
ZUMA: An Open FPGA Overlay Architecture

Alexander Brant
Dept. of ECE

UBC
Vancouver, BC

Email: alexb@ece.ubc.ca

Guy G.F. Lemieux
Dept. of ECE

UBC
Vancouver, BC

Email: lemieux@ece.ubc.ca

Abstract—This paper presents the ZUMA open FPGA
overlay architecture. It is an open-source, cross-compatible
embedded FPGA architecture that is intended to overlay on
top of an existing FPGA, in essence an ”FPGA-on-an-FPGA.”
This approach has a number of benefits, including bitstream
compatibility between different vendors and parts, compati-
bility with open FPGA tool flows, and the ability to embed
some programmable logic into systems on FPGAs without the
need for releasing or recompiling the master netlist. These
options can enhance design possibilities and improve designer
productivity. Previous attempts to map an FPGA architecture
into a commercial FPGA have had an area penalty of 100x
at best [4]. Through careful architectural and implementation
choices to exploit low-level elements of the host architecture,
ZUMA reduces this penalty to as low as 40x. Using the VTR
(VPR6) academic tool flow, we have been able to compile the
entire MCNC benchmark suite to ZUMA. We invite authors
of other tool flows to target ZUMA.

Keywords-Field programmable gate arrays; Productivity;
Reconfigurable architectures;

I. INTRODUCTION

FPGAs are used widely in research and industry, but
FPGA devices themselves are predominantly designed by
a few large companies, and access to low-level details is
often limited or simply unavailable. There have been calls
for a completely open and portable tool flow that allows
true portability of designs across all FPGA devices offered
by major vendors. Due to factors including the complex and
proprietary nature of FPGA designs, vendors have been slow
to respond. This paper presents the ZUMA embedded FPGA
architecture. ZUMA is a free, open, and cross-compatible
embedded FPGA (eFPGA) architecture that compiles onto
Xilinx and Altera host FPGAs. It is designed as an open
architecture for open CAD tools and user designs which
must be independent of the underlying device architecture.
Through this approach, we hope to enable exploration of new
programmable logic implementations in both commercial
and research applications.

Initially a generic architecture was created in pure Verilog,
which was used as a baseline for the development of the
ZUMA architecture tailored for implementation on modern
FPGAs. A CAD flow is in place for this architecture utilizing
the VTR (VPR 6) project [3]. The final resource usage of

the ZUMA architecture is less than one third of the generic
design, and less than half of previous research attempts [4],
at as little as 40 host LUTs per ZUMA embedded LUT.
Throughout this paper, the term embedded LUT (eLUT) is
used to differentiate between the LUTs of the host FPGA
and the LUTs in the ZUMA architecture, and resource usage
per eLUT is used to compare densities.

The key contributions of this paper are:
• adoption of configurable LUTRAMs as the basis for

implementing both programmable LUTs and routing
MUXs

• design of a Clos-style Input Interconnect Block (IIB)
network for improved area efficiency of the internal
crossbar of the cluster

• design of a resource-efficient configuration controller
• architectural modeling to determine the most efficient

parameters for mapping to a given host architecture.

A. Motivation

The development and improvement of an FPGA-like
overlay architecture is motivated by a variety of applications
and research needs, as well as the opportunity for improved
designer productivity. ZUMA can help address these goals
by providing open access to all of the underlying details of
an FPGA architecture, as an instrument for study and for
implementation.

ZUMA can act as a compatibility layer, allowing interop-
erability of designs and bitstreams between different vendors
and parts, in an analogous manner to a virtual machine in a
computing environment. ZUMA can also be used to embed
small amounts of programmable logic into existing FPGA
based systems without relying upon the vendor’s underlying
partial reconfiguration infrastructure. The embedded logic
will be customizable for specific tasks. More importantly, it
can be made portable across different FPGA vendors that
have different mechanisms for partial reconfiguration. This
also allows for sections of the design, such as glue logic,
to be reconfigured without going through an entire CAD
iteration with vendor-specific tools.

ZUMA is also a tool for FPGA research and education.
ZUMA’s design is intended as a prototyping vehicle for



K-

LUT FFTwo Stage 

Crossbar 

Network

S-Block

Input Block

Logic Cluster

Figure 1. ZUMA tile layout and logic cluster design (note: inputs are
distributed on all sides in real design)

future programmable logic architectures. Although incom-
patible with some architectural features such as bidirectional
routing, ZUMA is useful for testing features that go be-
yond simple density or speed improvements and offer new
functionality. Finally, the open nature of the design allows
for an open tool flow from HDL-to-bitstream, amenable to
current FPGA CAD research. Though a compilation flow
is in place with VTR, a new approach to ZUMA tools, eg.
based on JHDL, Lava, Torc, OpenRC, or RapidSmith can
also be created. For example, one key application would be
ultra-lightweight place-and-route tools that can run on a soft
processor implemented in the same FPGA as ZUMA (not
implemented in ZUMA, although that would be possible as
well).

II. GENERIC BASELINE ARCHITECTURE

In designing the ZUMA FPGA architecture, we first
created a purely generic ’vanilla’ LUT-based FPGA archi-
tecture supported by VPR. The initial generic architecture
design was created as a parameterized Verilog description.
The design is similar to the standard architectures used in
classical VPR experiments [5]. Since bidirectional routing
is not suitable to implement or emulate in modern FPGAs,
a unidirectional routing architecture is used instead. As
unidirectional routing has only one driver per wire, the
routing S block and output C block must be combined [2].

The generic logic cluster is comprised of a first stage
depopulated input block for cluster inputs, followed by a
fully populated internal crossbar, which is connected to the
N K-LUTs. A total of I inputs are fed into the cluster by
the input block, while all I inputs and N feedback signals
are available to any basic logic element (BLE) input pin.
The BLEs are single K-LUTs, followed by a single flip-flop
which can be bypassed using a MUX. This generic version
contains configuration bits stored in shift registers. Resource
usage is detailed in table I.

III. ZUMA ARCHITECTURE

The implementation of the ZUMA FPGA takes the base-
line architecture outlined in the previous section, and utilizes

we

data out

LUT Mode

Config Bits
2k

Decoder

rd addr

wr addr

data in

k

kfrom

config

controller

Config Bits
2k

Figure 2. LUTRAM used as LUT

the unique resources available on a modern FPGA to mini-
mize the area overhead. The design has been implemented
on both Xilinx and Altera FPGAs.

A. LUTRAM Usage

The ZUMA architecture takes advantage of the repro-
grammability of LUTs in the host architectures to create
space efficient configurable logic and routing. In new gen-
erations of Altera and Xilinx FPGAs, logic LUTs can be
configured as distributed RAM blocks, called LUTRAMs.
Both vendors allow fully combinational read paths for these
RAMs, permitting them to be used as normal k-input LUTs
(figure 2). These are useful for directly implementing
the programmable eLUTs of the ZUMA architecture, but
they can also be used to improve the implementation effi-
ciency of the routing network. By limiting the LUTRAM
configurations to a simple pass-through of one input, a
k-input LUTRAM becomes equivalent to a k:1 routing
multiplexer. These MUXs will be the backbone of the
global and local interconnection networks of the ZUMA
FPGA. These LUTRAM MUXs consume fewer resources
than MUXs implemented with generic Verilog constructs,
as they require fewer host LUTs and configuration flip-
flops due to the lack of configuration bits. As well, to save
power by preventing unneeded switching when a routing
MUX is inactive, each MUX in the generic version needs to
be able to be configured to output ground, which can also
increase resource usage, while the LUTRAMs can simply
be configured by setting all configuration bits to zero. The
difference in resource usage is illustrated in figure 3.

B. Clos Network Local Interconnect

The design of the internal connection block of the FPGA
cluster is driven by a need for area efficiency, flexibility,

00

0101010101010101

a
b
c
d

y

a

b
c

d
y

0

0 equivalent LUTRAM 

config bitsselect bits
000

a
b 4 

LUT

4 

LUT

c
d

4 

LUT
y

select bits

A. MUX B. Synthesized MUX C. Single LUTRAM MUX

Figure 3. A: 4 to 1 MUX, B: 4-to-1 MUX synthesized from 4-LUTS, C:
4-to-1 MUX created one 4 input LUTRAM



n

1 1

m

n

1 1

m

n

1 1

m

r

1 1

r

r

1 1

r

r

1 1

r

n

1

n

1

n

1

1

m

1

m

1

m
r n x m

crossbars

m r x r

crossbars

r m x n

crossbars

Figure 4. Clos network

and CAD compatibility. An IIB based on a Clos network
was designed. This modified shuffle network is paired with
a depopulated first level connection block of MUXs, in order
to allow sufficient routing flexibility, including compatibility
with modern CAD tools.

A Clos network (figure 4), is composed of three stages of
connected crossbars. The number of inputs and outputs are
identical. It is defined by three parameters: n, m and r, which
define the number and dimensions of the crossbar stages. As
long as m is greater than or equal to n, the network can route
any input to any output [1]. Given that we have 6:1 MUXs as
our basic switching element for a 6-LUT host FPGA, a first
approach is to set the parameters as r=n=m=6. This allows
us to build a 36 x 36 Clos network out of 108 6:1 MUXs.
If we take the outputs of the network to be the inputs of the
6-LUTs, we can see that the last stage can be eliminated,
as the order of the input to each LUT is unimportant, and
the inputs to each LUT will always be different. We then
have a two-stage network with 72 MUXs, feeding into a
possible 6 ZUMA eLUTs, giving a total cost of 12 MUXs
per eLUT for the IIB, with no reduction in routability(figure
5). In contrast, a full crossbar implemented with the same
elements would require seven 6-LUTs per input, or 42 total
MUXs per eLUT.

If the inputs are connected directly to the global routing
tracks, only 36 - N tracks will have access to the LUT,
since N of the inputs will be reserved for LUT feedback
connections. Instead, additional MUXs are added before
the first stage to give adequate flexibility, giving an overall
design that can be routed with a VPR without extensive
modification.

When implemented, we found that building a single 6-
to-N memory from LUTRAMs is more efficient than N
6-to-1 memories on both Altera and Xilinx platforms, as
each LUTRAM has overhead for write ports. All LUTRAMs
used in a crossbar have the same input signals, and each
output, when configured properly will only depend on the
value of one of the inputs. As a result, each crossbar can
be constructed out of a single multi-bit wide memory to
increase density without changing the functionality.

K-LUT
k

1 1

k

k

1 1

k

k

1 1

k

P

1 1

N

P

1 1

N

P

1 1

N

1

k

P k x k

LUTRAMs

k P x N

LUTRAMs

N k-input 

LUTs

K-LUT
1

k

K-LUT
1

k

P=(I+N)/k

I+N

Inputs
N*k

Outputs

Reduced Two Stage Network ZUMA

eLUTs

Figure 5. Modified two stage LUTRAM network

C. Configuration Controller

The design of the eFPGA also requires a configuration
controller to rewrite the LUTRAMs and flip-flops that
control the functionality of ZUMA’s logic and routing. A
configuration controller was designed to program all of
the base elements of the eFPGA. The implementation is
parameterized, for tradeoff between resource usage and
configuration speed. For a ZUMA overlay comprised of k-
input LUTRAMs, each LUTRAM has k address signals, one
write-enable, and one write-data signal that must be driven
by the configuration controller. The k-bit write address can
be shared by all LUTRAMs in the design. However, to
initialize each LUTRAM independently, a set of LUTRAMs
can share a write-enable or write-data signal with each other,
but not both. Each unique write-data or write-enable will re-
quire at least one additional LUT or flip-flop on the FPGA to
drive the signal. ZUMA’s LUTRAMs are divided into groups
by location, made up of one or more ZUMA tile, and given
separate write-data signals, while sharing a write-enable.
The groups are written to serially, therefore a shift chain is
used to propagate the write-enable between each group. This
will utilizes only one additional flip-flop per write-enable
signal. A 6-bit counter is then used to set the LUTRAM
write addresses. For a large design, each group will add
only one additional flip-flop to the design. By increasing the
number of LUTRAMs programmed simultaneously, faster
configuration can be achieved at a higher area cost.

D. Architectural Model for Area and Routing Efficiency

The correct choice of architectural parameters is very
important for the efficiency of the eFPGA, due to the coarse-
ness of the resources of the underlying fabric. Modeling
studies were performed to explore optimal settings for the
ZUMA FPGA parameters as well as the impact of the
host FPGA architecture on the overall mapping efficiency.
Given the base resource used in our design, for example
a 6 input LUTRAM, parameters that create structures that
fit exactly into these LUTs will be most efficient. The
internal connection network is most efficient for a 6-input



Xilinx Virtex 5 Implementation Altera Stratix IV Implementation
Generic Architecture ZUMA Architecture Generic Architecture ZUMA Architecture

Host LUTs Host FFs Host LUTs Host FFs Host LUTs Host FFs Host LUTs Host FFs
Switch Block 121 156 104 0 121 156 121 156

Input Block 56 288 56 0 56 84 56 84
Crossbar 288 248 144 0 288 248 152 137

BLEs 528 520 16 8 528 520 16 40
Total 993 1212 320 8 993 1008 345 417

Per eLUT 124.1 151.5 40 1 124.1 126 43.1 52.1

Table I
RESOURCE BREAKDOWN PER CLUSTER

host LUT when the number of inputs is 36 or lower. The
formula for an adequate number of inputs to a cluster is
given in [5] as (N+1)*k/2. Given that N inputs that must be
feedback connections for each LUT, we have the formula
(N+1)*k/2+N = 36. Fixing K at 6 and solving for N, we get
a cluster size of eight 6-LUTs, which requires 27 inputs,
and a 35 input crossbar. The resource requirements for the
ZUMA architecture were independently modeled based on
profiling each building block, and minimum area overhead
was obtained at N=8 eLUTs per cluster. The routing width
is fixed at 112, which was determined by experiments in
VPR to find the minimum width allowing the routing of all
MCNC benchmarks for this architecture.

IV. RESULTS

A. Xilinx Results

Given eight 6-LUTs per cluster, a routing width of 112
and routing wire length of 4, an absolute cluster input
flexibility of 6, a fractional cluster output flexibility of 3/8
and a switch block flexibility of 3, the resources consumed
per ZUMA tile are presented in table I, as compiled on a
Xilinx Virtex 5 FPGA. The results are a two thirds reduction
in LUT usage, and an almost complete reduction in flip-flop
usage, in comparison to the generic implementation.

B. Altera Results

The Altera version is currently less efficient than Xilinx,
as a single LUTRAM mapped to the device consumes an
entire LAB, plus additional registers, regardless of the width
of the LUTRAM. This greatly restricts the size of the array
that can be implemented on a single FPGA, though we are
hopeful that a more efficient LUTRAM mapping may be
available in future software releases. Given this drawback,
the switch block and input block are implemented in the
ZUMA version with generic Verilog multiplexers. Given
the same architectural details as in the Xilinx results, the
resources consumed per tile are presented in table I, as
compiled to a Altera Stratix IV FPGA. LUT usage is reduced
similarly to Xilinx when compared to the generic version,
while flip-flop usage is halved.

V. CONCLUSIONS

This paper presented the ZUMA overlay architecture.
ZUMA is an open, cross-compatible embedded FPGA ar-

chitecture that compiles onto Xilinx and Altera FPGAs. It
is designed as an open architecture for open CAD tools.
The ZUMA overlay is intended to enable both applications
for FPGAs and further research into FPGA CAD and
architecture. Starting from an island style FPGA architec-
ture, modifications to increase density and resource usage
when compiled to a host FPGA were introduced, while
preserving the functionality and CAD tool compatibility with
VPR. Through utilization of LUTRAMs as reprogrammable
MUXs and LUTs, we are able to reduce the resource over-
head of implementing the overlay system by two thirds. Our
modified Clos network internal crossbar makes use of these
elements, as well as taking advantage of the routing require-
ments of the cluster architecture, to allow the use of CAD
tools such as VPR while reducing resource usage. Through
study and modeling, we found guidelines for architectural
parameter sets that map efficiently to various hardware host
architectures. With careful selection, an overhead of 40x can
be created while still maintaining routability and mapping
efficiency for user designs.

ACKNOWLEDGMENT

Our thanks to NSERC for funding this research.

REFERENCES

[1] C. Clos: A Study of Non-Blocking Switching Networks, Bell
System Technical Journal, pp. 406-424. March 1953.

[2] G. Lemieux, E. Lee, M. Tom, and A. Yu, Directional and
Single-Driver Wires in FPGA Interconnect, Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions
on, Brisbane, Australia, pp. 41-48, Dec. 2004.

[3] J. Rose, J. Luu, C-W Yu, O. Densmore, J. Goeders, A.
Somerville, K.B. Kent, P. Jamieson and J. Anderson. The VTR
Project: Architecture and CAD for FPGAs from Verilog to
Routing, in Proceedings of the 20th ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 77-86,
February 2012.

[4] R. Lysecky, K. Miller, F. Vahid, and K. Vissers. Firm-core
Virtual FPGA for Just-in-Time FPGA Compilation. Proceed-
ings of the 2005 ACM/SIGDA 13th international symposium
on Field-programmable gate arrays, 2005.

[5] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs. Boston: Kluwer Academic Publish-
ers, 1999.


