• if stride is odd, all switches are set to pass the data straight through,

• if stride is even, the switch settings would alternate every Stride
2 switches.

Figure B.4 shows the example of a strided move with stride = 2, where the switch setting

alternates for every switch. The alternating switch setting is required to make sure that

consecutive inputs do not get routed through the same half network, and thus ensuring

CRS forms at the middle stage.

Due to time constraints, no formal proof was derived for this control scheme for the

Benes network. However, it was verified by software for networks up to 128 × 128 in size,

tested for all possible offset and stride input combinations.

116

B.3. Tag Generation

Figure B.4: Strided Move in 8× 8 Benes Network

B.3 Tag Generation

Self-routing of data through the latter logN stages of the Benes network requires a destina-

tion tag for each valid input. The tag generation unit is used to compute these destination

tags, which declares the target output terminal for each input data. The destination tags

are calculated based on the source and destination offsets and the stride of the requested

move operations. For offset moves, the destination tags can be computed using the following

equation:

DestTag = [(ByteLocation− SrcOffset) + DestOffset]%MemWidthByte

The ByteLocation stands for the input data’s location in the memory slice being moved,

starting from 0 for the byte that is aligned to the memory width. The SrcOffset and

DestOffset are the source and destination byte offsets respectively, and MemWidthByte

is the memory width in number of bytes. This equation assigns a tag value between 0

to (MemWidthByte-1) to every input byte in the memory slice that is being moved. As

117

B.3. Tag Generation

mentioned previously, the tag generation for strided and indexed moves are not implemented

at this moment.

118

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Glossary
	Introduction
	Motivation
	Contribution
	Thesis Outline

	Background
	Vector Processing Overview
	VIPERS Architecture
	Architecture Overview
	Vector Lane Datapath
	Memory Interface Unit

	Related Works
	Scratchpad Memory
	Address Registers

	VIPERS II Architecture
	System Overview
	New Pipeline Structure
	Address Registers
	Address Register Usage
	Auto-Increment/Decrement and Circular Buffer
	Implementation

	Vector Scratchpad Memory
	Memory Interface
	Performance Advantage
	Implementation

	Data Alignment Crossbar Network
	Permutation Requirements
	Implementation
	Misalignment Detection and Auto Correct Mechanism

	Fracturable ALUs
	Fracturable Adder
	Fracturable Multiplier

	Summary

	Impact of Architectural Changes and Resource Usage
	Address Registers
	Vector Scratchpad Memory
	Data Alignment Crossbar Network
	Fracturable ALUs
	Resource Usage
	Scalability
	Design Verification

	Benchmark Results
	Benchmark
	16-Tap Finite Impulse Response Filter
	Block Matching Motion Estimation
	Image Median Filter

	Performance
	Simulated Performance
	Hardware Performance

	Conclusion
	Future Work

	References
	VIPERS II Instruction Set Architecture (ISA)
	Introduction
	Configurable Architecture

	Vector Register Set
	Vector Address Registers
	Vector Scalar Registers
	Vector Flag Registers
	Vector Control Registers
	Vector Address Increment/Decrement Registers
	Vector Window Registers
	Vector Sum Reduction

	Instruction Set
	Data Types
	Data Alignment
	Flag Register Use
	Instructions

	Instruction Set Reference
	Integer Instructions
	Logical Instructions
	Vector Move Instructions
	Vector Manipulation Instructions
	Vector Flag Processing Instructions
	Miscellaneous Instructions

	Special Cases
	Three Different Locations
	Destination Overwrite
	Source Reused

	Nios II Custom Instruction Formats
	VIPERS II Instruction Formats
	Vector-Vector and Vector-Scalar Instructions
	Vector Move Instructions
	Control Register Instructions
	Instruction Encoding

	Data Alignment Crossbar Network Background
	Multistage Networks
	Clos Network
	Benes Network

	Control Algorithm
	Tag Generation

