
The Impact of Interconnect Architecture on
Via-Programmed Structured ASICs (VPSAs)

Usman Ahmed
uahmed@ece.ubc.ca

Guy G. F. Lemieux
lemieux@ece.ubc.ca

Steven J. E. Wilton
stevew@ece.ubc.ca

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, BC, Canada

ABSTRACT

In this paper, we evaluate the performance of an FPGA-like in-
terconnect fabric for structured ASICs which is based upon fixed
metal and programmable vias. We call this type of device a via-

programmed structured ASIC or VPSA. We look at two different
types of VPSA routing fabrics: one uses jumper wiring and the
other uses crossover wiring. The performance of these fabrics
is compared against an ASIC-like interconnect fabric, otherwise
known as a metal-programmed structured ASIC or MPSA, which
can be configured by customizing metal and via layers. We study
the impact of these routing fabrics on cost, area, power and delay
metrics. The results for different fabrics span a wide range, sug-
gesting the routing architecture plays a very important role in their
overall performance and it should be thoroughly researched.

Categories and Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI

General Terms

Design, Economics, Performance

Keywords

Structured ASICs, Via Programmable Fabric

1. INTRODUCTION
As process technology is scaling to finer geometries, the cost

to design an integrated circuit (IC) is becoming extremely high.
As a result, most designs are still being implemented in 130nm or
older process technologies; advanced process technologies, such as
90nm and below, only account for 49% of TSMC’s revenue [1].
Field-programmable gate arrays (FPGAs) offer one solution to this
problem, but it is not possible to use them in all situations. In par-
ticular, applications from the emerging portable/hand-held device
market are not suitable for implementation with current SRAM-
based FPGAs [7]. Structured ASICs offer one solution to these
problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

A structured ASIC is a generic IC that is partially fabricated. It
can be “programmed” to implement any digital circuit by adding
one or more metal and/or via layers [17]. This partial fabrication
of the device reduces the cost and turnaround time compared to a
traditional cell-based IC (CBIC). In contrast to FPGAs, structured
ASICs do not use active, SRAM-based programmable switches that
are a major source of power and speed degradation [10]. As a con-
sequence, they consume less power and are faster and more dense
than FPGAs. For these reasons, we believe the structured ASICs
are an increasingly important design methodology, especially for
platform-based designs and the portable/battery operated device
market. This advantage will continue to grow as we scale to fine
processes such as 32nm and below.

Structured ASICs are not a new technology. They were intro-
duced several years ago, however, they have not yet achieved the
popularity that was predicted. There are several possible reasons
for that such as unfamiliar technology, immature CAD, and claimed
advantages that have not yet been concretely demonstrated. How-
ever, the problems that led to the emergence of structured ASICs
have not been solved and have in fact become more complex. We
believe that as technology continues to advance, the advantages of
structured ASICs will become even more compelling. When that
happens, we will need new architectures, CAD tools and design
flows. In this paper, we take a step in this direction and investigate
the interconnect architecture for structured ASICs that can be cus-
tomized only by via layers. Since structured ASICs are so similar
to FPGAs in their internal structure (based on a grid of logic blocks
connected using “configurable” connectors), we believe the FPGA
community is well prepared to address these issues.

The cost, performance, turnaround time and power of structured
ASICs is dictated by the number of metal/via layers that can be
changed to customize a product. Structured ASICs from compa-
nies, such as LSI Logic, NEC, Fujitsu, Lightspeed Logic, Faraday,
Chip-X, eASIC, and Altera, vary largely in the way they are cus-
tomized. As an example, eASIC’s device can be configured by only
a single via layer [2], whereas Altera’s device can be customized by
two metal and two via layers [3]. In contrast, although no longer
available, the Lightspeed Logic structured ASIC offered up to six
metal and six via layers of configurability. More customizable lay-
ers should lead to smaller area, lower delay and lower power, but
higher mask costs. How many configurable layers are needed to
achieve best quality of results? What is the sensitivity? This re-
search attempts to address these questions.

There have also been some academic efforts to study structured
ASICs, however these have focused mainly on point solutions. The
works in [12] [8] [9] [13] [14], have all studied structured ASICs
where the number of configurable layers was fixed. Our goal on
the other hand is to investigate structured ASICs as a function of



different amounts of configurability because this is the most impor-
tant factor that affects their cost and turnaround time. As part of
this effort, we have looked at the trade-offs involved in structured
ASICs that are configured by metal and via layers (MPSAs) [5]. In
[5], we developed a cost model to estimate the manufacturing cost
of MPSAs, created a CAD flow, and then studied the area, delay,
power and cost trends for a range of MPSA architectures and lay-
out assumptions. In this paper, we look at the trends for VPSAs,
where all the metal layers are fixed and the customization can only
be performed by one or more via layers. We investigate how the
fixed metal affects the overall performance of VPSAs, and how it
changes with different types of routing fabrics. Specifically, our
contributions in this paper are:

• extending the cost model and the CAD framework of [5] to
account for VPSAs,

• looking at two different types of via-programmable routing
fabrics (similar to those in [13]), and studying their effect
on cost, area, delay, and power of VPSAs as a function of
number of customizable layers, and

• comparing the performance of VPSAs against MPSAs.

2. COST MODEL
In most FPGA and ASIC research, it is traditional to estimate die

area as a proxy to the cost of a device. For structured ASICs, it is
not possible to use area alone, as cost also depends upon how many
mask layers are customized in creating a specific device. There is
no agreement on how many of these custom layers are needed, so
this is a new architectural parameter that needs to be explored. We
wish to vary the number of these programmable layers, so we need
to explicitly account for their cost.

In [5], we developed a cost model to estimate die cost of MPSAs
as a function of its core area number of customizable routing layers.
Here we extend the cost model to incorporate VPSAs. There are
two main enhancements. First, the masks for the metal layers used
for routing are now fixed and their costs are amortized across the
total production volume of the generic device. These costs were
previously amortized across the customer’s volume. Second, we
also account for the prototyping cost. The cost model with these
changes is described below.

The die cost, Cdie can be expressed as:

Cdie = Cbase + Ccustom + Cproto + Cpkg + Ctest (1)

where Cbase is the cost of the partially fabricated device (i.e., the
cost shared across all the customers), Ccustom is the cost to cus-
tomize the pre-fabricated chip to implement a particular circuit,
Cproto is the prototyping cost to manufacture test wafers before
the final spin, Cpkg is the packaging cost, and Ctest is the testing
cost. We assume that Cpkg and Ctest are constants, so they are not
considered in our Cdie calculations; they do depend upon the user’s
design, but they do not depend upon the range of SA implementa-
tions we consider (i.e., area or number of configurable layers).

The total number of routing layer masks, Nrm, in a VPSA with
Nvl custom via layers can be broken down into three components:

Nrm = Nfmm
+ Nfmv

+ Ncm

where Nfmm
and Nfmv

are number of masks needed for fixed
metal and fixed via layers, and Ncm is the number of custom masks
to program the VPSA. In a VPSA, the first two terms refer to masks
that will be used across all customers of a device, while the last
term is specific to an individual customer. If Nm and Nv denote
the number of masks needed for a single metal and single via layers

respectively, then Nfmm
, Nfmv

and Ncm are defined as:

Nfmm
= (Nvl + 1)Nm

Nfmv
= Nv

Ncm = Nvl × Nv

Thus, a VPSA with a single custom via layer would use two metal
and two via layers for routing. The two metal layers and one via
layer is fixed; the fixed via layer connects the routing fabric to the
logic block pins.

The base cost can now be expressed as:

Cbase=

Mask costs
z }| {
„
Csml

Nfml
+Csmu

(Nfmm
+Nfmv

+Nfmu
)

Vtot

«

+

„
Cfs

1

Vtot

«

| {z }

Fab setup cost

+

„
CwpmNfml

+Csw

Ngdpw

«

| {z }

Wafer costs

where Nfml
is the number of lower fixed masks, Nfmu

is the num-
ber of upper fixed masks (e.g., required for power grid etc.), Csml

is the cost for a single lower-level mask (e.g., poly mask, metal-
1 mask etc.), Csmu

is the cost for a single upper-level mask (e.g.,
metal-4 mask), Vtot is the expected total volume andCfs

1
is the fab

setup cost of the SA device for all customers, Cwpm is the wafer
processing cost for a single mask, Csw is cost of single unprocessed
wafer, and Ngdpw is the number of good-dies-per-wafer.

The customization cost can be expressed in a similar way as:

Ccustom=

Mask costs
z }| {
„
Csmu

Ncm

Vc

«

+

Fab setup cost
z }| {
„
Cfs2

Vc

«

+

„
Cwpm(Ncm+Nfmm

+Nfmv
+Nfmu

)

Ngdpw

«

| {z }

Wafer costs

where Vc is the volume per customer.
Due to the complexity of large hardware designs, it is very dif-

ficult to get everything right the first time. Thus, it is usually nec-
essary to manufacture a number of spins, where each spin requires
a new set of custom masks. Assuming Ns is the total number of
customer silicon spins including the final version, the prototyping
costs are calculated as:

Cproto =

Mask costs
z }| {

(Ns − 1)

„
Csmu

Ncm

Vc

«

+

Fab setup cost
z }| {

(Ns − 1)

„
Cfs2

Vc

«

+

„
Ns−1

Vc

«

(Cwpm(Nfml
+Ncm+Nfmm

+Nfmv
+Nfmu

)+Csw)

| {z }

Wafer cost

In Cproto, we include the cost to manufacture one complete wafer
for every prototype spin, excluding the final spin. Although mini-
mum lot sizes offered by the foundry may require several wafers to
be manufactured at once, a structured ASIC vendor should be able
to mix wafers from several customers to fill a single lot. Further-
more, a structured ASIC vendor may offer a multi-project wafer,
where each customer uses less than a full wafer. This would reduce
the wafer cost component of the prototype to nearly zero. In our
previous work [5], we had implicitly set this wafer cost to zero, but
the difference this has on results is very small.



By substituting the values in Equation 1 and rearranging the
terms, Cdie can be written as:

Cdie =
K0

Ngdpw

+ Nvl

„
K1

Ngdpw

+ K2

«

+ K3 (2)

where K0, K1, K2, and K3 are constants that depend on the
volume requirements and various foundry costs, but are fixed for
a given structured ASIC product. After substituting values for
Nfmm

and Nfmv
and simplifying, these constants become:

K0 =Cwpm(Nfml
+ Nfmu

+ Nm + Nv) + Csw

K1 =Cwpm(Nm + Nv)

K2 =
NsCsmu

Nv

Vc

+
Csmu

Nm

Vtot

+ Cwpm (Nm + Nv)

„
Ns − 1

Vc

«

K3 =
Csml

Nfml
+ Csmu

(Nm + Nv + Nfmu
)

Vtot

+ (Cwpm (Nfml
+Nm+Nv +Nfmu

)+Csw)

„
Ns−1

Vc

«

+
Cfs1

Vtot

+ Ns

„
Cfs2

Vc

«

+ Cpkg + Ctest

Table 1 shows the parameter values we use to estimate Cdie.
We obtained and confirmed data from various sources, including
several news articles and contacts in industry.

We calculated the typical values for K0, K1, K2, and K3 using
the parameter values of Table 1. These values are shown in Table
2 along with the corresponding values for MPSA. The key differ-
ence in the VPSA cost model is the change to K2, which makes it
cheaper to add custom layers. Previously, K2 was one term amor-
tized across the customer’s volume alone; here, the cost of the fixed
metal routing masks is separately amortized across the total device
volume, which produces some savings. However, this comes at a
slight increase in K0 and K3.

Finally, when computing cost per die, the number of good dies
per wafer must be considered. This depends upon two factors, area
and yield. Area determines the number of die that can be stamped
out from a wafer, while yield determines the fraction of die that
are functional. In this paper, we use the same yield model as our
previous work [5].

3. FRAMEWORK
We have set up a framework to study the trade-offs associated

with MPSAs in [5]. We have extended it to incorporate VPSAs so
that we may compute various metrics such as die-area, delay, power
and manufacturing cost for different VPSA architectures. In this
section we describe how a logic block is modeled in our framework,
our CAD flow, and the metrics that we compute.

3.1 Architecture Model
To model a particular logic block architecture, the goal is to

model it without worrying about the low-level, layout-related de-
tails. From the perspective of the interconnect, the various logic
block options differ only in their physical size and the number of
inputs and outputs. Therefore, we abstract the logic block as a rect-
angular block with a certain number of pins on it. The logic block
size (height and width) and the position of pins are specified in
terms of routing tracks. Figure 1 illustrates the modeling process
for a simple 2-input, 1-output logic block.

3.2 CAD Flow
Our VPSA CAD flow is shown in Figure 2. The flow starts

with reading an initially technology-mapped circuit. We then use

Table 1: Values of Parameters used in the Cost Model

Param. Value Comments

Nfml
18 Fixed masks below the configurable masks

(1) A 10-metal, 90nm process requires 34
total masks [11]; we assume 45nm also re-
quires 34 masksa

(2) Device fabricated up to metal-2, and
subsequent layers require single mask

Csml
$107k Single mask cost for lower layers

(1) 45nm mask set costs $2.5M [4]
(2) Cost of lower level masks is 3x that of
upper level masks

Csmu
$36k Single mask cost for upper layers [11]

Vtot 2M Total volume

Cwpm $220 Wafer processing cost per mask

(1) Cost to process a 45nm wafer: $8000
(2) 34 masks total

Ns 2 Number of silicon spins

One prototype plus one re-spin

Vc 100k Per customer volume

Nfmu
2 Number of fixed masks above the config-

urable masks (e.g., for power grid)

Nm, Nv 1 Number of masks per metal/via layer

One mask each for metal and via
Cfs1

Vtot

,

Cfs2

Vc

0 Cfs
1
, Cfs

2
: Fab line setup costs

Any fab setup costs can be ignored, esp.
when these are divided over the volume

Csw 0 Cost of a single, unprocessed wafer

Cost of an unprocessed wafer is negligible
compared to the processing cost

Cpkg ,
Ctest

0 Packaging cost, Testing cost

These costs are not considered because
these are independent of die area and Nvl

a We have also modeled a process that has 18 more fixed masks
(i.e., 52 total masks) by increasing Nfml

to 36. The results are
shown in section 4.3.2.

Table 2: Typical Values for the Cost Model Constants

Type K0 K1 K2 K3

VPSA $4840 $440 $0.7424 $1.0834

MPSA $4400 $440 $1.4444 $1.0430

TVPack to pack this into a multi-input, multi-output logic block.
The next step is to initialize the placement step by reading in the
physical size (height and width) of a logic block, the location of
logic block inputs and outputs, and the location of I/O pads. The
placement grid is set to a minimum square (i.e., if the technology
mapped circuit has N blocks, then the initial grid size would be
⌈
√

N⌉ × ⌈
√

N⌉). Following this, we perform placement, route
the placed blocks for a given number of routing layers, and calcu-
late routing congestion. If there is any congestion, we increase the
placement grid size and repeat these steps. The following subsec-
tions describe these of the stages in more detail.

3.2.1 Technology Mapping

Generally, it is difficult to map a circuit directly into multi-output
logic blocks. Hence, we use TVPack to technology map our in-
put netlist of single-output primitives into multi-input, multi-output
logic blocks. To avoid a strong dependence upon the precise in-



BLK MODEL
{

SizeX: 8
SizeY: 8
Inputs: 2
InLoc: (0,0) (2,2)
Outputs: 1
OutLoc: (4,6)

}

0 2 4 6

SizeY

SizeX

Logic Block 
Inputs

Logic Block 
Output

Metal 
Segments

Logic Block

1 3 5 7

0

1

2

3

4

5

6

7

Figure 1: Modeling an Architecture

Placement
           - Using Standard Cell Placer: CAPO [17]

- Logic Blocks Snapped to Grid
           - Options: Uniform Whitespace

Input Circuit

Calculate Area, Delay, 
Power, Cost

Any 
Congestion ?

Insert Whitespace
- Increase Grid Size 

Area/Delay/Power/Cost Estimate

Tech. Mapping
- Using FPGA Clustering Tool: T-VPACK [7 ]

Initialize
          -Read I/O Pad Locations
          -No Initial Whitespace
          -Grid Size: Smallest Square

Yes

No

- # Inputs
- #Outputs

- Logic Block Size
- Logic Block I/Os Loc

- #Routing Layers
- Routing Grid Resolution
- Routing Grid Capacity

Detailed Routing
  - Using custom, Pathfinder based Router

Global Routing
  - Using Std. Cell Global Router: FGR [16]

Any 

Congestion ?
Yes

No

- Routing Fabric 
    +#of Custom Via Layers
    +Metal Architecture

Figure 2: VPSA CAD Flow

ternal logic block architecture, we only impose input and output
constraints; we do not constrain the number of gates or functions
that will fit inside except for a maximum of one flip-flop per out-
put pin. In this paper, all of our circuits start as 2-input LUTs and
flip-flops, but it is possible to start with other primitives (such as 4-
input LUTs). Due to the use of TVPack, our technology mapping
results may not be well-packed compared to a dedicated technol-
ogy mapper. It is also possible that too much logic gets packed into
a logic block. However, the mapped result is always a valid netlist
for which a valid logic block architecture can be designed. Such
a clustered netlist also has many of the properties (such as fan-in
and fan-out distributions, Rent parameter etc.) of a real technology
mapped circuit.

3.2.2 Placement and Global Routing

We use an open source, standard cell placer known as CAPO
to perform placement [16]. The use of an ASIC placer, instead of
VPR, is preferred for two reasons. The first is placement runtime,
and the second is the ability to insert whitespace. CAPO has dif-
ferent options for whitespace insertion; we are using the uniform
whitespace distribution scheme.

To perform global routing, we use the FGR [15] global router.

The inputs to the router include the number of available metal
and via layers for routing, the resolution of the global routing grid
(number of logic blocks encapsulated in a global routing tile), and
the grid capacity (number of metal wires that can pass through the
global routing tile). If there is congestion after global routing, we
increase the placement grid size, thus creating room for whites-
pace, and then re-place the circuit. The uniform whitespace alloca-
tion scheme distributes this whitespace across the die and helps to
eliminate the congestion. Some circuits require a large amount of
whitespace, therefore, to speed up the flow we use a binary search
to find the minimum routable size.

3.2.3 Detailed Routing

To accurately measure the wirelength and delay of VPSAs, we
perform detailed routing in our CAD flow. The detailed routing
problem in VPSAs is very similar to FPGAs – the routing resources
(metal segments) are fixed and the connections can be made be-
tween these resources by selectively inserting or removing a via.
However, the VPSA routing fabric is very flexible compared to
FPGAs; a via can be placed/removed from any intersection of the
metal segments, making it a fully connected crossbar. It is therefore
infeasible to perform routing using a single routing resource graph
for the whole architecture, as is done in VPR [6].

We have developed our own router to perform detailed routing.
The routing algorithm is similar to the one being used by VPR.
However, there are some enhancements to reduce memory footprint
and improve runtime. To reduce memory footprint, we only create
a graph for one basic routing tile; during the shortest path search,
only this small graph is used. The runtime is improved by only
expanding along the global route. It is possible to restrict the search
path to the global route because of the high flexibility of the VPSA
routing fabric.

The inputs to the router include the global routes, and the posi-
tion of the fixed metal segments that repeat over the die. We use
this specification to create the routing resource graph of the basic
routing tile. We use large penalties for negotiating congestion; a
value of 4000 is used for present congestion cost, and 0.5 is used
for history congestion cost. With smaller penalties, the runtime in-
creases significantly without improving the routing quality. This
usually allows us to find a valid routing within 8 iterations. If the
congestion is not eliminated completely by then, we terminate the
detailed routing, insert more whitespace, and then start with the
placement phase again.

3.2.4 Other CAD Limitations

The placement and routing steps are not timing-driven. Also,
routing does not perform buffer insertion or use specialized heuris-
tics for high-fanout nets, e.g. a clock router. This can increase
delays observed for large fanout or long nets. Fortunately, the num-
ber of such nets in our benchmarks is typically very small; for the
largest benchmark circuit, clma, 98% of nets have a fanout of 10 or
less and 81% of nets have a total length that is less than or equal to
15 logic blocks.

3.3 Metrics
The metrics we use to compare different configurability choices

include area, delay, power and manufacturing cost.
The area of the core is calculated by multiplying the logic block

area with the size of the placement grid.
We use average net delay as our delay metric. We determine the

delay of each net by taking the average of the delay values of each
of its sinks. These delay values are then averaged over all nets to
calculate the average net delay. We use the average net delay, as



opposed to critical-path delay, for two reasons. First, we are inter-
ested in delay variation with different configurability choices rather
than actual performance of the circuit. The number of routing lay-
ers only affects the interconnect and this effect is captured in the
average net delay. Second, it allows us to compare different config-
urability choices without knowing the internal details of the logic
blocks (e.g., presence/location of any flip-flops). Also, since our
CAD flow is not timing driven, it does not add any value to calcu-
late critical-path delay. The delay values are estimated using the
Elmore delay model.

For the power metric, we use the dynamic power dissipated in
the interconnect since this is the primary component of power that
would change as we vary the number of routing layers (we neglect
any change to glitching activity since it is minor). We use the total
interconnect (metal and via) capacitance as a first order estimate for
power.

Finally, we use the cost model described in section 2 to estimate
the manufacturing cost of the die.

4. RESULTS
In this section, we explain our experimental methodology and

describe the different routing fabrics that we use in our experi-
ments. This is followed by an architecture study of VPSAs. We
evaluate power, delay, and area trends for three different routing
fabrics and also compare these against MPSAs. Finally, we ana-
lyze the die-cost of VPSAs and examine the sensitivity of this cost
on assumptions made for various parameters in Table 1.

4.1 Experimental Methodology
In our experiments, we use nineteen of the largest MCNC bench-

mark circuits1 that are commonly used in FPGA research [6].

4.1.1 Logic Blocks

We do not consider any particular architecture for the logic
blocks. Instead we abstract the contents of a logic block by rep-
resenting its input and output pins and area. We then perform clus-
tering to produce an interconnect netlist that approximates a real
technology-mapped netlist as described in section 3.2.1.

Because we avoid real technology mapping, we must avoid com-
paring the results of two different logic blocks (I/O counts) directly.
Hence, we do not draw any conclusions about which logic block is
better in this paper.

Our experimental methodology also requires an estimate of the
layout area (height and width) and pin locations of each logic block.
The layout area for a particular logic block depends upon the con-
tents (number of gates) and the effort of the layout artist, both of
which are hard to estimate precisely. Instead, we sweep the area
across a range of values. We determine minimum and maximum
area and within that range, sweep through three equally spaced
points. The maximum cell area corresponds to a logic block that
is laid out with little effort, and therefore has a sparse layout. We
define this logic block as “Sparse”. The minimum cell area corre-
sponds to a hand-crafted cell that has a dense layout. We define
this as “Dense”. Between these values, we define the mid-point as
“Medium”.

We use standard cell libraries to estimate the area of a “Sparse”
implementation. For a two-input, one-output “Sparse” logic block,

1The global router (FGR) has a limitation to route only up to 1000-
pin nets. One of the circuits, s38584.1, contains a net with more
than 3000 pins. Instead of modifying the benchmark or the router,
we chose to exclude the benchmark from our experiments. For such
high-fanout nets, a different type of a router (e.g., a clock router) is
likely to be used.

Table 3: Logic Blocks used in Experiments

Type Block Layout Area(Width×Height)

IN OUT Dense Medium Sparse

2 1 16x16 20x20 24x24

4 2 28x28 34x34 42x42

6 3 40x40 50x50 62x62

8 4 52x52 64x64 80x80

10 5 64x64 80x80 100x100

12 6 76x76 94x94 116x116

14 7 88x88 110x110 136x136

16 8 100x100 124x124 154x154

we average the areas of different basic gates such as two-input
NAND and NOR, 2:1 MUX, etc. To determine the “Dense” logic
block area, we assume the lower bound on area will be limited by
the number of logic block i/o pins. If the block has n pins, we as-
sume that the height (and width) of the block is such that 2n wires2

can pass over it plus an additional gap of 2 wires between tiles (for
jumper or crossover vias). The “Dense” area value for each of the
different types (i/o counts) of logic blocks is determined using this
scheme. The “Medium” and “Sparse” area values for logic blocks
with more than two inputs is determined such that the ratio between
the three sizes is the same as the corresponding ratio for two-input
logic blocks. The different logic block types (i/o counts) and the
corresponding layout area values (in units of half metal pitches)
used in our experiments are shown in Table 3.

4.1.2 Routing Fabrics

We use two different types of routing fabrics in our experiments.
These connect between tiles using crossovers or jumpers, respec-
tively. These routing fabrics are illustrated in Figure 3, where we
show the metal architecture for two adjacent layers for each fab-
ric. The fabrics have been specified over a tile of 2x2 logic blocks.
These fabrics are similar to those described in [14], except that we
use single vias (not double vias) to make connections between ad-
jacent tiles.3 Also, we allow long wires that can span multiple tiles
in the same layer.

In our experiments, we use the routing fabric of Figure 3a and
two versions of the routing fabric of Figure 3b. We define them as
“Crossover”, “Jumper20”, and “Jumper40” routing fabrics, respec-
tively. These are described in Table 4.

4.2 VPSA and MPSA Power, Delay

4.2.1 Power Results

To look at the effect of a certain routing architecture on VPSA
performance, we first look at the dynamic power dissipated in the
interconnect. The results for three different routing fabrics are
shown in Figure 4. The horizontal axis in each graph shows the
number of via layers that can be customized to perform routing.
An increase in this number represents that additional metal layers
with fixed metal segments are also available for routing. For ex-
ample, one customizable via layer can connect two metal layers,
two customizable via layers can connect three metal layers, and so
on. The vertical axis in each of the plots shows interconnect power
that we estimate from total interconnect capacitance. The values in

2We assume that a wire spans at least one logic block, hence there
can be at most one pin in each track.
3Although double vias have lower resistance, they require twice the
area. If used at interior points within a tile, they reduce available
metal capacity (pitch) by half.



1 2 3
0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

P
o

w
e

r
Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3
0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

P
o

w
e

r

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3
0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

P
o

w
e

r

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(a) Logic Blocks with 2-inputs and 1-output

1 2 3
0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

P
o

w
e

r

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3
0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

P
o

w
e

r

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3
0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

P
o

w
e

r

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(b) Logic Blocks with 16-inputs and 8-outputs

Figure 4: VPSA Power Trends (Normalized to Power Values of 2-input, 1-ouput Dense Logic Blocks with Crossover Routing Fabric)

Layer2i+2 (i=0, 1, …)Layer2i+1 (i=0, 1, …)

These points coincide

(a) Routing Fabric with Crossovers

Long Segment that 
spans two blocks

Jumper is not required 
at this point

Layer2i+2 (i=0, 1, …)Layer2i+1 (i=0, 1, …)

(b) Routing Fabric with Jumpers

Figure 3: Metal Architecture of Routing Fabrics (From [14])

all the graphs are normalized to the interconnect power of a VPSA
having two-input, one-output “Dense” logic blocks and one cus-
tomizable via layer with the “Crossover” routing fabric. We show
separate plots for different logic block types and different block
layout areas. Figures 4a and 4b show the plots corresponding to the
first and last rows of Table 3; the trends for other logic block types
are similar and are not shown because of space constraints.

There are two main observations. First, there is a significant
range in interconnect power consumption of the different rout-
ing fabrics. For a two-input, one-output logic block (Figure 4a),

Table 4: Routing Fabrics used in Experiments

Routing

Fabric

Description

Crossover The routing fabric shown in Figure 3a. Each
metal segment spans one logic block and the size
of the logic block determines how many seg-
ments pass over it.

Jumper20 The routing fabric shown in Figure 3b. Two types
of metal segments are used; one that spans a sin-
gle logic block and the other that spans 4 logic
blocks. The routing fabric is specified over a tile
of 4x4 logic blocks. The long segments are stag-
gered across the tile. 20% of the segments pass-
ing over a logic block are long.

Jumper40 This is similar to Jumper20 routing fabric, except
that 40% of the metal segments are long.

Jumper40 dissipates 66% more power than Crossover; Jumper40
also dissipates 6%-20% more power than Jumper20. Similarly, for
the other logic block type (Figure 4b), Jumper40 dissipates 42%
and 14% more power than Crossover and Jumper20, respectively.
These trends do not change with the number of customizable via
layers. Across different logic block layout densities (each individ-
ual plot in Figures 4a or 4b), the relative power dissipation between
the three fabrics is mostly similar. It is also interesting to see that
a small architectural change, varying the number of long segments
from 20% to 40%, can affect the power consumption by 6% to 20%.

Second, for a particular layout density, the power dissipation im-
proves as more routing layers are available and this improvement
diminishes as the layout area of the logic block increases. This
can easily be seen from the interconnect power of Crossover across
the three plots in Figure 4a. For “Dense” logic block (left plot),
the power consumption with three customizable via layers is 40%



lower than the power consumption with a single customizable via
layer. For “Sparse” logic block (right plot), this variation is only
2%. A similar conclusion can be drawn from Figure 4b. The reason
for reduction in power dissipation with more routing layers is due
to the fact that, with more routing layers, a design can be success-
fully routed with less whitespace, and connections between logic
blocks can be made with shorter nets.

Another interpretation of Figure 4a is that results are sensitive
to whitespace allocation. In particular, the “Dense” logic block
with one via layer has higher power than the “Sparse” logic block
for both Jumper20 and Jumper40 routing fabrics. In other words,
whitespace inserted by the placer is not as well-placed as the uni-
form whitespace obtained from using a sparse layout.

4.2.2 Delay Results

The delay results are shown in Figure 5. These plots are simi-
lar to Figure 4, except that the vertical axis now shows intercon-
nect delay for the three fabrics. As in the case of power, the plots
are normalized to the interconnect delay for the Crossover routing
fabric with two-input, one-output “Dense” logic blocks and Nvl =
1. As mentioned in section 3, average net delay is used to esti-
mate interconnect delay. There are three main observations from
the delay plots. First, like power, delay has significant range across
different routing fabrics. For the logic block with two-inputs and
one-output (Figure 5a), Jumper20 has about 100% more delay than
Crossover for “Dense” and “Medium” logic blocks. The difference
for the “Sparse” logic block is 75%. Similarly, Jumper20 is 29%,
22%, and 7% slower than Jumper40 for “Dense”, “Medium”, and
“Sparse” logic blocks respectively. For the other logic block type
(Figure 5b), there is also 33% to 39% difference between Crossover
and Jumper20/Jumper40. The delay of Jumper20 and Jumper40
routing fabrics is mostly similar, varying at most by only 5%. As
in the case of power, these trends are mostly independent of the
number of available routing layers.

Second, also as in the case of power, the delay improves as more
routing layers are available. This is also because more routing
layers reduce congestion, allowing the circuits to route with less
whitespace. This reduces the wirelength for each net and improves
delay.

A third observation is regarding the relative performance of
Jumper20 and Jumper40 routing fabrics: Jumper20 has fewer long
segments than Jumper40, making it better in terms of power. How-
ever, for delay the situation is reversed. This shows an interesting
trade-off; having more long segments in a fabric can improve delay
but can make power worse.

4.2.3 Comparison to MPSAs

In this section, we compare the performance of VPSAs and MP-
SAs to study the penalty of fixing all the metal layers when using
only via layers for customization. To study this effect, we show the
ratio of power and delay of VPSAs relative to MPSAs; the trends
for area are similar and we do not show the area results. We only
show the results for “Dense” and “Sparse” logic blocks with two
inputs and one output.

The interconnect power comparison is shown in Figure 6. It can
be seen that using only via layers for customization increases power
dissipation. As the layout area of the logic blocks increase, the
gap between MPSAs and VPSAs is reduced. In our experiments,
for different logic block types with different routing fabrics, this
increase can vary from 1.6x to 5.5x.

The comparison of VPSA and MPSA interconnect delay is
shown in Figure 7. As in the case of power, the VPSA delay
is worse relative to MPSA and it improves as the layout area in-

creases. However, it is important to observe the magnitude by
which the delay gets worse in VPSAs relative to MPSAs. It was
surprising to see that maximum increase in the delay of VPSAs
ranges from 20x, for “Dense” logic block, to about 5x, for “Sparse”
logic block. To investigate this, we looked at the total wirelength
and total number of vias for each of the fabrics relative to MPSA.
These plots are shown in Figure 8. It can be seen that with a sin-
gle customizable via layer, the increase in wirelength is only 3x to
5x, whereas the number of vias has a dramatic increase of 20x to
more than 30x. This causes the delay to increase significantly. The
reason for this behavior is that in VPSAs, whenever a wire has to
extend in any direction, it needs to go through a via; depending
on the architecture of the routing fabric, it may have to go through
more than one via in order to extend (e.g., in case of Jumper20 and
Jumper40 routing fabrics) by just one more segment.

The relatively poor performance of VPSAs compared to MPSAs
may be improved in two ways. First, double vias could be used at
the expense of area. Second, VPSAs may respond more strongly to
buffer insertion due to the larger resistance and capacitance of the
interconnect.

4.3 VPSA and MPSA Area, Cost

4.3.1 Area Results

The plots for core area are shown in Figure 9. These plots are
similar to power and delay plots and the observations are simi-
lar too. It can be seen from Figure 9 that, like power and de-
lay, there is a significant range of core area between the different
routing fabrics. The core areas with Crossover are considerably
lower than that with Jumper20 or Jumper40 fabrics. However, there
is not much difference between the core areas of Jumper20 and
Jumper40. Also, area decreases as more routing layers are avail-
able. Generally, the area with Nvl = 1 is larger than the area
with Nvl = 2, 3, especially for the “Dense” logic block, because
usually there is a lot of congestion when few routing layers are
available. We are using uniform whitespace allocation in our CAD
flow, which inserts whitespace everywhere instead of targeting the
congested regions. This results in a significant increase in the core
area. The use of an “intelligent” whitespace allocation algorithm,
one that inserts whitespace only at congested regions, may help to
reduce this problem.

4.3.2 Cost Results

Finally, we apply the cost model described in section 2 on the
area values to estimate the die-cost. However, because the MCNC
benchmarks are very small, we need to scale the core area to a
reasonable value. For this, we scale all the core areas in such a way
that the core area for an MPSAwith two-input, one-output “Dense”
logic blocks and having two custom metal layers (this corresponds
to a VPSA with a single customizable via layer) is 10mm2. The
resulting cost plots are shown in Figure 10. Instead of showing
relative values, we show absolute die-cost values and also include
a cost curve for MPSAs. The important observations are described
below.

The routing fabric architecture affects die-cost. Different VPSA
routing fabrics have different die-costs relative to each other and
also relative to MPSA. In some cases, the MPSA cost is better than
VPSA cost whereas in other cases a VPSA is cheaper than MPSA,
despite the fact that VPSAs are always larger than MPSAs. Gener-
ally, for densely laid out logic blocks, MPSA is cheaper when fewer
routing layers are available. With more routing layers, VPSAs be-
come cheaper. This is easily seen from Figures 10a and 10b for
“Dense” logic block. As the layout area of logic blocks increases



1 2 3

0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

D
e

la
y

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

D
e

la
y

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

D
e

la
y

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(a) Logic Blocks with 2-inputs and 1-output

1 2 3

0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

D
e

la
y

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

D
e

la
y

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

3

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t 

D
e

la
y

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(b) Logic Blocks with 16-inputs and 8-outputs

Figure 5: VPSA Delay Trends (Normalized to Delay Values of 2-input, 1-ouput Dense Logic Blocks with Crossover Routing Fabric)

1 2 3
1

2

3

4

5

6

No. of Customizable Via Layers (N
vl

)

V
P

S
A

In
te

rc
o
n
n
e
c
t

P
o
w

e
r

M
P

S
A

In
te

rc
o
n
n
e
c
t

P
o
w

e
r

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

(a)

1 2 3
1

2

3

4

5

6

No. of Customizable Via Layers (N
vl

)

V
P

S
A

In
te

rc
o
n
n
e
c
t

P
o
w

e
r

M
P

S
A

In
te

rc
o
n
n
e
c
t

P
o
w

e
r

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(b)

Figure 6: VPSA and MPSA Power Com-
parison (2-input, 1-output Logic Block)

1 2 3

5

10

15

20

No. of Customizable Via Layers (N
vl

)

V
P

S
A

In
te

rc
o
n
n
e
c
t

D
e
la

y
M

P
S
A

In
te

rc
o
n
n
e
c
t

D
e
la

y

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

(a)

1 2 3

5

10

15

20

No. of Customizable Via Layers (N
vl

)

V
P

S
A

In
te

rc
o
n
n
e
c
t

D
e
la

y
M

P
S
A

In
te

rc
o
n
n
e
c
t

D
e
la

y

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(b)

Figure 7: VPSA andMPSADelay Compar-
ison (2-input, 1-output Logic Block)

1 2 3
1

2

3

4

5

6

No. of Customizable Via Layers (N
vl

)

V
P

S
A

T
o
ta

l
W

ir
e
le

n
g
th

M
P

S
A

T
o
ta

l
W

ir
e
le

n
g
th

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

(a) Total Wirelength

1 2 3

5

10

15

20

25

30

35

No. of Customizable Via Layers (N
vl

)

V
P

S
A

T
o
ta

l
N

o
.

o
f
V

ia
s

M
P

S
A

T
o
ta

l
N

o
.

o
f
V

ia
s

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

(b) Total Number of Vias

Figure 8: VPSA Delay: Effect of wire-
length and number of vias

(layouts become sparse), VPSAs become more cost effective even
with fewer routing layers. It can also be seen that sparsely laid out
logic blocks may lead to a more cost effective die than densely laid
out logic blocks; this may be caused by inferior whitespace alloca-
tion performed during placement.

The plots in Figure 10 also show that, with additional routing
layers, the die cost for VPSAs can reduce. In contrast, the cost of
MPSAs always increases with more routing layers [5]. The reason

is that, with new process technologies, the cost of the maskset is the
dominant factor that determines die cost. In MPSAs, as the number
of routing layers increases, the number of masks that need to be
customised also increases, nullifying the effect of any area savings.

Finally, we investigated the sensitivity of the cost model to vari-
ous parameters of Table 1. We looked at a range of values for dif-
ferent parameters and studied the die costs. The cost plots for some
of the interesting results are shown in Figure 11. Because of space



1 2 3

0.5

1

1.5

2

2.5

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a
Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(a) Logic Blocks with 2-inputs and 1-output

1 2 3

0.5

1

1.5

2

2.5

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40

1 2 3

0.5

1

1.5

2

2.5

No. of Customizable Via Layers (N
vl

)

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40

(b) Logic Blocks with 16-inputs and 8-outputs

Figure 9: VPSA Area Trends (Normalized to Area Values of 2-input, 1-ouput Dense Logic Blocks with Crossover Routing Fabric)

1 2 3
5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

1 2 3
5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

1 2 3
5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

(a) Logic Blocks with 2-inputs and 1-output

1 2 3
5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

1 2 3
5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Medium Logic Block (Medium Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

1 2 3
5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Sparse Logic Block (Large Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

(b) Logic Blocks with 16-inputs and 8-outputs

Figure 10: VPSA Cost Trends

constraints, we only show the plots for “Dense” logic block size
with 2-inputs and 1-output. Figure 11a shows that, with more fixed
masks, the increase in the cost of VPSAs is more rapid than MP-
SAs. This is because of the large area of VPSAs relative to MPSAs;
the increase in the cost to process a wafer is divided among fewer
dies, resulting in a larger increase in VPSA cost. Figures 11b and
11c show that MPSAs increase in cost more quickly when mask
costs go up or volumes go down. Finally, the Crossover routing

fabric is consistently better than Jumper20 and Jumper40 fabrics
under any changes to the cost model parameters.

5. LIMITATIONS
The work presented in this paper is early work and there are some

limitations in it. First, in our delay and power estimates, we did not
consider delay and power dissipation of the logic blocks or precise



1 2 3

5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

(a) Number of Fixed Masks (Nfm) = 36

1 2 3

5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

(b) Maskset Cost = $5M

1 2 3

5

10

15

20

25

No. of Customizable Via Layers (N
vl

)

C
o

s
t 

($
)

Dense Logic Block (Small Layout Area)

 

 

Crossover
Jumper20
Jumper40
MPSA

(c) Per Customer Volume (Vc) = 50k

Figure 11: Sensitivity of Cost Model to Various Parameters

critical paths. Second, the whitespace insertion scheme used in the
CAD flow distributes the whitespace uniformly across the whole
die rather than inserting it only at congested locations. This can
cause the core area to escalate, especially with small block sizes
and fewer routing layers. Third, we assume that there are dedicated
power and clock networks for the logic blocks and we do not con-
sider their overhead. Fourth, the logic blocks could be configured
in different ways such as vias or SRAM cells. The use of vias in the
lower layers can increase the die cost of VPSAs. However, in this
paper we did not study this effect. Finally, due to the increased via
count and wirelength of VPSAs over MPSAs, a buffer-insertion
strategy may need to be followed by the CAD. However, despite
these limitations we believe our results present an important first
look at trends in structured ASIC architecture.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we have looked at the impact of the VPSA rout-

ing fabric on power, delay, area, and die cost. We investigated
two different routing fabrics, one that uses crossover wiring and
the other that uses jumper wiring. It was observed that the per-
formance of VPSAs gets better with more customizable via layers,
however, most of the improvement occurs in going from one to two
layers. The trends across different fabrics are similar, but there is
a significant difference between the performance of these fabrics.
This suggests that the interconnect architecture plays a very impor-
tant role in the overall quality of results in VPSAs and it should be
thoroughly researched.

We have also compared the performance of VPSAs against MP-
SAs. In terms of delay and power, MPSAs perform better than
VPSAs. One of the reasons for this is the large number of series-
connected vias in VPSAs. This affects both delay and power. This
also shows an important aspect of the interconnect architecture:
for better performance, a routing fabric should use fewer series-
connected vias to make connections between the fixed metal seg-
ments. In terms of die-cost, VPSAs can be more cost effective than
MPSAs. However, the cost effectiveness of VPSAs depend on vari-
ous factors such as logic block layout area, number of customizable
via layers, and device volume requirements.

In the future, we plan to extend this work by looking at other
possible interconnect structures. This includes studying fabrics that
have many fixed routing layers, but customization can only be per-
formed using a single via layer. We also plan to explore routing fab-
rics in which the metal segments at different layers have different
lengths. Also, we plan to study the effect of whitespace insertion
on the overall results. Finally, we also plan to perform a detailed
sensitivity analysis of the VPSA die-cost to volume requirements.

7. REFERENCES
[1] http://www.eetimes.com/showArticle.jhtml?

articleID=217200925.

[2] Nextreme Structured ASIC, eASIC Corp.
http://www.easic.com/pdf/asic/nextreme_asic_

structured_asic.pdf.

[3] Hardcopy II Datasheet, Altera Corp.
http://www.altera.com/literature/hb/hrd/hc_

h5v1_05.pdf.

[4] The Advent of Next Generation Lithography Technologies in
Advanced Semiconductor Processing, Frost & Sullivan Press

Release, Aug. 27, 2007.

[5] U. Ahmed, G. Lemieux, and S. Wilton. Area, delay, power, and cost
trends for metal-programmable structured asics (MPSAs). In
IC-FPT, Dec. 2009.

[6] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for

Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[7] S. Kaptanoglu. Power and a new class of future FPGA architectures.
In Keynote Address at Int’l Conf. on Field Programmable

Technologies (IC-FPT), Dec. 2007.

[8] V. Kheterpal, A. J. Strojwas, and L. Pileggi. Routing architecture
exploration for regular fabrics. In DAC, 2004.

[9] A. Koorapaty, V. Kheterpal, P. Gopalakrishnan, M. Fu, and
L. Pileggi. Exploring logic block granularity for regular fabrics. In
DATE, 2004.

[10] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs.
IEEE Trans. on CAD, 26(2):203–215, 2007.

[11] Z. Or-Bach. Paradigm shift in ASIC technology: In-standard metal,
out-standard cell. eASIC White Paper, September 2005.

[12] L. Pileggi, H. Schmit, A. J. Strojwas, P. Gopalakrishnan,
V. Kheterpal, A. Koorapaty, C. Patel, V. Rovner, and K. Y. Tong.
Exploring regular fabrics to optimize the performance-cost trade-off.
In DAC, 2003.

[13] Y. Ran and M. Marek-Sadowska. Via-configurable routing
architectures and fast design mappability estimation for regular
fabrics. In ICCAD, pages 25–32, 2005.

[14] Y. Ran and M. Marek-Sadowska. Via-configurable routing
architectures and fast design mappability estimation for regular
fabrics. IEEE Trans. on VLSI, 14(9):998–1009, Sept. 2006.

[15] J. A. Roy and I. L. Markov. High-performance routing at the
nanometer scale. In ICCAD, pages 496–502, 2007.

[16] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu,
and I. L. Markov. CAPO: Robust and scalable open-source min-cut
floorplacer. In ISPD, pages 224–226, 2005.

[17] B. Zahiri. Structured ASICs: Opportunities and challenges. In ICCD,
page 404, Oct. 2003.


