
Congestion-Driven
Re-Clustering CAD Flow for

Low-Cost FPGAs
by

Darius Chiu

B.Sc., The University of British Columbia, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September, 2009

c© Darius Chiu 2009

Abstract

FPGA device area is dominated by the on-chip interconnect. For this reason, the

amount of interconnect provided must be limited. This limit is usually imposed

by designing an FPGA device family with a fixed channel width. CAD tools must

meet this hard channel-width constraint for a circuit to be successfully mapped

to a device from this family. Previous work has shown that if a design cannot be

mapped to a device due to insufficient interconnect availability, it is possible to

identify regions of high interconnect demand, and spread out or depopulate the

logic in this area into surrounding regions. This is done by re-packing logic in the

affected regions into an increased number of CLBs. This increases the effective

amount of interconnect available to these high-demand areas. This methodology

has been shown to significantly reduce channel width, at the expense of CLB

count and runtime.

In this work, we extend this previous algorithm in two ways: we present novel

region selection techniques to optimize the selection of which regions should be

depopulated, and we introduce a local channel-width demand model which can

used to more accurately determine the amount of white space insertion at each

iteration. Together, these techniques lead to significant run-time improvements

and reduce the area of the resulting FPGA implementations. We were able to

improve runtime by a factor of up to 5.5 times while reducing area by up to 20%

when compared to previous methods.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vii

Glossary . viii

Acknowledgments . ix

Dedication . x

1 Introduction . 1
1.1 Contributions . 3
1.2 Thesis Organization . 4

2 Background . 5
2.1 FPGA Architecture . 5
2.2 FPGA CAD Flow . 9

2.2.1 Synthesis . 9
2.2.2 Technology Mapping . 10
2.2.3 Clustering . 10
2.2.4 Placement . 11
2.2.5 Routing . 13

2.3 Un/DoPack CAD Flow . 14
2.3.1 Baseline Un/DoPack . 17
2.3.2 Fine-Grained Un/DoPack 18
2.3.3 Multiregion Un/DoPack 19

3 Multiple Region Depopulation with Congestion-Driven Metrics 21
3.1 Budgeted Multiregion Un/DoPack (BMR) 21

3.1.1 Region Selection . 22
3.1.2 Whitespace Insertion . 25

3.2 Congestion-Model Multiregion Un/DoPack (CMR) 26

iii

Table of Contents

3.2.1 Modeling Regional Interconnect Demand 27
3.2.2 Modeling Internal Demand 28

3.3 Congestion-Aware Placement . 29

4 Results . 33
4.1 Experimental Methodology . 33
4.2 Previous Un/DoPack Schemes 35
4.3 Budgeted Multiregion Un/DoPack 37
4.4 Congestion-Model Multiregion Un/DoPack 38
4.5 Critical-Path Comparison . 42
4.6 CMR with Congestion-Aware Placer 43

5 Conclusions . 47
5.1 Future Work . 47

5.1.1 Influence from Neighbouring Regions 47
5.1.2 Congestion-Driven Placement and Clustering 48

Bibliography . 49

Appendices

A Baseline Un/DoPack . 56

B Fine-Grained Un/DoPack . 59

C Multiregion Un/DoPack . 62

D Budgeted Multiregion Un/DoPack 65

E Congestion-Driven Multiregion Un/DoPack 68

F CMR Un/DoPack with Congestion-Aware Placement 71

iv

List of Tables

3.1 Maximum MRCW Comparison of Placement Schemes 31
3.2 Runtime Comparison of Placement Schemes 32

A.1 Baseline Un/DoPack - Stdev0 . 56
A.2 Baseline Un/DoPack - Stdev002 56
A.3 Baseline Un/DoPack - Stdev004 57
A.4 Baseline Un/DoPack - Stdev006 57
A.5 Baseline Un/DoPack - Clone . 57
A.6 Baseline Un/DoPack - Stdev010 58
A.7 Baseline Un/DoPack - Stdev012 58

B.1 Fine-Grained Un/DoPack - Stdev0 59
B.2 Fine-Grained Un/DoPack - Stdev002 59
B.3 Fine-Grained Un/DoPack - Stdev004 60
B.4 Fine-Grained Un/DoPack - Stdev006 60
B.5 Fine-Grained Un/DoPack - Clone 60
B.6 Fine-Grained Un/DoPack - Stdev010 61
B.7 Fine-Grained Un/DoPack - Stdev012 61

C.1 Multiregion Un/DoPack - Stdev0 62
C.2 Multiregion Un/DoPack - Stdev002 62
C.3 Multiregion Un/DoPack - Stdev004 63
C.4 Multiregion Un/DoPack - Stdev006 63
C.5 Multiregion Un/DoPack - Clone 63
C.6 Multiregion Un/DoPack - Stdev010 64
C.7 Multiregion Un/DoPack - Stdev012 64

D.1 BMR Un/DoPack - Stdev0 . 65
D.2 BMR Un/DoPack - Stdev002 . 65
D.3 BMR Un/DoPack - Stdev004 . 66
D.4 BMR Un/DoPack - Stdev006 . 66
D.5 BMR Un/DoPack - Clone . 66
D.6 BMR Un/DoPack - Stdev010 . 67
D.7 BMR Un/DoPack - Stdev012 . 67

E.1 CMR Un/DoPack - Stdev0 . 68

v

List of Tables

E.2 CMR Un/DoPack - Stdev002 . 68
E.3 CMR Un/DoPack - Stdev004 . 69
E.4 CMR Un/DoPack - Stdev006 . 69
E.5 CMR Un/DoPack - Clone . 69
E.6 CMR Un/DoPack - Stdev010 . 70
E.7 CMR Un/DoPack - Stdev012 . 70

F.1 CMR Un/DoPack (Congestion Aware Placement) - Stdev0 71
F.2 CMR Un/DoPack (Congestion Aware Placement) - Stdev002 . . . 71
F.3 CMR Un/DoPack (Congestion Aware Placement) - Stdev004 . . . 72
F.4 CMR Un/DoPack (Congestion Aware Placement) - Stdev006 . . . 72
F.5 CMR Un/DoPack (Congestion Aware Placement) - Clone 72
F.6 CMR Un/DoPack (Congestion Aware Placement) - Stdev010 . . . 73
F.7 CMR Un/DoPack (Congestion Aware Placement) - Stdev012 . . . 73

vi

List of Figures

2.1 FPGA Logic and Routing Layout 5
2.2 Basic Logic Element . 6
2.3 Generalized Configurable Logic Block (from [30]) 7
2.4 Routing . 8
2.5 Typical FPGA CAD Flow . 9
2.6 Illustration of Placement (from [16]) 11
2.7 Un/DoPack CAD Flow (From [29]) 15
2.8 Region Selection and Whitespace Insertion - Baseline Un/DoPack 18
2.9 Region Selection and Whitespace Insertion - Fine-Grained

Un/DoPack . 19

3.1 Example of Region Selection . 23
3.2 Region Selection and Whitespace Insertion - BMR Un/DoPack . . 26

4.1 Area versus Runtime - Fine-Grained and Multiregion Schemes,
Normalized to Baseline . 36

4.2 Area versus Runtime - Fine-Grained and BMR 37
4.3 Area versus Runtime - Multiregion and CMR 39
4.4 Area versus Runtime - BMR, Multiregion and CMR 40
4.5 Runtime Comparison with Baseline Un/DoPack - Circuit Stdev004 41
4.6 Area Comparison with Baseline Un/DoPack - Circuit Stdev004 . . 42
4.7 Critical Path Comparison - Circuit Stdev004 43
4.8 Critical Path Comparison - Circuit Stdev006 44
4.9 CMR with Congestion-Aware Placement - Stdev004 45
4.10 CMR with Congestion-Aware Placement - Stdev006 46

vii

Glossary

Field-Programmable
Gate Arrays (FPGA)

An integrated circuit device which are capa-
ble of being programed to implement any dig-
ital circuit

Look-up Table (LUT) An element of a FPGA device which impli-
ments any logical function of its inputs

Configurable
Logic Blocks(CLBs)

An element of a FPGA device which com-
prises of a group of N BLEs which are in-
terconnected with a fast local interconnect
network

Basic Logic
Elements(BLEs)

An element of a FPGA device which is com-
prised of a LUT and Flip-Flop

Aplication Specific
Integrated Circuit (ASIC)

An integrated circuit device which is specif-
ically designed and manufactured for a spe-
cific purpose

Computer-Aided
Design (CAD)

Automated computer software tools used to
aid the design and implimentation of systems

Minimum Routable
Channel Width (MRCW)

The minimum number of tracks required for
a given design to be routeable

Channel Width The number of wiring tracks in each routing
channel in the FPGA

Hardware Description
Language (HDL)

A human readable language to express hard-
ware designs

Microelectronics
Corporation of North
Carolina (MCNC) Circuits

A set of widely used acedemic benchmark cir-
cuits for FPGAs

viii

Acknowledgments

My sincere thanks goes out to Dr. Guy Lemiuex and all of my fellow students

and professors who have given me assistance and guidance throughout the course

of my degree.

In particular, I would like to thank David Grant for the help he has provided

in maintaining our server cluster. Without his help, I would not have been able

to easily complete this thesis. In addition, I would also like to thank Dr. Steve

Wilton and Usman Ahmed for helping me with my writing.

Finally I would like to thank my friends Andrew, Cindy, Chris, Dave, Johnny,

Paul, and Patrick for the great times during the course of this degree.

ix

Dedication

I dedicate this to my family who have patiently given their support to me through-

out the years.

x

Chapter 1

Introduction

Field Programmable Gate Arrays are customizable devices capable of implement-

ing a variety of digital logic applications. This is because FPGAs can be cus-

tomized by configuring re-programmable logic blocks and routing fabric. In con-

trast, Application Specific Integrated Circuits (ASICs) offer an alternative to FP-

GAs. ASICs are custom-manufactured integrated circuits which are designed for

a specific application. Because of the application-specific nature of ASICs, they

can typically offer better speed, density, and power characteristics than FPGAs.

However, ASICs also require large up-front manufacturing costs and do not pro-

vide the re-programmability offered by FPGAs. FPGA devices are purchased

pre-manufactured from the vendor. Time-to-market can be reduced because de-

velopment and testing can be performed immediately using actual FPGA devices.

Thus, FPGAs are favorable in circumstances where field-programmability and

time-to-market benefits outweigh its speed, density and power disadvantages. In

addition, low volume applications may not justify the economics of the high up-

front costs for ASIC manufacture. FPGAs offer designers an alternative option

for low to medium volume applications.

As FPGAs increase in capacity and capability, it is common for manufacturers

to provide separate low-cost and resource-rich families. For a similar logic capac-

ity, low-cost families often have less embedded memory, embedded multipliers,

and interconnect in the form of routing tracks in each channel. To target low-cost

1

Chapter 1. Introduction

device families, computer-aided design (CAD) tools must configure the FPGA

device in a way which meets a hard channel-width constraint imposed by routing

capacity limits.

Careful allocation of FPGA logic can help meet routing capacity constraints.

Device logic in FPGAs are grouped as clusters, also known as configurable logic

blocks (CLBs). The distribution of logic among CLBs can impact the number of

routing tracks used around each CLB; the interconnect use around CLBs varies

spatiality with placement. It is possible to distribute regions of high local inter-

connect demand by spreading logic over a larger number of CLBs. This increase

in area allows the same amount of logic access to an increase in aggregate routing.

Therefore, it is possible to spread logic in regions where there is high local inter-

connect demand, allowing CAD tools to meet hard channel-width constraints by

increasing CLB usage.

In a traditional single-pass CAD flow such as VPR [3], a solution may not

be found which meets the channel-width constraint of a low-cost device. When

regions are found which are congested, we can distribute logic over a larger

area through whitespace insertion. Whitespace is inserted in the form of empty

logic elements; for example, we can impose a limit on how many basic logic ele-

ments (BLEs) are allowed to form a CLB. Those CLBs in regions with higher local

interconnect requirements should contain less BLEs such that local interconnect

requirements are less then or equal to the channel-width provided by the device.

The processes of identifying and re-clustering CLBs to reduce logic capacity is

termed depopulation.

Depopulation can occur in different ways. Single-pass clustering approaches,

such as that presented in [26], can perform clustering in a way which results

in clusters that are not full. These clustering approaches typically estimate the

2

1.1. Contributions

routability of the circuit at the clustering stage and attempt to perform cluster-

ing to ease routability. However, without detailed information from placement

or routing solutions, it is difficult for a clustering tool to determine the routing

requirements of the circuit. This is especially true if our goal is to reduce local

interconnect usage to meet channel-width constraints. In order to effectively de-

populate only the areas of the device which are unroutable, we need to accurately

identify and select which CLBs to depopulate. We also need to determine the

amount of depopulation needed, which will require accurate prediction of post-

routing interconnect demand after depopulation has occured.

In Un/DoPack [29], authors presented methods to iteratively perform whites-

pace insertion. Post-routing information is used by the CAD flow to determine

which regions should be targeted for depopulation. Regions which cannot be

routed are reclustered to a smaller cluster size. This cluster size is determined

either by the size of the region, or relative to the routability of the region. To

our knowledge, to date, only Un/DoPack is capable of meeting a user-specified

channel-width constraint through the use of iterative depopulation.

1.1 Contributions

The main contribution of this work is to improve region selection and whitespace

insertion of Un/DoPack through the use of congestion information. We improve

region selection, and effectively allocate whitespace to reduce routing require-

ments to meet channel-width constraints, but at the same time reduce runtime

of the CAD flow and CLB usage. Un/DoPack showed that congested areas in

the placement can be identified and reduced, but lacked an interconnect demand

model to determine the amount of whitespace to insert. We will show that the

3

1.2. Thesis Organization

use of a model-driven depopulation approach can result in both runtime and area

improvements.

Primarily, we will be improving area and runtime by selecting multiple con-

gested regions simultaneously, and depopulating each region according to local

interconnect demand. The model will be used to select congested areas in the

placement for depopulation; this model will also attempt to predict the local in-

terconnect demand after depopulation has occurred. This information will then

be used to determine an adequate amount of whitespace to insert.

To compare the runtime and area improvements, we will compare our work

against the baseline version of Un/DoPack presented in [29] using the same bench-

mark circuits and channel-width constraints. The benchmark circuits, composed

of smaller sub-circuits, are designed to simulate large system-on-chip circuits.

These circuits exhibit the property where each sub-circuit may have different lo-

cal interconnection requirements. Compilation using various channel-width con-

straints are performed to compare the various schemes presented in this thesis.

1.2 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 provides an overview

of modern FPGA technology, the state of current FPGA CAD technology, and

previous work relating to the subject of this thesis; Chapter 3 describes the algo-

rithms used and the experimental methodology; Chapter 4 compares the results

of this work against previous work; Chapter 5 presents the conclusions of this

work, contributions, and possible future work.

4

Chapter 2

Background

This chapter provides an overview of current FPGA technology, as well as modern

methods used to implement circuit designs onto an FPGA. A description of each

step of a generalized CAD flow is discussed, along with a survey of common tools

used in each step. We then describe, in detail, a CAD flow which performs regional

depopulation to alleviate routing congestion.

2.1 FPGA Architecture

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Figure 2.1: FPGA Logic and Routing Layout

Field-Programmable Gate Arrays (FPGAs) are integrated circuits which are

capable of implementing any digital circuit. This is possible because FPGAs con-

tain an array of programmable logic elements, which can communicate with each

5

2.1. FPGA Architecture

LUT

FF

D Q
MUX

Figure 2.2: Basic Logic Element

other via a programmable routing fabric. This is shown in Figure 2.1 and is often

referred to as the Island Style Architecture. Logic is arranged in a rectangular

array and are surrounded by wires in the vertical and horizontal directions. The

number of CLBs spanning the FPGA in the horizontal and vertical position is

referred to as the array size. Surrounding the periphery of the FPGA, are in-

put/output pads which allow the FPGA to connect with circuitry outside the

FPGA.

FPGA logic elements are known as a basic logic element (BLE). The logic ca-

pacity of a FPGA device is commonly measured as the number of BLEs contained

in the whole FPGA.

As shown in Figure 2.2, BLEs consist of a k-input look-up table (LUT) and a

flip-flop. A k-input LUT, or k-LUT, can implement Boolean logic up to k inputs.

The BLE can be used in combinational mode, where the output of the BLE is

taken from the LUT, or sequential mode where the output is taken from the

flip-flop. It has been shown that it is advantageous to combine multiple BLEs

into clusters. These clusters contain a fast, local interconnect which connects

constituent BLEs. Clusters connect to other clusters using an inter-cluster routing

fabric. These clusters are known as configurable logic blocks (CLBs), shown in

Figure 2.3. Previous work has shown that clustering creates various advantages

including: the reduction of delay, reduction of interconnect usage, increase in

6

2.1. FPGA Architecture

BLE

BLE

BLE

i

k

k

k

Figure 2.3: Generalized Configurable Logic Block (from [30])

device density, and most importantly a reduction in CAD runtime. The maximum

number of BLEs contained within a single CLB is defined as N, and the number

of inputs as i. [1] experimentally determined the relationship between the number

of inputs required for a cluster as a function of the LUT size and cluster size. The

number of inputs per cluster was determined to be i = k
2
× (N +1), where k is the

LUT size and N is the number of BLEs per cluster. The authors in [1] determined

that this relationship yielded a high utilization (98%) of the logic contained within

the CLBs.

FPGA routing surrounds the CLBs. The routing fabric consists of three com-

ponents: wires, connection blocks, and switch blocks. Wires occupy the verti-

cal and horizontal channels adjacent to CLBs in the FPGA. In modern designs,

wire segments may span multiple CLBs to allow efficient communication across

longer distances. Because the number of wires occupying each channel are fixed at

manufacture-time, the routing capacity of a FPGA device is limited by the num-

7

2.1. FPGA Architecture

Logic
Block

Switch
Block

Connection
Block

Figure 2.4: Routing

ber of wires contained in each channel across the device. The number of wires in

each channel is referred to as the channel width. Channel width provides a major

constraint for FPGA computer-aided design (CAD) tools since designs cannot

be implemented if channel width constraints cannot be met; insufficient routing

resources imply that connections between CLBs cannot be made. Furthermore,

the channel width required may not be uniform across the device; some regions

will require more interconnect than others. The occurrence of a small portion of

the FPGA requiring more wiring than is offered by the FPGA architecture will

prevent the entire design from being implemented. In this case, the circuit is

said to be unroutable. The minimum channel width required for the circuit to be

implemented is referred to as the minimum routable channel width (MRCW).

FPGA routing also contains connection blocks and switch blocks. Connection

blocks allow CLBs to accept inputs from, or provide outputs to, nearby wires.

Switch blocks allow signals to change direction by connecting vertical and hori-

zontal routing wires together. This is shown in Figure 2.4

8

2.2. FPGA CAD Flow

Synthesis

Technology Mapping

Clustering

Placement

Routing

Figure 2.5: Typical FPGA CAD Flow

2.2 FPGA CAD Flow

Through the use of software tools, designers produce a bitstream used to program

the FPGA device. Figure 2.5 shows the 5 typical steps, and is referred to as an

FPGA CAD flow. These steps are: synthesis, technology mapping, clustering,

placement, and routing. These steps are described in detail below.

2.2.1 Synthesis

A designer will typically express the design in a hardware description language

(HDL), such as VHDL or Verilog. The task of the synthesis step is to translate

the design into a gate-level representation. This representation is a network of

Boolean logic gates and flip-flops.

9

2.2. FPGA CAD Flow

2.2.2 Technology Mapping

The technology mapping step takes the output of the synthesis step and maps

groups of logic into k-LUTs. At this stage, optimizations can be made to minimize

logic usage, delay and power. For example, delay can be reduced by minimizing

logic depth, which is the longest path of the circuit. Most notably, FlowMap [8]

was able to produce a depth optimal-solution in polynomial complexity time.

Other technology mapping algorithms are presented in [9], [10], [11] and [15].

2.2.3 Clustering

The clustering step packs LUTs and flip-flops into BLEs and combines multiple

BLEs into CLBs to reduce delay and routing resource usage of the circuit. Each

CLB contains a fast local interconnect structure which allows constituent BLEs

to communicate with each other. This intra-cluster routing is much faster than

inter-cluster routing in general.

The simplest clustering approaches are based on greedy selection. Known as

the bottom-up approach, individual CLBs are built by first choosing a seed BLE.

Subsequent blocks are added to the CLB based on their relationship to the seed.

This occurs until CLB capacity constraints are met. Various greedy clustering

algorithms exist, each with distinct goals. Examples include: Vpack [2], which

attempts to minimize total number of inputs per cluster; T-VPack [3], which tries

to reduce the number of intercluster nets on the critical path; RPack [4], which

attempts to reduce the routing effort of the circuit by enclosing intercluster nets

into clusters; an intrinsic shortest-path length based clustering method [23], which

attempts to reduce post-placement wirelength; and iRAC [26] which attempts to

minimize routing channel width by completely enclosing low-fanout nets within a

10

2.2. FPGA CAD Flow

a

d e

cb

f g h

i j k

l m n

f l kmd

a ci

e

j

h g bn

Figure 2.6: Illustration of Placement (from [16])

cluster. Greedy clustering algorithms are fast and area efficient, but due to a lack

of backtracking, they can get trapped in local minima.

For the experiments performed in this thesis, a replica of the iRAC clustering

algorithm was used. iRAC clustering has been shown to produce a low routed

channel width solution and good delay performance when compared to other clus-

tering approaches.

2.2.4 Placement

The placement step attempts to find an optimal arrangement for each of the

CLBs in the array. Each CLB in the FPGA can be placed in fixed locations in

the array. Placement tools will typically try to find a location for each CLB,

such that a cost function is minimized. For example, timing-driven placement

attempts to minimize the lengths of the critical and near-critical paths; bounding-

box placement will attempt to reduce the sum of the half-perimeter bounding

boxes for all nets in the circuit; CMap [32] attempts to reduce peak interconnect

demand by balancing predicted interconnect demand across the device; iRAP [24]

attempts to balance local interconnect demand by matching the Rent parameter

11

2.2. FPGA CAD Flow

of the placement with the architectural Rent parameter; the Rent parameter is a

measure of how tightly interconnected a circuit is.

Placement algorithms generally fall into two categories: simulated annealing

and analytical placement. Simulated annealing is a flexible technique that can be

applied to any optimization problem. Different optimizations can be implemented

just by changing the cost function. For FPGA placement, the simulated annealing

approach first starts with a random placement of CLBs. Pairs of CLBs then

exchange locations. For each swap, a cost function evaluates the cost of the

swap. If the cost decreases, the move is accepted. If the cost increases, the

probability of accepting the swap depends on the current temperature. Initially,

the temperature is set to accept all swaps, regardless of the cost. Gradually,

the temperature decreases, reducing the probability that detrimental swaps are

accepted. The acceptance of detrimental swaps allows the placement tool to

possibly find a placement with globally minimal cost, instead of being trapped in

local minima. However, due to the random nature of simulated annealing, it is

a computationally intensive method to arrive at a placement solution. For this

thesis, placement will be based on a simulated annealing approach.

Analytical placement uses systems of equations to solve the placement prob-

lem. This can potentially be much faster than simulated annealing. For example,

in force-directed placement, CLBs are modeled as a system of particles being con-

nected by a system of springs. The final location of each CLB is determined by

solving the system such that the system is at a state of equilibrium. A drawback

of analytical placement is that illegal placements may occur due to CLBs overlap-

ping each other; each CLB can only be placed in a discrete location. Legalization

methods must then be introduced to address this issue.

A drawback of the traditional CAD flow is that clustering, placement, and

12

2.2. FPGA CAD Flow

routing occur in sequence. Changes to clustering are able to significantly affect

circuit structure. Yet, accurate information from the placement step regarding

wirelength, timing, and routability are not available during clustering. Some

techniques combine clustering and placement to overcome this issue. For example,

SCPlace [7] extends the simulated annealing based placement method to allow

BLEs to be swapped between CLBs while optimizing for wirelength and timing.

Work by [30] utilized node duplication and a novel depth-optimal initial clustering

solution with combined clustering and placement to reduce critical path delay.

2.2.5 Routing

The routing step determines which wires on the FPGA device will connect the

signals between CLBs. In general, routing algorithms are classified into single or

two-step algorithms. The two-step approach first performs global routing, then

detailed routing. In global routing, a signal is assigned to input-output pins and

a routing channel. In a subsequent detailed routing step, the signal is assigned to

a specific track in the routing channel. Examples of two-step routing approaches

include [6], [17], and [25]. Single-step routers combine global and detailed routing

into a single step. Examples include [19], [20], and [22].

The routing algorithm used in this thesis is the PathFinder [20] negotiated-

congestion routing algorithm contained within VPR. The PathFinder algorithm

initially maze routes all nets in the circuit. This will lead to some routing resources

being overused due to sharing from multiple signals. Those shared resources are

assigned a cost and all nets are ripped up and re-routed. The cost for overused

resources iteratively accumulates until enough nets avoid the use of these resources

such that only one net is routed on each wire, meaning the circuit can be routed.

13

2.3. Un/DoPack CAD Flow

2.3 Un/DoPack CAD Flow

The traditional CAD flow is not typically equipped to address hard channel width

constraints of FPGA devices. Once the routing fails, designers need additional

flexibility to produce a routable solution. Un/DoPack [29] is a fully automated

congestion-aware CAD flow which performs re-clustering at a local level to meet

a hard channel-width constraint.

Re-clustering of local regions is especially important in the case of circuits

with large interconnect variation, such as system-on-chip circuits, which may con-

sist of many different subcircuits, each having significantly different interconnect

demands.

While clustering tools exist which maximize logic utilization by fully packing

CLBs, various authors [12][27] have shown that the best performance may result

from a balance between logic utilization and interconnect demand. Work by

[4][26][29] showed that overall area could be reduced by packing CLBs to less

than 100% capacity. Since FPGA area is dominated by interconnect, reducing

the overall interconnect requirements by balancing local routing demand with

logic utilization can produce a net decrease in FPGA area.

The clustering tool in [27] performs depopulation uniformly across the design,

which depopulates uncongested regions along with congested regions.

Shown in Figure 2.7, Un/DoPack [29] reduces interconnect only in localized

congested regions of the FPGA by iteratively reclustering regional BLEs into an

increased number of CLBs. The user provides the following inputs to Un/DoPack:

a circuit description, architecture description, target channel-width constraint,

and an array size constraint. Iteratively, the MRCW of a circuit is reduced by

spreading local areas of high congestion. This happens until the MRCW meets

14

2.3. Un/DoPack CAD Flow

Circuit Description,
Architecture Description,

Channel Width Constraint,
Array Size Constraint

Synthesize and
Technology Map
(SIS/Flowmap)

Cluster (iRAC
Replica)

Placement
(VPR)

Routing (VPR)

Congestion
Calculator
(UnPack)

Incremental
Cluster (DoPack)

Fast Placement
(Incremental or

VPR)

Routing (VPR)

Success!

Failure

Channel Width
Constraint Met?

Array Size Limits
Reached?

Channel Width
Constraint Met?

No

Yes

No

Yes

Yes

No

Figure 2.7: Un/DoPack CAD Flow (From [29])

the specified channel-width constraint.

Initially, a traditional CAD flow using SIS/FlowMap and VPR is run. This

is shown inside the dashed outline in Figure 2.7. Any packing, placement, and

routing algorithm can be used; we use iRAC and VPR. If the specified target

channel-width constraint is met on the first pass, it is done. If the channel-width

constraint cannot be met, the iterative portion of the Un/DoPack flow is invoked,

which consists of the steps described below.

• The first step of the iterative portion, the UnPack step, determines which

regions to depopulate. A region should be depopulated if the local intercon-

nect demands of the region exceed the specified channel-width constraint.

15

2.3. Un/DoPack CAD Flow

Previous work presented two region selection schemes: single and multiple

region schemes. These schemes select regions of a fixed radius, and calcu-

late a new cluster size. The new cluster size is calculated such that enough

whitespace is introduced to expand the number of CLBs in each region by

a pre-determined amount.

• The second step repacks the BLEs in the selected regions. The clusters are

packed less than 100% full using new cluster sizes determined by the UnPack

step. BLEs from each region are individually reclustered with other BLEs

from the same region. Any clustering algorithm can be used; for this work

we used iRAC as our clustering algorithm.

• The final step is to perform placement and routing. If the final result is a

routable solution, the CAD flow will exit. If the circuit remains unroutable

after this step, the algorithm will iterate: the congestion information from

routing will be used in the UnPack step to determine which regions should

be depopulated next.

For placement, Un/DoPack uses a incremental placer, RePlace [18], which

preserves the placement stability in each iteration. At each iteration, Un/DoPack

is creating additional CLBs. These CLBs should be placed in close proximity to

other CLBs from the same region. Existing CLBs are shifted to create room for

the newly created CLBs. A low temperature anneal is then performed to optimize

the placement. Since Un/DoPack is modifying only small localized regions of the

FPGA, the incremental placement has the effect of significantly reducing runtime,

when compared to a full VPR placement. Incremental placement also preserves

the existing locations of CLBs in uncongested regions.

While Un/DoPack was shown to be very effective in reducing the channel-

16

2.3. Un/DoPack CAD Flow

width, runtime and area expansion can be further reduced through the use of

better congestion-driven region selection and cluster-size calculation techniques.

In the following sections, we will discuss the various Un/DoPack schemes

against which this work will compare.

2.3.1 Baseline Un/DoPack

The Baseline version of Un/DoPack depopulates a large, single region of the de-

vice.

In each iteration, a single region is selected by marking all the CLBs in a

circular area, centered on the CLB with the highest congestion label, closest to

the center of the array. The congestion label is the maximum of the number of

signals in the x or y channel immediately adjacent to the CLB. In this work, we

will use the original parameters for region size, from [29]. A circular region with

a radius of array size / 4 will be used.

The number of new CLBs created is equal to the number of CLBs in one

row plus one column of the FPGA array. Equation 2.2 illustrates the increase

in CLBs using the Baseline Un/DoPack approach. We will be comparing the

area and runtime performance of each algorithm against the Baseline version of

Un/DoPack.

num new CLBs baseline =
√

(num CLBs in FPGA) ∗ 2 + 1 (2.1)

new region CLBs =
num region LEs

num CLBs in region+ num new CLBs baseline
(2.2)

17

2.3. Un/DoPack CAD Flow

Figure 2.8: Region Selection and Whitespace Insertion - Baseline Un/DoPack

2.3.2 Fine-Grained Un/DoPack

As one of the observations in [28], authors noted that adding very small amounts

of whitespace at each iteration produced superior area results compared to the

Baseline approach, at the expense of increased runtime. This is referred to as

the Fine-Grained approach. At each iteration, a single small region is selected for

depopulation. We will be using the same region size as in [28], which is a circular

region of radius array size / 8.

The number of new CLBs in each region is determined by Equation (2.4). The

Fine-Grained Un/DoPack method offers the least amount of area inflation, for the

same channel width targets. Therefore, we will be comparing our work against

the area performance of Fine-Grained Un/DoPack.

num new CLBs finegrained =
√

(num CLBs in region) ∗ 2 + 1 (2.3)

new region CLBs =
num region LEs

num CLBs in region+ num new CLBs finegrained

(2.4)

18

2.3. Un/DoPack CAD Flow

Figure 2.9: Region Selection and Whitespace Insertion - Fine-Grained Un/DoPack

2.3.3 Multiregion Un/DoPack

The multiple region approach presented in [29], referred to as Multiregion

Un/DoPack, reduced runtime by depopulating multiple regions simultaneously

in each iteration.

Regions are selected by centering the region on the CLB with the largest

congestion value, closest to the center of the array. Once marked, CLBs cannot

belong to any other region. Iteratively, all CLBs with a congestion value over the

target channel width constraint are marked in this way, until no other unmarked

CLBs have a congestion value over the target channel width constraint. We use the

region size presented in [29], which is a circular region with a radius of array size

/ 10.

In this approach, there is no restriction on how many CLBs are created in each

iteration. Each region in the Multiregion scheme grows proportionally to the peak

congestion in each region and an empirically determined scaling factor. In each

iteration, the new number of CLBs in congested regions are calculated according

to Equation 2.5 and Equation 2.6.

α = 45 · region radius (2.5)

new region CLBs = α ·
(
highest clb label of region

channel width constraint
− 1

)
(2.6)

19

2.3. Un/DoPack CAD Flow

Of the previous Un/DoPack approaches, Multiregion Un/DoPack requires the

lowest runtime. We will be comparing our work against the runtime peformance

of Multiregion Un/DoPack.

20

Chapter 3

Multiple Region Depopulation
with Congestion-Driven Metrics

The work presented in this thesis is based on the Un/DoPack CAD flow. We

extend this approach to use congestion information presented by the placement

and routing stages to more accurately determine the amount of whitespace to

insert at each iteration. We introduce congestion-driven techniques that utilize

local congestion metrics to reduce runtime and area inflation. Two new approaches

are presented which explore the use of congestion information to determine which

regions will be reclustered in each iteration of the Un/DoPack flow. First, we

present an approach to help the CAD flow to better select congested regions.

Second, we relax the constraint on how many CLBs are created in each iteration,

and apply an interconnect demand model to determine the amount of whitespace

to insert in each iteration. Finally, we introduce a congestion-aware placement

algorithm to show that it is possible to further improve the overall quality of the

Un/DoPack flow through the inclusion of other congestion-aware tools.

3.1 Budgeted Multiregion Un/DoPack (BMR)

Our first observation is that while previous work showed that depopulation is

effective in reducing local interconnect congestion, it is important to correctly

select congestion areas. A CAD flow was built which modified the region selection

technique of Un/DoPack. We will refer to this as the Budgeted Multi-Region

21

3.1. Budgeted Multiregion Un/DoPack (BMR)

(BMR) approach for the remainder of this work.

Multiple small regions are utilized to capture congested areas more accurately

than a large single region. In addition, the number of CLBs created in each

iteration is limited by a budget which is the same as in the Baseline Un/DoPack

Flow; this budget is such that the number of CLBs in each iteration increase the

FPGA array size by 1 row and 1 column. Each region is depopulated by a fixed

amount equal to the Fine-Grained version of Un/DoPack. This has the effect

of inflating area as much as the Baseline method, but the budget is spread to

multiple regions.

We will show that despite the overall same area growth in each iteration, we

can converge more quickly to a routable solution.

3.1.1 Region Selection

Instead of selecting a single large region, such as in Baseline Un/DoPack, our

BMR approach creates regions that cover all congested CLBs. The details of each

step in region selection is as follows:

• The first congestion region is selected by finding the CLB with the highest

congestion label, closest to the center of the array. This forms an initial x,y

center location for a circular windowed region of size bmr radius which will

be marked for depopulation. In this work, bmr radius is array size / 10.

This step is shown in the leftmost illustration in Figure 3.1(a). The initial

region is centered on the most-congested (darkest in the illustration) CLB,

closest to the center of the array.

• The window center is adjusted slightly (up to ± bmr radius
2

) in each direction

by using force-directed shifting. Force vectors between each CLB in the win-

22

3.1. Budgeted Multiregion Un/DoPack (BMR)

1 1 1 11

1 1 1 1 1 1 1
111 1 1 1 1

1 1 1

1 1 1 1111
1 1 1 1 1

1 11

(a) Selection of the First Region

2 2 2
2 2 22 2
2 2 22 2 2
2 2 22 2 2
2 2 22 2 2
2 2 22 2

2 2 2

(b) Selection of the First Region

1 1 1 11

1 1 1 1 1 1 1
111 1 1 1 1

1 1 1

1 1 1 1111
1 1 1 1 1

1 11

2 2 2
2 2 22 2
2 2 22 2 2
22 2

2 2
2

(c) CLBs are Marked for Depopulation

Figure 3.1: Example of Region Selection

dow and the center of the region are calculated using the congestion values

for each CLB. The sum of these vectors produces a direction in which to

move the window. A binary search along this direction between the starting

point and the farthest possible new starting point is then used to determine

the window location that encompasses the largest average congestion. The

furthest that the window can shift is a distance of up to ± bmr radius
2

away

from the original window center. This produces a force-directed move to

shift the region to encompass the most amount of congestion. The center

illustration in Figure 3.1(a) shows that location of the region has shifted.

23

3.1. Budgeted Multiregion Un/DoPack (BMR)

The congested CLBs near the top left of the array create a net force which

cause the region to shift.

• The CLBs in this selected region are marked as belonging to this region.

This is shown in the rightmost illustration in Figure 3.1(a)

• The next congestion region is selected by finding the next CLB with the

largest congestion value, closest to the center of the array. The center CLB

is only chosen from CLBs not already selected. This is shown in the leftmost

illustration in Figure 3.1(b).

• Force-directed shifting is applied to the new region. The region center is not

allowed to shift into an already selected region. However, once the region

location is determined, CLBs overlapping with other regions are allowed to

belong to this new region. This is shown in the center illustration in Figure

3.1(b).

• This continues until all CLBs exceeding the target channel-width constraint

are covered by a region.

The force-directed move ensures the depopulation window region is reposi-

tioned so the CLB label peak value is still captured, but it will also capture

as many other CLBs as possible that need depopulation. A list of all such re-

gions is then sorted such that the regions with the highest average congestion are

depopulated first. This ensures that the overall budget will be spent on the most-

congested regions first. At each depopulation step, we determine the number of

CLBs which will be added. Once a region is depopulated, subsequent regions will

not be able to depopulate the CLBs that are already depopulated in this iteration.

The regions are depopulated in sorted order until all congested regions are depop-

24

3.1. Budgeted Multiregion Un/DoPack (BMR)

ulated. This is shown in Figure 3.1(c). Although region 1 and region 2 overlap,

region 1 will be depopulated first because it is more congested. Subsequently,

region 2 is depopulated but does not overlap with region 1.

In addition, those adjacent regions with the same target cluster size are merged

together into a single combined “super-region”, which may allow for better flexi-

bility during reclustering.

3.1.2 Whitespace Insertion

Whitespace insertion is achieved by reducing the cluster size of the CLBs, such

that some BLEs become unused. For the BMR flow, we limit the growth in each

region to an amount determined by Equation 3.1. However, the total number of

new CLBs produced in each iteration is limited by a budget, defined in Equation

3.2.

num new CLBs region =
√

(num CLBs in region) ∗ 2 + 1 (3.1)

new CLBs bmr =
√

(num CLBs in FPGA) ∗ 2 + 1 (3.2)

For each region marked for depopulation, we subtract the number of new CLBs

created in each iteration against the budget until the budget is exhausted. In some

cases, the target cluster size can not be attained because the remaining budget

is insufficient. In this case, all of the remaining budget will be applied to that

region and the cluster size will be calculated accordingly.

25

3.2. Congestion-Model Multiregion Un/DoPack (CMR)

Figure 3.2: Region Selection and Whitespace Insertion - BMR Un/DoPack

3.2 Congestion-Model Multiregion Un/DoPack

(CMR)

In addition to improved region selection, we experimented with using a channel-

width demand model to improve the accuracy of the whitespace insertion. We

will term this scheme the Congestion-Model Multiregion Un/DoPack (CMR). We

utilize the same region selection method as in the above BMR flow, but we extend

the whitespace insertion method to utilize congestion information to determine a

target cluster size. The overall budget is removed to allow as much depopulation

in each iteration to occur as needed.

Of the interconnect models available in previous work, the most applicable

to this work consist of those models which predict wire length and channel-width

demand [13][14]. The work in [13] extends previous models to consider the routing

inflexibility inherent in FPGAs. The advantage of this model is that we can use

it to predict outcomes in interconnect demand based on decisions made during

clustering. Since this model assumes its application to an entire FPGA, we make

some simple assumptions to apply it to our local depopulation regions.

26

3.2. Congestion-Model Multiregion Un/DoPack (CMR)

3.2.1 Modeling Regional Interconnect Demand

While most channel-width demand models predict the interconnect demand at

a global level, we are interested in determining, on a region-by-region basis,

how much whitespace insertion is necessary for each congested region to become

routable. Thus we create the following simple model of local interconnect demand

to allow the application of a global model, shown in Equation 3.3.

total region demand = region internal demand+ region external demand

(3.3)

Interconnect demand for a region of CLBs can be generally categorized in two

types: internal interconnect, which is the interconnect needed to route between

CLBs inside a region, and external interconnect, which consists of routing that

connects CLBs outside the region, but pass through the region without connecting

to any CLBs inside the region.

While depopulation directly affects the internal interconnect demand through

whitespace insertion, we cannot directly reduce interconnect demand from exter-

nal routing by whitespace insertion into a region. Instead, we must separately

account for its effects by identifying the contribution to the channel-width de-

mand inside a region caused by these external nets, as shown in Equation 3.3.

For each region, our goal is to reduce total region demand to meet our channel-

width constraint by reducing region internal demand.

We apply a congestion-estimation model, Wirelength-per-Area [31], to the

internal and external nets separately. We can compare the amount of average

interconnect demand from internal nets to the average interconnect demand of

27

3.2. Congestion-Model Multiregion Un/DoPack (CMR)

external nets. Combining this with post-routing information, we can then estimate

the actual interconnect demand due to external and internal nets.

For simplicity, we assume that subsequent iterations will produce relatively

the same amount of external-net congestion in the next iteration. Although this

is a simplification, interconnect demand from external nets are typically less than

interconnect from internal nets. This is intuitive since local routing should mostly

originate from logic inside regions. We leave the influence of inter-region effects on

congestion to future work. The channel-width estimation model using Equation

3.5 from [13], is then used to determine the amount of whitespace to insert for

the next reclustering step.

3.2.2 Modeling Internal Demand

The interconnect model presented in [13] is shown in Equation 3.5. This model

is an extension of El Gamal’s master slice interconnect model [14], which pre-

dicts the channel-width for a fully flexible FPGA. This is shown in Equation 3.4.

Wabs min is the channel-width required for a fully flexible FPGA, while λ is the av-

erage number of used inputs and R is the average point-to-point wirelength. The

channel-width determined from the master slice interconnect model does not ac-

count for additional channel-width required due to routing inflexibility caused by

wire segment length, switch blocks, and connection blocks. Instead, [13] accounts

for these by including additional terms, shown in Equation 3.5.

Wabs min = p
λR̄

2
(3.4)

28

3.3. Congestion-Aware Placement

W = Wabs min

+
1

β

(
Wabs min

Fs

)(
Wabs min

FCin

)αin
(
Wabs min

FCout

)αout

+
λ(L− 1)

4

(
1 +

1

Fαin
Cin

)
(3.5)

In Equation 3.5, W is the estimated peak channel-width. Post-placement,

we can measure the average number of used inputs per CLB, λ. Fs is switch

block flexibility, FCin and FCout denote connection block flexibilities for inputs

and outputs, and L is wire segment length; these values can be determined from

the FPGA architecture. We use the values 1.4, 0.5, and 0.25 for β, αin, and αout,

respectively, as presented in [13]. We assume, as in [13], that R remains constant

with cluster size. Therefore, by using the measured peak channel-width for a

region and average number of used inputs, we can solve Equation 3.5 for p · R.

With these constants set, we substitute W for the target channel-width and solve

Equation 3.5 for Wabs min. From Equation 3.4, we can then solve for λ. Therefore,

by re-clustering the region at the next iteration to meet the λ constraint on the

number of used inputs, this region should become routable.

In our implementation, the clustering tool iteratively reclusters a region with a

progressively lower cluster-size until the average number of used inputs constraint

is met. Since the clustering runtime is very small, the increase in overall runtime

is negligible. In addition, we retain the flexibility of the clustering tool to use

different clustering methods.

3.3 Congestion-Aware Placement

A second goal of this work is to show that a congestion-aware placement tool

improves the overall quality of the Un/DoPack flow, but is insufficient as a

29

3.3. Congestion-Aware Placement

replacement to Un/DoPack. While several congestion-aware placement tools

exist [32][24][5], work presented in [32] follows a philosophy complimentary to

Un/DoPack by optimizing placement to reduce local congestion.

Cost = coeff ∗
Nnets∑
i=1

q[i](bbx(i) + bby(i)) (3.6)

The placement approach in [32], referred to as Bounding Box Overlap place-

ment, uses a congestion estimation map to create a coefficient. This coefficient

is multiplied with the bounding box cost function in the VPR placement tool to

penalize swaps which lead to congested placements. The modified cost function

is shown in Equation 3.6. For each net i, the horizontal and vertical spans, bbx(i)

and bby(i), are added and multiplied with the q(i) factor which compensates for

the fanout of the net. This is summed over all nets and multiplied with the co-

efficient calculated from the congestion map. The coefficient is calculated using

Equation 3.7.

coeff =

(
Σi,jU

2
i,j

nx · ny
/

(
Σi,jU

2
i,j

nx · ny

)2)
(3.7)

In Equation 3.7, Ui,j is a CLB label in the congestion estimation map used.

The congestion estimation map in [32] uses an approach referred to as Bound-

ing Box Overlap. The congestion estimation map indicates how many bounding

boxes overlap each CLB. Since we are able to use any method to generate a con-

gestion estimation map, we also took the opportunity to explore a slight variation

to Bounding Box Overlap heuristic. In [31], authors explained that a related

30

3.3. Congestion-Aware Placement

Circuit VPR VPR BB Wirelength
Default BB Overlap per Area
(tracks) (tracks) (tracks) (tracks)

stdev0 96 95 92 93
stdev002 96 93 94 86
stdev004 101 97 98 92
stdev006 89 89 90 86
stdev008 119 116 115 106
stdev010 153 150 152 139
stdev012 145 145 141 138

Table 3.1: Maximum MRCW Comparison of Placement Schemes

heuristic, Wirelength per Area, produces a congestion map which better indicates

relative local amounts of interconnect demand when compared to Bounding Box

Overlap. We created congestion maps using the Wirelength per Area method and

applied this to the congestion-aware placement tool.

Table 3.1 illustrates the effect of congestion-aware placement on the maximum

MRCW of our benchmark suite, and Table 3.2 compares the runtime performance

for each placement scheme. While much slower in runtime, results show that a

congestion-aware placer consistently reduces the number of routing tracks. The

runtime and maximum MRCW results obtained using VPR default, VPR bound-

ing box, Bounding Box Overlap, and Wirelength per Area placement approaches,

are compared in Table 3.1 and Table 3.2. We note that the Wirelength per Area

method indeed performs slightly better in reducing the maximum MRCW, al-

though both produce consistently good results. Our experiments combine our

Congestion-Model Multiregion version of Un/DoPack with the congestion-aware

placement, using the Wirelength per Area method. This will be called CMR-CAP.

The congestion-aware placement is integrated with the incremental placement

tool, RePlace.

31

3.3. Congestion-Aware Placement

Circuit VPR VPR BB Wirelength
Default BB Overlap per Area

(seconds) (seconds) (seconds) (seconds)
stdev0 2406 783 10063 10918

stdev002 2207 882 10226 10639
stdev004 2170 831 8792 9694
stdev006 1704 692 8794 9803
stdev008 1810 776 9602 10204
stdev010 2279 1037 10394 11942
stdev012 1875 1063 12126 13808

Table 3.2: Runtime Comparison of Placement Schemes

32

Chapter 4

Results

We compared the runtime and area performance of Baseline Un/DoPack to

the following schemes: Multiregion Un/DoPack, Fine-Grained Un/DoPack,

Budgeted Multiregion Un/DoPack (BMR) and the Congestion-Model Multire-

gion Un/DoPack (CMR). We also performed experiments which combined the

Congestion-Model Multiregion Un/DoPack approach with a congestion-aware

placement tool (CMR-CAP).

4.1 Experimental Methodology

This section discusses the experimental framework to evaluate our algorithmic

improvements.

The results in this work are normalized to the baseline Un/DoPack flow pre-

sented in [29]. Baseline Un/DoPack has the following characteristics:

• Congestion calculator with single region depopulation

• Clustering algorithm which is a replica of iRAC

• RePlace, incremental placer presented in [18], using default VPR placement
(timing and wirelength driven placement)

• VPR flags: pres fac mult 1.3, max router iterations 100

• FPGA architecture with LUT size k = 6, cluster-size N = 16, inputs per
cluster I = 51, and a wire length of L = 4

33

4.1. Experimental Methodology

The experiments were conducted on a single core of a Xeon X5355 2.66 GHz

processor with 16GB of RAM. The maximum MRCW of each circuit, was de-

termined from VPR with the binary search option set. The verify binary search

option in VPR was used to ensure that the lowest routable channel width was

measured. All versions of Un/DoPack were run on our servers including the fol-

lowing Un/DoPack schemes: Baseline, Fine-Grained, BMR, and CMR. All VPR

simulations used an overuse penalty factor growth factor, pres fac mult, of 1.3

and the maximum number of router iterations, max router iterations, set at 100.

The channel-width constraints are the same as those presented in [29] using the

benchmark circuits described below.

We used the benchmark circuits from [29]. Each of the benchmark circuits have

the following characteristics: 40013 LUTs, 241 inputs, 120 outputs, and approxi-

mately 52000 nets. These circuits are designed to help examine the performance

of CAD tools for large, system-on-chip designs which are composed of subcircuits

with varying amounts of interconnect demand. The benchmark circuits created in

[29] were generated by mimicking the properties of MCNC benchmark circuits [21]

as subcircuits in one large, synthetic circuit using the generator GNL. GNL al-

lows the user to specify the overall Rent parameter of the circuit, and also the

Rent parameter of individual subcircuits. The average Rent parameter is 0.65 for

each benchmark circuit, but the standard deviation of the Rent exponent for the

subcircuits is varied. The result is a set of benchmark circuits which contain some

circuits with uniform local interconnect demand across the circuit, while others

have regions of high local interconnect demand.

For each of the Un/DoPack multiregion depopulation methods, we use a de-

population radius of array size / 10. This is the same region size of Multiregion

Un/DoPack presented in [29]. We use a depopulation radius of array size / 4 for

34

4.2. Previous Un/DoPack Schemes

Baseline Un/DoPack, and a depopulation radius of array size /8 for Fine-Grained

Un/DoPack, in accordance to [28]. Multiregion Un/DoPack will be our target ap-

proach for a low-runtime version of Un/DoPack, while Fine-Grained Un/DoPack

will form the target for the low-area version of Un/DoPack.

A separate set of experiments were performed to examine the effect of combin-

ing a congestion-aware placement tool with the Congestion-Model Un/DoPack ap-

proach. All parameters for this set of experiments are identical to those mentioned

above, with the exception of the inclusion of the congestion-aware placement cost

function within the incremental placer.

4.2 Previous Un/DoPack Schemes

Figure 4.1 shows the area versus runtime results for Multiregion and Fine-Grained

Un/DoPack for each of the benchmark circuits used in this thesis, over a range

of channel width constraints. The horizontal axis indicates the runtime for each

benchmark, normalized to the runtime of Baseline Un/DoPack. The vertical

axis indicates the area for each benchmark, normalized to the area of Baseline

Un/DoPack. In this work, area is considered the sum of routing area and CLB

area. Area is calculated in the same way as VPR [3], where the layout area of

an individual transistor is expressed in units of minimum-width transistor areas.

The vertical axis indicates the runtime of each scheme, normalized to the runtime

of Baseline Un/DoPack.

Our results show that of the previous Un/DoPack schemes, the Fine-Grained

approach produces the best results in terms of area; the area is reduced by up

to 30% when compared to Baseline Un/DoPack. However, this has a large run-

time penalty; due to the small number of CLBs inserted at every iteration, many

35

4.2. Previous Un/DoPack Schemes

0 1 2 3 4
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5
1 . 3 0
1 . 3 5 F i n e - G r a i n e d

M u l t i r e g i o n

No
rm

aliz
ed

 Ar
ea

N o r m a l i z e d R u n t i m e

Figure 4.1: Area versus Runtime - Fine-Grained and Multiregion Schemes, Nor-
malized to Baseline

iterations are needed, especially for lower target channel-width constraints. The

runtime increases accordingly. Multiregion Un/DoPack reduces runtime by depop-

ulating multiple regions simultaneously, while inserting whitespace proportional

to the peak congestion value of a region. As expected, Multiregion Un/DoPack

outperforms the runtime of Baseline Un/DoPack, improving runtime by up to

6x. Area performance also improves in general by up to 17.5% over Baseline

Un/DoPack. However, unlike Fine-Grained Un/DoPack, which consistently re-

duces area up to 28%, Multiregion Un/DoPack also produces worse area results,

inflating area up to 32% more than Baseline Un/DoPack.

36

4.3. Budgeted Multiregion Un/DoPack

4.3 Budgeted Multiregion Un/DoPack

0 1 2 3 4
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5
1 . 3 0
1 . 3 5 F i n e - G r a i n e d

B M R
No

rm
aliz

ed
 Ar

ea

N o r m a l i z e d R u n t i m e

Figure 4.2: Area versus Runtime - Fine-Grained and BMR

Figure 4.2 shows the area versus runtime results for BMR and Fine-Grained

Un/DoPack for each of the benchmark circuits used in this thesis, over the same

range of channel width constraints. We observe that BMR Un/DoPack is able to

maintain area performance which is comparable to Fine-Grained Un/DoPack, and

yet runtime is significantly faster. The general trend for Fine-Grained Un/DoPack

is that as the area performance improves against Baseline Un/DoPack, but run-

time also increases. In BMR however, the opposite trend is apparent; a decrease

in area is accompanied by a decrease in runtime; this is despite BMR creating

as many CLBs as Baseline Un/DoPack in each iteration. The speedup can be

explained, in some cases, by a reduction in iterations needed to reach a channel

37

4.4. Congestion-Model Multiregion Un/DoPack

width constraint. Depopulating multiple congested regions simultaneously allows

BMR to converge faster by depopulating multiple locations.

The area performance of BMR is better than Baseline Un/DoPack. A smaller

CLB increase in each region may prevent regions from being over-depopulated.

Accurate region selection reduces the likelihood that uncongested CLBs are depop-

ulated, due to non-circular congestion regions and force-directed shifting. Com-

pared to Baseline Un/DoPack, area is reduced by up to 23%, with the maximum

increase over Baseline at 1.1%. This leads to the conclusion that increasing the

total CLB budget for depopulation in each iteration is an important factor in

reducing runtime. For the congestion in each region to be resolved as soon as

possible, we require an adequate amount of depopulation. However, by reducing

the amount of depopulation in each region to the minimum necessary amount,

unnecessary area inflation can be reduced.

4.4 Congestion-Model Multiregion Un/DoPack

For the CMR scheme, the limit on area growth for each iteration is removed.

Instead, a congestion model for whitespace insertion is added to determine how

much whitespace to insert in each iteration.

Figure 4.3 shows a comparison of area and runtime performance between the

Multiregion Un/DoPack and CMR Un/DoPack. Because of the removal of the

budget, the number of iterations decreases dramatically compared to Baseline

and Fine-Grained Un/DoPack. The reduction of iterations produces a runtime

improvement that is comparable to Multiregion Un/DoPack. In our experiments,

CMR Un/DoPack is able to achieve a 5.5x speedup over Baseline Un/DoPack,

while Multiregion Un/DoPack is able to achieve a runtime improvement of 6x.

38

4.4. Congestion-Model Multiregion Un/DoPack

0 1 2 3 4
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5
1 . 3 0
1 . 3 5 M u l t i r e g i o n

C M R

No
rm

aliz
ed

 Ar
ea

N o r m a l i z e d R u n t i m e

Figure 4.3: Area versus Runtime - Multiregion and CMR

However, we note that the area performance of CMR Un/DoPack is consis-

tently better than Multiregion Un/DoPack. In some instances where Multiregion

Un/DoPack has significant runtime speedup, the area growth is quite high. In

contrast, an improvement in runtime is also accompanied by an area improvement

for CMR in general.

Figure 4.4 shows a comparison of all multiple region depopulation methods.

Both CMR and BMR show consistently better area performance than Multiregion

Un/DoPack.

Figures 4.5 and 4.6 show examples of typical results for individual bench-

marks. Shown is the area and runtime of Baseline Un/DoPack compared to other

methods. The horizontal axis is minimum routable channel width, normalized to

39

4.4. Congestion-Model Multiregion Un/DoPack

0 1 2
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5
1 . 3 0
1 . 3 5

 M u l t i r e g i o n
 C M R
 B M R

No
rm

aliz
ed

 Ar
ea

N o r m a l i z e d R u n t i m e

Figure 4.4: Area versus Runtime - BMR, Multiregion and CMR

the maximum MRCW. The maximum MRCW was determined by performing the

traditional VPR CAD flow with the binary search option enabled for the rout-

ing step. This determines the minimum number of tracks needed to route each

benchmark circuit before depopulation using Un/DoPack. Area is measured as

the total transistor area of the logic and routing of the CLBs used. This captures

the effect of successfully reducing the channel width as well as the effect of using

more CLBs after depopulating. Runtime figures presented are normalized to the

maximum MRCW for the circuit. A value of 0.6 on the x-axis means that the

final routed channel width is reduced by 40%.

As expected, Fine-Grained Un/DoPack produces the best area with the worst

runtime. Our CMR approach maintains or improves the runtime performance of

40

4.4. Congestion-Model Multiregion Un/DoPack

0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5 F i n e - G r a i n e d

 M u l t i r e g i o n
 B M R
 C M R

Sp
ee

du
p

M R C W
(N o r m a l i z e d t o m a x i m u m M R C W)

Figure 4.5: Runtime Comparison with Baseline Un/DoPack - Circuit Stdev004

the previous Multiregion approach, but also improves area.

Results for other circuits are similar to circuit Stdev004. However, in situations

where the maximum MRCW is quite large, the performance of all approaches will

be similar. This is because only a small number of regions need to be depopulated

for the circuit to become routable. Therefore at larger channel width constraints,

the number of iterations required for each approach is similar, and so the runtime

is also similar. As the maximum MRCW is lowered, Baseline and Fine-Grained

Un/DoPack perform less depopulation at each iteration than the Multiregion or

Congestion-Model Multiregion approaches. This allows our approach to have a

significant speedup at lower MRCW settings. In addition, our CMR approach

41

4.5. Critical-Path Comparison

0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5

No
rm

aliz
ed

 Ar
ea

M R C W
(N o r m a l i z e d t o m a x i m u m M R C W)

 F i n e - G r a i n e d
 M u l t i r e g i o n
 B M R
 C M R

Figure 4.6: Area Comparison with Baseline Un/DoPack - Circuit Stdev004

reduces the over-depopulation of regions and area performance is improved even

at low target channel widths.

4.5 Critical-Path Comparison

The critical path for each method are relatively similar. Typical critical path

results, compared to Baseline Un/DoPack, are shown in Figures 4.7 and 4.8.

42

4.6. CMR with Congestion-Aware Placer

0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5

No
rm

aliz
ed

 Cr
itic

al
Pa

th

M R C W
(N o r m a l i z e d t o m a x i m u m M R C W)

 F i n e - G r a i n e d
 M u l t i r e g i o n
 B M R
 C M R

Figure 4.7: Critical Path Comparison - Circuit Stdev004

4.6 CMR with Congestion-Aware Placer

The inclusion of a congestion-driven placement tool can further improve the

Un/DoPack approach. Figures 4.9 to 4.10 illustrate that combining CMR

Un/DoPack with a congestion-aware placer consistently improves area.

As indicated in Table 3.1, this congestion-aware placement tool cannot by

itself reduce the channel-width more than is possible with whitespace insertion.

However, when combined with CMR, we can further limit area inflation of the

Un/DoPack flow. This improvement can be significant, up to 25% better than

CMR alone, as shown in Figure 4.10.Although this particular congestion-aware

placement tool causes CMR-CAP Un/DoPack to be slower (4x slower than Base-

43

4.6. CMR with Congestion-Aware Placer

0 . 7 0 . 8 0 . 9 1 . 0
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5

No
rm

aliz
ed

 Cr
itic

al
Pa

th

M R C W
(N o r m a l i z e d t o m a x i m u m M R C W)

 F i n e - G r a i n e d
 M u l t i r e g i o n
 B M R
 C M R

Figure 4.8: Critical Path Comparison - Circuit Stdev006

line Un/DoPack), our results indicate that the inclusion of other congestion-driven

placement techniques can possibly reduce the area of the Un/DoPack flow. This

illustrates that the inclusion of local congestion-driven techniques can further im-

prove, but not replace, the Un/DoPack approach.

44

4.6. CMR with Congestion-Aware Placer

0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5

No
rm

aliz
ed

 Ar
ea

M R C W
(N o r m a l i z e d t o m a x i m u m M R C W)

 F i n e - G r a i n e d
 M u l t i r e g i o n
 C M R
 C M R + C A P

Figure 4.9: CMR with Congestion-Aware Placement - Stdev004

45

4.6. CMR with Congestion-Aware Placer

0 . 7 0 . 8 0 . 9 1 . 0
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0
1 . 0 5
1 . 1 0
1 . 1 5
1 . 2 0
1 . 2 5
1 . 3 0
1 . 3 5

No
rm

aliz
ed

 Ar
ea

M R C W
(N o r m a l i z e d t o m a x i m u m M R C W)

 F i n e - G r a i n e d
 M u l t i r e g i o n
 C M R
 C M R + C A P

Figure 4.10: CMR with Congestion-Aware Placement - Stdev006

46

Chapter 5

Conclusions

In this thesis we show that we are able to effectively improve the performance

of the Un/DoPack flow in area and runtime by effectively utilizing congestion

information. This work presented methods to better select congested regions on

an FPGA and calculate the amount of depopulation required at each iteration.

Our Congestion-Model Multiregion approach is shown to improve runtime by a

factor of up to 5.5 times and reduce area by up to 20%, compared to Base-

line Un/DoPack. This allowed us to reduce channel-width up to 55%. We also

showed that this CAD flow is complementary to using a congestion-aware place-

ment method; the inclusion of a congestion-aware placement tool had positive

effects on the overall area performance of Un/DoPack.

5.1 Future Work

5.1.1 Influence from Neighbouring Regions

To further improve the accuracy of congestion-driven whitespace insertion tech-

nique for each region, future work should consider the influence of depopulating

neighbouring regions on the congestion. This is especially an important consid-

eration when neighbouring regions are depopulated with different cluster sizes.

The congestion model in this work assumes that the CLBs in each region will

eventually be placed adjacent to CLBs from the same region. However, in reality,

47

5.1. Future Work

it is possible that CLBs from one region to be placed into adjacent regions during

the placement step.

5.1.2 Congestion-Driven Placement and Clustering

This work has shown that additional congestion-aware methods can further im-

prove the area performance of Un/DoPack. Through fine-grained logic placement,

SCPlace has been shown to produce more routable solutions at a better runtime

than VPR simulated annealing. While SCPlace performs fine-grained placement,

it does not introduce whitespace insertion into to help a non-routable solution

become routable. The combination of a simultaneous clustering and placement

method, combined with incremental placement and Un/DoPack whitespace inser-

tion would further improve runtime and area performance.

Additionally, a large part of the runtime cost for each iteration is due to the

time required for routing. We attempted to extract local interconnect demand

information, using an estimator based on the Area-Per-Wirelength model [31].

While it is able to locate congested regions somewhat adequately, it does not

provide the very accurate congestion information needed for our congestion-driven

whitespace insertion. Additional research into estimation methods which estimate

local congestion and routability information will help reduce the need to rely on

full routing to determine accurate congestion information.

48

Bibliography

[1] Elias Ahmed and Jonathan Rose. The effect of LUT and cluster size on deep-

submicron FPGA performance and density. In IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, pages 3–12, Monterey, California,

United States, 2000. ISBN 1-58113-193-3. URL http://portal.acm.org/

citation.cfm?id=329166.329171.

[2] V. Betz and J. Rose. Cluster-based logic blocks for FPGAs: area-efficiency

vs. input sharing and size. In Custom Integrated Circuits Conference, pages

551–554, 1997. doi: {10.1109/CICC.1997.606687}. URL http://www.eecg.

toronto.edu/~vaughn/papers/cicc97.pdf.

[3] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Architec-

ture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers,

1999. ISBN 0792384601. URL http://portal.acm.org/citation.cfm?id=

553523.

[4] Elaheh Bozorgzadeh, Seda Ogrenci-Memik, and Majid Sarrafzadeh. RPack:

routability-driven packing for cluster-based FPGAs. In Asia and South

Pacific Design Automation Conference, pages 629–634, Yokohama, Japan,

2001. ACM. ISBN 0-7803-6634-4. doi: 10.1145/370155.370567. URL

http://portal.acm.org/citation.cfm?id=370567.

[5] Ulrich Brenner and Andre Rohe. An effective congestion driven placement

49

http://portal.acm.org/citation.cfm?id=329166.329171
http://portal.acm.org/citation.cfm?id=329166.329171
http://www.eecg.toronto.edu/~vaughn/papers/cicc97.pdf
http://www.eecg.toronto.edu/~vaughn/papers/cicc97.pdf
http://portal.acm.org/citation.cfm?id=553523
http://portal.acm.org/citation.cfm?id=553523
http://portal.acm.org/citation.cfm?id=370567

Chapter 5. Bibliography

framework. In International Symposium on Physical Design, pages 6–11, San

Diego, CA, USA, 2002. ACM. ISBN 1-58113-460-6. doi: 10.1145/505388.

505391. URL http://portal.acm.org/citation.cfm?id=505391.

[6] Yao-Wen Chang, Shashidhar Thakur, Kai Zhu, and D. F. Wong. A new global

routing algorithm for FPGAs. In IEEE/ACM International Conference on

Computer-Aided Design, pages 356–361, San Jose, California, United States,

1994. IEEE Computer Society Press. ISBN 0-89791-690-5. URL http://

portal.acm.org/citation.cfm?id=191489.

[7] Gang Chen and Jason Cong. Simultaneous timing driven clustering and place-

ment for FPGAs. In Field Programmable Logic and Application, pages 158–

167. Springer Berlin / Heidelberg, 2004. URL http://www.springerlink.

com/content/gyahkply7ltv78eu.

[8] J. Cong and Yuzheng Ding. FlowMap: an optimal technology mapping algo-

rithm for delay optimization in lookup-table based FPGA designs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 13(1):1–12, 1994. ISSN 0278-0070. doi: 10.1109/43.273754. URL

http://citeseerx.ksu.edu.sa/viewdoc/summary?doi=10.1.1.22.9473.

[9] Jason Cong and Yuzheng Ding. On area/depth trade-off in LUT-based FPGA

technology mapping. In International Design Automation Conference, pages

213–218, Dallas, Texas, United States, 1993. ACM. ISBN 0-89791-577-1. doi:

10.1145/157485.164675. URL http://portal.acm.org/citation.cfm?id=

164675.

[10] Jason Cong and Yean-Yow Hwang. Simultaneous depth and area mini-

mization in LUT-based FPGA mapping. In ACM International Sympo-

50

http://portal.acm.org/citation.cfm?id=505391
http://portal.acm.org/citation.cfm?id=191489
http://portal.acm.org/citation.cfm?id=191489
http://www.springerlink.com/content/gyahkply7ltv78eu
http://www.springerlink.com/content/gyahkply7ltv78eu
http://citeseerx.ksu.edu.sa/viewdoc/summary?doi=10.1.1.22.9473
http://portal.acm.org/citation.cfm?id=164675
http://portal.acm.org/citation.cfm?id=164675

Chapter 5. Bibliography

sium on Field-Programmable Gate Arrays, pages 68–74, Monterey, Cali-

fornia, United States, 1995. ACM. ISBN 0-89791-743-X. doi: 10.1145/

201310.201322. URL http://portal.acm.org/citation.cfm?id=201310.

201322&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101.

[11] Jason Cong and Yean-Yow Hwang. Structural gate decomposi-

tion for depth-optimal technology mapping in LUT-based FPGA

designs. ACM Transactions on Design Automation of Electronic

Systems, 5(2):193–225, 2000. doi: 10.1145/335043.335045. URL

http://portal.acm.org/citation.cfm?id=335043.335045&coll=

GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101.

[12] Andre DeHon. Balancing interconnect and computation in a reconfigurable

computing array (or, why you don’t really want 100% LUT utilization). In

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

pages 69–78, Monterey, California, United States, 1999. ACM. ISBN 1-

58113-088-0. doi: 10.1145/296399.296431. URL http://portal.acm.org/

citation.cfm?id=296431.

[13] Wei Mark Fang and Jonathan Rose. Modeling routing demand for early-stage

FPGA architecture development. In ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, pages 139–148, Monterey, California,

USA, 2008. ACM. ISBN 978-1-59593-934-0. doi: 10.1145/1344671.1344694.

URL http://portal.acm.org/citation.cfm?id=1344671.1344694.

[14] A.E. Gamal. Two-dimensional stochastic model for interconnections in mas-

ter slice integrated circuits. IEEE Transactions on Circuits and Systems, 28

(2):127–138, 1981. ISSN 0098-4094. URL http://ieeexplore.ieee.org/

xpl/freeabs_all.jsp?&arNumber=1084958.

51

http://portal.acm.org/citation.cfm?id=201310.201322&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101
http://portal.acm.org/citation.cfm?id=201310.201322&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101
http://portal.acm.org/citation.cfm?id=335043.335045&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101
http://portal.acm.org/citation.cfm?id=335043.335045&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101
http://portal.acm.org/citation.cfm?id=296431
http://portal.acm.org/citation.cfm?id=296431
http://portal.acm.org/citation.cfm?id=1344671.1344694
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arNumber=1084958
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arNumber=1084958

Chapter 5. Bibliography

[15] Chi-Chou Kao and Yen-Tai Lai. An efficient algorithm for finding the

minimal-area FPGA technology mapping. ACM Transactions on Design Au-

tomation of Electronic Systems, 10(1):168–186, 2005. doi: 10.1145/1044111.

1044121. URL http://portal.acm.org/citation.cfm?id=1044111.

1044121&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101.

[16] Julien Lamoureux. On the interaction between Power-Aware Computer-

Aided design algorithms for Field-Programable gate arrays. Master’s thesis,

University of British Columbia, June 2003. URL http://www.ece.ubc.ca/

~stevew/papers/pdf/lamoureux_masc.pdf.

[17] Guy G. F. Lemieux, Stephen D. Brown, and Daniel Vranesic. On

two-step routing for FPGAS. In International Symposium on Phys-

ical Design, pages 60–66, Napa Valley, California, United States,

1997. ACM. ISBN 0-89791-927-0. doi: 10.1145/267665.267682. URL

http://portal.acm.org/citation.cfm?id=267665.267682&coll=

GUIDE&dl=GUIDE&CFID=48052556&CFTOKEN=40588312.

[18] D. Leong and G. Lemieux. RePlace: an incremental placement algorithm

for field-programmable gate arrays. In International Conference on Field

Programmable Logic and Applications, 2009.

[19] Jai-Ming Lin, Song-Ra Pan, and Yao-Wen Chang. Graph matching-based

algorithms for array-based FPGA segmentation design and routing. In

Asia and South Pacific Design Automation Conference, pages 851–854, Ki-

takyushu, Japan, 2003. ACM. ISBN 0-7803-7660-9. doi: 10.1145/1119772.

1119959. URL http://portal.acm.org/citation.cfm?id=1119772.

1119959&coll=GUIDE&dl=GUIDE&CFID=48052556&CFTOKEN=40588312.

52

http://portal.acm.org/citation.cfm?id=1044111.1044121&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101
http://portal.acm.org/citation.cfm?id=1044111.1044121&coll=GUIDE&dl=GUIDE&CFID=47964849&CFTOKEN=55429101
http://www.ece.ubc.ca/~stevew/papers/pdf/lamoureux_masc.pdf
http://www.ece.ubc.ca/~stevew/papers/pdf/lamoureux_masc.pdf
http://portal.acm.org/citation.cfm?id=267665.267682&coll=GUIDE&dl=GUIDE&CFID=48052556&CFTOKEN=40588312
http://portal.acm.org/citation.cfm?id=267665.267682&coll=GUIDE&dl=GUIDE&CFID=48052556&CFTOKEN=40588312
http://portal.acm.org/citation.cfm?id=1119772.1119959&coll=GUIDE&dl=GUIDE&CFID=48052556&CFTOKEN=40588312
http://portal.acm.org/citation.cfm?id=1119772.1119959&coll=GUIDE&dl=GUIDE&CFID=48052556&CFTOKEN=40588312

Chapter 5. Bibliography

[20] L. McMurchie and C. Ebeling. PathFinder: a negotiation-based performance-

driven router for FPGAs. In ACM International Symposium on Field-

Programmable Gate Arrays, pages 111–117, 1995. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1377269.

[21] MCNC. LGSynth93 benchmark suite. Technical report, Microelectronics

Centre of North Carolina, 1993.

[22] M. Palczewski. Plane parallel a maze router and its application to FPGAs.

In ACM/IEEE Design Automation Conference, pages 691–697, Anaheim,

California, United States, 1992. IEEE Computer Society Press. ISBN 0-

89791-516-X. URL http://portal.acm.org/citation.cfm?id=149679.

[23] A. Pandit and A. Akoglu. Net length based routability driven packing. In

International Conference on Field-Programmable Technology, pages 225–232,

2007. doi: {10.1109/FPT.2007.4439253}. URL http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=4439253.

[24] G. Parthasarathy, M. Marek-Sadowska, Arindam Mukherjee, and Amit

Singh. Interconnect complexity-aware FPGA placement using Rent’s rule.

In International Workshop on System-Level Interconnect Prediction, pages

115–121, Sonoma, California, United States, 2001. ACM. ISBN 1-58113-315-

4. doi: 10.1145/368640.368806. URL http://portal.acm.org/citation.

cfm?id=368806.

[25] J. Rose. Parallel global routing for standard cells. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 9(10):1085–1095,

1990. ISSN 0278-0070. doi: 10.1109/43.62733. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=62733.

53

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1377269
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1377269
http://portal.acm.org/citation.cfm?id=149679
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4439253
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4439253
http://portal.acm.org/citation.cfm?id=368806
http://portal.acm.org/citation.cfm?id=368806
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=62733
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=62733

Chapter 5. Bibliography

[26] Amit Singh and Malgorzata Marek-Sadowska. Efficient circuit clustering for

area and power reduction in FPGAs. In ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, pages 59–66, Monterey, California,

USA, 2002. ACM. ISBN 1-58113-452-5. doi: 10.1145/503048.503058. URL

http://portal.acm.org/citation.cfm?id=503058.

[27] Russell Tessier and Heather Giza. Balancing logic utilization and area effi-

ciency in FPGAs. In International Conference on Field-Programmable Logic

and Applications, pages 535–544. Springer-Verlag, 2000. ISBN 3-540-67899-9.

URL http://portal.acm.org/citation.cfm?id=739548.

[28] M. Tom. Channel width reduction techniques for System-on-Chip circuits

in field-programmable gate arrays. Master’s thesis, University of British

Columbia, April 2006.

[29] Marvin Tom, David Leong, and Guy Lemieux. Un/DoPack: re-clustering of

large system-on-chip designs with interconnect variation for low-cost FPGAs.

In IEEE/ACM International Conference on Computer-Aided Design, pages

680–687, San Jose, California, 2006. ACM. ISBN 1-59593-389-1. doi: 10.

1145/1233501.1233643. URL http://portal.acm.org/citation.cfm?id=

1233643.

[30] Mark Yamashita. A combined clustering and placement algorithm

for FPGAs. Master’s thesis, University of British Columbia, Novem-

ber 2007. URL http://www.ece.ubc.ca/~lemieux/publications/

yamashita-masc2007.pdf.

[31] David Yeager, Darius Chiu, and Guy Lemieux. Congestion estimation and

localization in FPGAs: a visual tool for interconnect prediction. In In-

54

http://portal.acm.org/citation.cfm?id=503058
http://portal.acm.org/citation.cfm?id=739548
http://portal.acm.org/citation.cfm?id=1233643
http://portal.acm.org/citation.cfm?id=1233643
http://www.ece.ubc.ca/~lemieux/publications/yamashita-masc2007.pdf
http://www.ece.ubc.ca/~lemieux/publications/yamashita-masc2007.pdf

ternational Workshop on System Level Interconnect Prediction, pages 33–

40, Austin, Texas, USA, 2007. ACM. ISBN 978-1-59593-622-6. doi:

10.1145/1231956.1231963. URL http://portal.acm.org/citation.cfm?

id=1231963.

[32] Yue Zhuo, Hao Li, and S.P. Mohanty. A congestion driven placement al-

gorithm for FPGA synthesis. In International Conference on Field Pro-

grammable Logic and Applications, pages 1–4, 2006. doi: {10.1109/FPL.

2006.311290}. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=4101052.

55

http://portal.acm.org/citation.cfm?id=1231963
http://portal.acm.org/citation.cfm?id=1231963
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4101052
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4101052

Appendix A

Baseline Un/DoPack

CW Runtime CLBs CP Area

100 2867 3148 5.06E-08 1.82E+08
95 6001 3596 5.26E-08 2.00E+08
90 6506 3911 5.53E-08 2.15E+08
85 9518 4449 5.70E-08 2.37E+08
80 13616 4863 6.15E-08 2.51E+08
75 19318 5445 5.90E-08 2.75E+08
70 29127 6392 5.96E-08 3.14E+08
65 52205 7290 6.46E-08 3.52E+08

Table A.1: Baseline Un/DoPack - Stdev0

CW Runtime CLBs CP Area

105 3286 3157 5.28E-08 1.87E+08
100 3085 3157 5.28E-08 1.82E+08
95 3470 3290 5.74E-08 1.85E+08
90 3163 3298 5.34E-08 1.82E+08
85 5599 3683 6.03E-08 1.97E+08
80 7888 4220 5.67E-08 2.18E+08
75 10330 4656 5.87E-08 2.37E+08
70 17390 5351 5.75E-08 2.65E+08
65 26359 6029 5.91E-08 2.90E+08
60 35047 6867 6.31E-08 3.21E+08

Table A.2: Baseline Un/DoPack - Stdev002

56

Appendix A. Baseline Un/DoPack

CW Runtime CLBs CP Area

100 2977 3302 5.79E-08 1.90E+08
95 3136 3273 5.98E-08 1.85E+08
90 3491 3298 6.01E-08 1.82E+08
85 4113 3409 6.14E-08 1.83E+08
80 7093 3961 5.87E-08 2.04E+08
75 13240 5014 5.78E-08 2.53E+08
70 16985 5196 5.68E-08 2.58E+08
65 31989 6195 5.89E-08 2.98E+08

Table A.3: Baseline Un/DoPack - Stdev004

CW Runtime CLBs CP Area

95 2772 3139 5.29E-08 1.78E+08
90 3045 3139 5.50E-08 1.74E+08
85 5943 3889 5.57E-08 2.09E+08
80 7908 4090 5.65E-08 2.11E+08
75 12817 4916 5.90E-08 2.50E+08
70 20791 6067 6.02E-08 2.98E+08
65 30157 6443 5.98E-08 3.11E+08

Table A.4: Baseline Un/DoPack - Stdev006

CW Runtime CLBs CP Area

125 3548 3151 5.21E-08 2.02E+08
120 4178 3286 5.60E-08 2.05E+08
115 3600 3282 5.92E-08 2.02E+08
110 4399 3289 5.27E-08 1.97E+08
105 5174 3560 5.78E-08 2.08E+08
100 4645 3412 5.48E-08 1.96E+08
95 11595 4426 5.72E-08 2.47E+08
90 12227 4281 6.13E-08 2.35E+08
85 17837 4832 5.94E-08 2.58E+08
80 23261 4999 5.78E-08 2.58E+08
75 35152 5593 5.99E-08 2.83E+08
70 50869 6654 6.06E-08 3.28E+08

Table A.5: Baseline Un/DoPack - Clone

57

Appendix A. Baseline Un/DoPack

CW Runtime CLBs CP Area

165 3544 3152 5.81E-08 2.35E+08
155 3105 3152 5.94E-08 2.26E+08
150 4100 3304 5.76-08 2.31E+08
145 4154 3307 5.66E-08 2.27E+08
140 4309 3282 5.92E-08 2.22E+08
135 5236 3460 6.39E-08 2.27E+08
130 6200 3469 6.00E-08 2.24E+08
125 6618 3434 6.10E-08 2.18E+08
120 9696 3573 6.08E-08 2.21E+08
115 9348 3665 6.27E-08 2.24E+08
110 15258 3839 6.21E-08 2.28E+08
105 15797 3952 6.33E-08 2.30E+08
100 18072 4015 6.50E-08 2.31E+08
95 30961 4813 6.49E-08 2.69E+08
90 31815 4879 6.48E-08 2.66E+08
85 39060 5170 6.26E-08 2.75E+08

Table A.6: Baseline Un/DoPack - Stdev010

CW Runtime CLBs CP Area

155 4131 3304 5.93E-08 2.35E+08
150 3588 3163 5.74E-08 2.22E+08
145 4081 3163 5.82E-08 2.19E+08
140 4918 3313 5.84E-08 2.23E+08
135 6957 3600 5.96E-08 2.36E+08
130 7994 3586 5.87E-08 2.31E+08
125 9816 3750 6.22E-08 2.39E+08
120 13155 3943 6.09E-08 2.44E+08
115 18225 4501 6.28E-08 2.76E+08
110 28230 4861 6.35E-08 2.89E+08
105 30233 4628 6.41E-08 2.73E+08
100 39021 5095 6.12E-08 2.92E+08

Table A.7: Baseline Un/DoPack - Stdev012

58

Appendix B

Fine-Grained Un/DoPack

CW Runtime CLBs CP Area

100 3131 3148 5.06E-08 1.82E+08
95 5611 3223 5.28E-08 1.80E+08
90 10794 3404 5.42E-08 1.88E+08
85 19360 3618 5.46E-08 1.95E+08
80 47615 4236 5.89E-08 2.21E+08
75 62504 4410 6.17E-08 2.24E+08
70 106495 5135 6.05E-08 2.53E+08
65 203021 5817 6.09E-08 2.81E+08

Table B.1: Fine-Grained Un/DoPack - Stdev0

CW Runtime CLBs CP Area

105 2572 3157 5.28E-08 1.87E+08
100 2853 3157 5.28E-08 1.82E+08
95 3294 3178 5.55E-08 1.79E+08
90 5124 3253 5.83E-08 1.80E+08
85 6820 3286 5.65E-08 1.77E+08
80 21225 3662 5.78E-08 1.90E+08
75 31006 3853 5.76E-08 1.97E+08
70 55206 4383 5.60E-08 2.17E+08
65 92211 4834 6.02E-08 2.33E+08
60 203822 5931 6.05E-08 2.80E+08

Table B.2: Fine-Grained Un/DoPack - Stdev002

59

Appendix B. Fine-Grained Un/DoPack

CW Runtime CLBs CP Area

100 3178 3169 5.68E-08 1.83E+08
95 3536 3188 5.83E-08 1.79E+08
90 4911 3220 5.58E-08 1.76E+08
85 5970 3261 5.70E-08 1.76E+08
80 16577 3547 5.52E-08 1.84E+08
75 19323 3600 5.62E-08 1.82E+08
70 62945 4558 5.90E-08 2.25E+08
65 96523 5020 5.63E-08 2.41E+08

Table B.3: Fine-Grained Un/DoPack - Stdev004

CW Runtime CLBs CP Area

95 2749 3139 5.29E-08 1.78E+08
90 2639 3139 5.50E-08 1.74E+08
85 8399 3356 5.57E-08 1.79E+08
80 18600 3682 5.61E-08 1.91E+08
75 35314 4031 5.63E-08 2.05E+08
70 50198 4447 5.73E-08 2.19E+08
65 80474 4812 6.10E-08 2.33E+08

Table B.4: Fine-Grained Un/DoPack - Stdev006

CW Runtime CLBs CP Area

125 3074 3151 5.22E-08 2.02E+08
120 3343 3172 5.37E-08 1.98E+08
115 3386 3172 5.48E-08 1.95E+08
110 5849 3229 5.33E-08 1.92E+08
105 6670 3262 5.41E-08 1.93E+08
100 10818 3348 5.42E-08 1.91E+08
95 15808 3441 5.48E-08 1.92E+08
90 24808 3616 5.55E-08 2.00E+08
85 44691 3870 6.07E-08 2.08E+08
80 87193 4359 5.74E-08 2.28E+08
75 112947 4758 5.64E-08 2.40E+08

Table B.5: Fine-Grained Un/DoPack - Clone

60

Appendix B. Fine-Grained Un/DoPack

CW Runtime CLBs CP Area

165 3202 3152 5.81E-08 2.35E+08
155 3237 3152 5.94E-08 2.26E+08
150 4026 3166 6.10E-08 2.22E+08
145 5523 3183 6.01E-08 2.19E+08
140 8736 3236 6.07E-08 2.17E+08
135 9679 3259 5.89E-08 2.17E+08
130 11838 3284 6.43E-08 2.14E+08
125 18518 3371 6.05E-08 2.16E+08
120 18326 3379 6.28E-08 2.12E+08
115 26796 3441 6.18E-08 2.10E+08
110 40918 3613 6.26E-08 2.18E+08
105 60074 3639 6.39E-08 2.14E+08
100 74675 3856 6.38E-08 2.22E+08
95 107440 4181 6.77E-08 2.33E+08
90 148997 4348 6.59E-08 2.37E+08

Table B.6: Fine-Grained Un/DoPack - Stdev010

CW Runtime CLBs CP Area

155 4323 3184 5.83E-08 2.27E+08
150 3346 3163 5.75E-08 2.22E+08
145 3644 3163 5.82E-08 2.19E+08
140 6043 3196 5.92E-08 2.16E+08
135 8672 3251 6.07E-08 2.17E+08
130 15415 3356 5.83E-08 2.16E+08
125 23355 3418 6.05E-08 2.18E+08
120 37426 3558 6.46E-08 2.21E+08
115 56216 3781 6.11E-08 2.31E+08
110 66307 3969 6.21E-08 2.35E+08
105 103231 4233 6.16E-08 2.50E+08
100 149969 4412 6.54E-08 2.53E+08

Table B.7: Fine-Grained Un/DoPack - Stdev012

61

Appendix C

Multiregion Un/DoPack

CW Runtime CLBs CP Area

100 2567 3148 5.06E-08 1.82E+08
95 4438 3434 5.26E-08 1.92E+08
90 6894 3667 5.87E-08 2.01E+08
85 9903 5148 5.76E-08 2.74E+08
80 12917 6095 5.84E-08 3.17E+08
75 10678 6096 5.98E-08 3.10E+08
70 8682 6102 5.65E-08 3.02E+08
65 10746 7174 5.86E-08 3.45E+08

Table C.1: Multiregion Un/DoPack - Stdev0

CW Runtime CLBs CP Area

105 2517 3157 5.28E-08 1.87E+08
100 3143 3157 5.28E-08 1.82E+08
95 2719 3195 5.69E-08 1.79E+08
90 3630 3284 5.56E-08 1.81E+08
85 3461 3455 5.47E-08 1.85E+08
80 8710 4177 5.67E-08 2.16E+08
75 7164 4531 6.17E-08 2.30E+08
70 4620 4695 5.96E-08 2.32E+08
65 6528 6328 6.09E-08 3.05E+08
60 10319 8812 5.99E-08 4.11E+08

Table C.2: Multiregion Un/DoPack - Stdev002

62

Appendix C. Multiregion Un/DoPack

CW Runtime CLBs CP Area

100 3571 3171 5.58E-08 1.83E+08
95 4066 3217 5.72E-08 1.80E+08
90 4784 3355 5.89E-08 1.83E+08
85 4233 3304 5.72E-08 1.77E+08
80 8429 4128 5.83E-08 2.15E+08
75 8477 4968 6.02E-08 2.52E+08
70 9832 6438 5.76E-08 3.18E+08
65 7965 7167 6.23E-08 3.45E+08

Table C.3: Multiregion Un/DoPack - Stdev004

CW Runtime CLBs CP Area

95 3142 3139 5.29E-08 1.78E+08
90 2945 3139 5.50E-08 1.74E+08
85 8741 3713 5.86E-08 1.98E+08
80 11644 5385 5.94E-08 2.79E+08
75 9591 5407 6.62E-08 2.74E+08
70 9060 6561 5.74E-08 3.22E+08
65 5008 6824 6.40E-08 3.29E+08

Table C.4: Multiregion Un/DoPack - Stdev006

CW Runtime CLBs CP Area

125 3616 3151 5.22E-08 2.02E+08
120 3056 3165 5.39E-08 1.98E+08
115 4217 3206 5.37E-08 1.96E+08
110 5505 3256 5.56E-08 1.97E+08
105 6832 3384 5.70E-08 2.00E+08
100 4312 3309 5.55E-08 1.90E+08
95 6314 3620 5.79E-08 2.04E+08
90 9575 4101 5.63E-08 2.26E+08
85 7616 4634 5.81E-08 2.49E+08
80 11451 5539 6.53E-08 2.87E+08
75 8669 6159 6.26E-08 3.12E+08
70 16623 7240 6.23E-08 3.58E+08

Table C.5: Multiregion Un/DoPack - Clone

63

Appendix C. Multiregion Un/DoPack

CW Runtime CLBs CP Area

165 2834 3152 5.81E-08 2.35E+08
155 3488 3152 5.94E-08 2.26E+08
150 3792 3182 5.85E-08 2.23E+08
145 6099 3222 6.13E-08 2.21E+08
140 11691 3227 5.89E-08 2.16E+08
135 5515 3257 5.98E-08 2.17E+08
130 6878 3251 6.16E-08 2.13E+08
125 8846 3427 6.11E-08 2.18E+08
120 8932 3537 6.36E-08 2.20E+08
115 7047 3576 6.06E-08 2.18E+08
110 9549 3771 6.40E-08 2.26E+08
105 9432 3852 6.32E-08 2.28E+08
100 10711 4284 6.12E-08 2.46E+08
95 10807 4492 6.34E-08 2.53E+08
90 14656 5300 6.42E-08 2.89E+08
85 13677 6350 6.52E-08 3.38E+08

Table C.6: Multiregion Un/DoPack - Stdev010

CW Runtime CLBs CP Area

155 4589 3168 5.86E-08 2.27E+08
150 3402 3163 5.75E-08 2.22E+08
145 3755 3163 5.82E-08 2.19E+08
140 7819 3294 6.24E-08 2.23E+08
135 6325 3331 5.93E-08 2.19E+08
130 17459 3595 6.07E-08 2.32E+08
125 17165 3793 6.22E-08 2.41E+08
120 13467 4006 6.42E-08 2.50E+08
115 14687 4402 6.23E-08 2.69E+08
110 14980 4569 6.27E-08 2.72E+08
105 15235 4855 6.96E-08 2.83E+08
100 28027 5266 6.51E-08 3.01E+08

Table C.7: Multiregion Un/DoPack - Stdev012

64

Appendix D

Budgeted Multiregion

Un/DoPack

CW Runtime CLBs CP Area

100 3018 3148 5.06E-08 1.82E+08
95 3559 3248 5.29E-08 1.81E+08
90 5284 3598 5.29E-08 1.96E+08
85 7387 3833 5.37E-08 2.04E+08
80 11016 4352 5.43E-08 2.24E+08
75 14184 4366 5.49E-08 2.23E+08
70 24214 5472 5.96E-08 2.69E+08
65 34074 5503 5.70E-08 2.78E+08

Table D.1: BMR Un/DoPack - Stdev0

CW Runtime CLBs CP Area

105 2463 3157 5.28E-08 1.87E+08
100 2342 3157 5.28E-08 1.82E+08
95 3664 3247 5.67E-08 1.81E+08
90 2772 3249 5.48E-08 1.77E+08
85 4347 3276 5.61E-08 1.77E+08
80 6258 3708 5.64E-08 1.92E+08
75 10603 4220 5.64E-08 2.13E+08
70 14223 4621 5.57E-08 2.27E+08
65 18115 5040 5.90E-08 2.42E+08
60 28257 5743 6.52E-08 1.69E+08

Table D.2: BMR Un/DoPack - Stdev002

65

Appendix D. Budgeted Multiregion Un/DoPack

CW Runtime CLBs CP Area

100 2875 3246 5.69E-08 1.85E+08
95 3699 3171 5.76E-08 1.79E+08
90 3890 3363 5.76E-08 1.83E+08
85 3986 3478 5.51E-08 1.85E+08
80 6901 3618 5.82E-08 1.89E+08
75 10066 4115 6.13E-08 2.10E+08
70 15015 4898 6.38E-08 2.41E+08
65 19572 5023 5.80E-08 2.42E+08

Table D.3: BMR Un/DoPack - Stdev004

CW Runtime CLBs CP Area

95 2354 3139 5.29E-08 1.78E+08
90 2357 3139 5.50E-08 1.74E+08
85 6924 3621 5.56E-08 1.95E+08
80 8953 3967 5.43E-08 2.05E+08
75 8036 3765 5.51E-08 1.92E+08
70 13754 4619 5.67E-08 2.27E+08
65 22104 5141 5.63E-08 2.48E+08

Table D.4: BMR Un/DoPack - Stdev006

CW Runtime CLBs CP Area

125 2864 3151 5.22E-08 2.02E+08
120 3349 3249 5.22E-08 2.01E+08
115 3756 3248 5.57E-08 1.97E+08
110 4786 3362 5.53E-08 2.00E+08
105 5155 3478 5.89E-08 2.03E+08
100 5267 3475 5.61E-08 1.98E+08
95 8672 3599 5.60E-08 2.00E+08
90 9089 3835 6.08E-08 2.09E+08
85 12550 4221 5.62E-08 2.25E+08
80 19763 4896 5.94E-08 2.52E+08
75 23908 5327 5.99E-08 2.69E+08
70 32674 5761 5.85E-08 2.83E+08

Table D.5: BMR Un/DoPack - Clone

66

Appendix D. Budgeted Multiregion Un/DoPack

CW Runtime CLBs CP Area

165 3553 3152 5.81E-08 2.35E+08
155 3022 3152 5.94E-08 2.26E+08
150 4665 3247 6.17E-08 2.25E+08
145 5587 3286 5.87E-08 2.27E+08
140 5473 3310 6.31E-08 2.23E+08
135 5607 3246 6.18E-08 2.13E+08
130 6316 3360 6.35E-08 2.16E+08
125 7346 3474 6.17E-08 2.19E+08
120 8355 3480 6.48E-08 2.15E+08
115 9190 3384 6.06E-08 2.08E+08
110 11261 3499 6.05E-08 2.11E+08
105 14383 3714 6.13E-08 2.16E+08
100 16032 3837 6.62E-08 2.19E+08
95 23491 4217 6.72E-08 2.34E+08
90 28701 4487 6.59E-08 2.44E+08
85 41871 4517 6.23E-08 2.43E+08

Table D.6: BMR Un/DoPack - Stdev010

CW Runtime CLBs CP Area

155 4559 3230 5.85E-08 2.29E+08
150 3295 3163 5.75E-08 2.22E+08
145 3423 3163 5.82E-08 2.19E+08
140 4541 3248 5.72E-08 2.17E+08
135 5958 3358 5.90E-08 2.20E+08
130 8241 3478 5.94E-08 2.24E+08
125 8883 3475 6.20E-08 2.19E+08
120 13624 3840 6.06E-08 2.37E+08
115 17338 3957 6.19E-08 2.40E+08
110 20845 4093 6.05E-08 2.43E+08
105 31227 4486 6.11E-08 2.61E+08
100 41038 4896 6.61E-08 2.78E+08

Table D.7: BMR Un/DoPack - Stdev012

67

Appendix E

Congestion-Driven Multiregion

Un/DoPack

CW Runtime CLBs CP Area

100 2758 3148 5.06E-08 1.82E+08
95 4464 3254 5.31E-08 1.84E+08
90 5133 3519 5.50E-08 1.94E+08
85 3644 3515 5.16E-08 1.89E+08
80 7905 4794 6.12E-08 2.49E+08
75 8154 4392 5.42E-08 2.24E+08
70 11176 6011 5.82E-08 2.96E+08
65 9519 6457 5.63E-08 3.12E+08

Table E.1: CMR Un/DoPack - Stdev0

CW Runtime CLBs CP Area

105 2940 3157 5.28E-08 1.87E+08
100 2641 3157 5.28E-08 1.82E+08
95 3081 3203 5.66E-08 1.79E+08
90 3615 3243 5.53E-08 1.77E+08
85 4361 3437 5.53E-08 1.84E+08
80 6365 4250 5.75E-08 2.21E+08
75 5382 4129 5.73E-08 2.10E+08
70 6155 4767 5.48E-08 2.37E+08
65 6848 5017 5.99E-08 2.41E+08
60 8921 6115 6.43E-08 2.88E+08

Table E.2: CMR Un/DoPack - Stdev002

68

Appendix E. Congestion-Driven Multiregion Un/DoPack

CW Runtime CLBs CP Area

100 3571 3171 5.58E-08 1.83E+08
95 2953 3171 5.76E-08 1.79E+08
90 4320 3390 6.24E-08 1.87E+08
85 4734 3610 5.81E-08 1.95E+08
80 6107 3815 6.00E-08 1.97E+08
75 6027 4492 5.85E-08 2.29E+08
70 6276 4567 5.78E-08 2.26E+08
65 7227 5163 6.22E-08 2.48E+08

Table E.3: CMR Un/DoPack - Stdev004

CW Runtime CLBs CP Area

95 2518 3139 5.29E-08 1.78E+08
90 2633 3139 5.50E-08 1.74E+08
85 5669 3771 5.58E-08 2.02E+08
80 4295 3718 5.53E-08 1.92E+08
75 7822 4368 5.70E-08 2.23E+08
70 6953 4737 5.60E-08 2.33E+08
65 10167 6615 6.05E-08 3.19E+08

Table E.4: CMR Un/DoPack - Stdev006

CW Runtime CLBs CP Area

125 2770 3151 5.22E-08 2.02E+08
120 3493 3195 5.38E-08 1.99E+08
115 3375 3174 5.63E-08 1.95E+08
110 4636 3239 5.41E-08 1.93E+08
105 4953 3419 5.41E-08 2.01E+08
100 4968 3604 5.98E-08 2.08E+08
95 5499 3757 5.77E-08 2.11E+08
90 7454 3855 5.81E-08 2.13E+08
85 7279 4400 5.70E-08 2.36E+08
80 7611 4581 6.03E-08 2.37E+08
75 8315 5120 6.12E-08 2.59E+08
70 10724 6511 6.12E-08 3.20E+08

Table E.5: CMR Un/DoPack - Clone

69

Appendix E. Congestion-Driven Multiregion Un/DoPack

CW Runtime CLBs CP Area

165 0 0 0.00E+00
155 3835 3152 5.94E-08 2.26E+08
150 4638 3191 6.03E-08 2.23E+08
145 4933 3195 6.01E-08 2.20E+08
140 6033 3258 6.11E-08 2.22E+08
135 6333 3313 6.12E-08 2.19E+08
130 5683 3318 6.14E-08 2.15E+08
125 6167 3346 6.00E-08 2.12E+08
120 8045 3483 6.19E-08 2.19E+08
115 9024 3575 6.16E-08 2.18E+08
110 9552 3722 6.13E-08 2.24E+08
105 9127 3740 6.26E-08 2.21E+08
100 12048 4144 6.18E-08 2.38E+08
95 11672 4404 6.54E-08 2.47E+08
90 11766 4770 6.43E-08 2.63E+08
85 10788 5025 6.75E-08 2.67E+08

Table E.6: CMR Un/DoPack - Stdev010

CW Runtime CLBs CP Area

155 4897 3186 5.73E-08 2.27E+08
150 3568 3163 5.75E-08 2.22E+08
145 3901 3163 5.82E-08 2.19E+08
140 5579 3202 6.33E-08 2.16E+08
135 6569 3285 6.24E-08 2.18E+08
130 8228 3401 6.04E-08 2.22E+08
125 7529 3515 5.87E-08 2.24E+08
120 8830 3729 5.87E-08 2.34E+08
115 12320 4014 6.06E-08 2.46E+08
110 10783 4308 6.20E-08 2.57E+08
105 15059 4619 6.27E-08 2.69E+08
100 21536 5223 6.44E-08 3.00E+08

Table E.7: CMR Un/DoPack - Stdev012

70

Appendix F

CMR Un/DoPack with

Congestion-Aware Placement

CW Runtime CLBs CP Area

95 11541 3148 5.88E-08 1.78E+08
90 14170 3368 5.65E-08 1.87E+08
85 16844 3740 5.95E-08 2.01E+08
80 21482 4113 6.24E-08 2.14E+08
75 32455 4230 6.38E-08 2.16E+08
70 39878 4686 7.01E-08 2.32E+08
65 42141 5302 6.57E-08 2.55E+08

Table F.1: CMR Un/DoPack (Congestion Aware Placement) - Stdev0

CW Runtime CLBs CP Area

105 11020 3157 5.70E-08 1.87E+08
100 10988 3157 5.68E-08 1.82E+08
95 11022 3157 6.03E-08 1.78E+08
90 10980 3157 5.70E-08 1.75E+08
85 16253 3304 5.62E-08 1.77E+08
80 21771 3588 6.20E-08 1.85E+08
75 38213 3754 6.04E-08 1.91E+08
70 43487 4265 6.79E-08 2.11E+08

Table F.2: CMR Un/DoPack (Congestion Aware Placement) - Stdev002

71

Appendix F. CMR Un/DoPack with Congestion-Aware Placement

CW Runtime CLBs CP Area

100 10098 3148 5.91E-08 1.82E+08
95 9939 3148 5.91E-08 1.78E+08
90 13714 3263 5.81E-08 1.81E+08
85 14727 3387 5.74E-08 1.83E+08
80 19897 3569 6.04E-08 1.85E+08
75 24217 3606 6.03E-08 1.85E+08
70 40794 4095 5.82E-08 2.01E+08
65 42435 4617 6.03E-08 2.22E+08

Table F.3: CMR Un/DoPack (Congestion Aware Placement) - Stdev004

CW Runtime CLBs CP Area

95 10159 3139 6.48E-08 1.78E+08
90 10413 3139 6.48E-08 1.74E+08
85 12909 3279 5.96E-08 1.77E+08
80 17524 3912 6.62E-08 2.03E+08
75 20202 3859 6.90E-08 1.97E+08
70 23249 4340 6.77E-08 2.14E+08
65 40967 4987 6.70E-08 2.41E+08

Table F.4: CMR Un/DoPack (Congestion Aware Placement) - Stdev006

CW Runtime CLBs CP Area

125 10657 3151 6.19E-08 2.02E+08
120 10669 3151 6.22E-08 1.98E+08
115 10574 3151 6.24E-08 1.94E+08
110 10733 3151 6.35E-08 1.90E+08
105 12792 3252 6.46E-08 1.93E+08
100 13492 3316 5.98E-08 1.90E+08
95 15501 3384 6.39E-08 1.91E+08
90 20186 3825 6.69E-08 2.09E+08
85 25313 4204 6.70E-08 2.24E+08
80 32880 4244 6.72E-08 2.21E+08
75 42864 5226 6.70E-08 2.66E+08
70 44757 5429 6.93E-08 2.67E+08

Table F.5: CMR Un/DoPack (Congestion Aware Placement) - Clone

72

Appendix F. CMR Un/DoPack with Congestion-Aware Placement

CW Runtime CLBs CP Area

165 11513 3152 6.85E-08 2.35E+08
155 11622 3152 6.85E-08 2.26E+08
150 11137 3152 6.94E-08 2.22E+08
145 11820 3152 6.98E-08 2.18E+08
140 11385 3152 7.00E-08 2.14E+08
135 16021 3297 6.45E-08 2.18E+08
130 15098 3339 6.91E-08 2.16E+08
125 17910 3382 6.77E-08 2.17E+08
120 16409 3447 7.18E-08 2.14E+08
115 17978 3579 7.47E-08 2.18E+08
110 19868 3777 7.14E-08 2.26E+08
105 20037 3826 7.37E-08 2.23E+08
100 23066 4175 8.02E-08 2.39E+08
95 21746 4316 8.01E-08 2.41E+08
90 30465 5035 7.71E-08 2.74E+08
85 39128 5369 7.84E-08 2.88E+08

Table F.6: CMR Un/DoPack (Congestion Aware Placement) - Stdev010

CW Runtime CLBs CP Area

155 13152 3163 6.97E-08 2.27E+08
150 13351 3163 6.98E-08 2.22E+08
145 13650 3163 6.98E-08 2.19E+08
140 13761 3163 6.95E-08 2.15E+08
135 19766 3278 7.95E-08 2.18E+08
130 22315 3355 8.05E-08 2.16E+08
125 20295 3393 7.70E-08 2.17E+08
120 27646 3661 7.73E-08 2.28E+08
115 28116 3761 7.79E-08 2.31E+08
110 31908 3995 8.22E-08 2.40E+08
105 35722 4391 8.03E-08 2.58E+08
100 38933 4720 8.47E-08 2.69E+08

Table F.7: CMR Un/DoPack (Congestion Aware Placement) - Stdev012

73

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgments
	Dedication
	Introduction
	Contributions
	Thesis Organization

	Background
	FPGA Architecture
	FPGA CAD Flow
	Synthesis
	Technology Mapping
	Clustering
	Placement
	Routing

	Un/DoPack CAD Flow
	Baseline Un/DoPack
	Fine-Grained Un/DoPack
	Multiregion Un/DoPack

	Multiple Region Depopulation with Congestion-Driven Metrics
	Budgeted Multiregion Un/DoPack (BMR)
	Region Selection
	Whitespace Insertion

	Congestion-Model Multiregion Un/DoPack (CMR)
	Modeling Regional Interconnect Demand
	Modeling Internal Demand

	Congestion-Aware Placement

	Results
	Experimental Methodology
	Previous Un/DoPack Schemes
	Budgeted Multiregion Un/DoPack
	Congestion-Model Multiregion Un/DoPack
	Critical-Path Comparison
	CMR with Congestion-Aware Placer

	Conclusions
	Future Work
	Influence from Neighbouring Regions
	Congestion-Driven Placement and Clustering

	Bibliography
	Baseline Un/DoPack
	Fine-Grained Un/DoPack
	Multiregion Un/DoPack
	Budgeted Multiregion Un/DoPack
	Congestion-Driven Multiregion Un/DoPack
	CMR Un/DoPack with Congestion-Aware Placement

