

Deep and Narrow Binary Content-Addressable
Memories using FPGA-based BRAMs

Ameer M.S. Abdelhadi and Guy G.F. Lemieux
Department of Electrical and Computer Engineering

The University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada

{ameer,lemieux}@ece.ubc.ca

Abstract—Binary Content Addressable Memories (BCAMs)

are massively parallel search engines capable of searching the
entire memory space in a single clock cycle. BCAMs are used in a
wide range of applications, such as memory management,
networks, data compression, DSP, and databases. Due to the
increasing amount of processed information, modern BCAM
applications demand a deep searching space. However,
traditional BCAM approaches in FPGAs suffer from storage
inefficiency. In this paper, a novel and efficient technique for
constructing deep and narrow BCAMs out of standard SRAM
blocks in FPGAs is proposed. This technique is most efficient for
deep and narrow CAMs since the BRAM consumption is
exponential to pattern width. Using Altera’s Stratix V device,
traditional methods achieve up to 64K-entry BCAM while the
proposed technique achieves up to 4M entries. For the 64K-entry
test-case, traditional methods consume 43 times more ALMs and
achieves only one-third of the Fmax. A fully parameterized
Verilog implementation is available1. This implementation has
been extensively tested using Altera’s tools.

Keywords—content addressable memory; data addressable
memory; associative memory; associative array; catalog memory

I. INTRODUCTION
Binary content addressable memories (BCAMs), also

known as associative memories, are capable of searching the
entire memory space for a specific value within a single clock
cycle. While a standard RAM returns data located in a given
memory address, a BCAM returns an address containing the
specific given data, known as search pattern. Hence performing
a memory-wide search for a specific value. BCAMs are
massively parallel search engines accessing all memory content
to compare with the search pattern simultaneously.

A BCAM is actually a high-performance implementation of
a very basic and widely used associative search, hence it can be
used in every science field requiring high-speed processing of
associative search. Networks, associative caches and TLBs,
pattern matching, data compression, DSP, bioinformatics, and
a variety of other scientific fields can use CAMs as single-
cycle associative search accelerators with millions of search
lines. Yet, FPGAs lack an area-efficient soft CAM
implementation. Current CAM approaches in vendor IP
libraries achieve a maximum of 64K entries and utilize all the
resources of a modern FPGA device.

BCAMs are usually designed at the transistor level [1].
Older devices, including Altera’s FLEX, Mercury and APEX

devices [5] employed minor architectural features to support
small CAM blocks. However, FPGA vendors do not provide
dedicated hard cores for CAMs in modern devices. These have
been replaced with soft CAM cores that employ a brute-force
approach described in this paper as the traditional or
transposed-indicators RAM approach.

In this paper, a modular SRAM-based BCAM suitable for
deep and narrow search applications is proposed. The address
range is divided into equal segments. CAM lookup depends
upon two steps. First, a RAM structure stores hit or miss
information for each segment, where a segment stores several
patterns. Second, the specific segment is searched in parallel
for a match. The segment data (the patterns themselves) are
stored in a second RAM structure.

The proposed method is device-independent and
dramatically improves CAM area efficiency and operation
frequency compared to conventional methods. In contrast to
other attempts that require several cycles to write or match
[3][4], the proposed approach is high-throughput and can
perform a pattern match every single cycle and a pattern write
every two cycles.

A parameterized Verilog implementation of the suggested
methods and previous standard approaches, together with a
flow manager are available online1. To verify correctness it is
simulated using Altera’s ModelSim, and compiled using
Quartus II. A large variety of BCAM architectures and
parameters are simulated in batch. Stratix V, Altera’s high-end
performance-oriented FPGA, is used to implement and
compare the proposed architecture with previous approaches.

The rest of this paper is organized as follows. In section II,
conventional BCAM techniques in embedded systems are
reviewed. The proposed segmented transposed RAM approach
is described in section III. The experimental framework,
simulation and synthesis results, are discussed in section V.
Conclusions are drawn in section VI.

II. BACKGROUND ON FPGA-BASED CAMS
This section provides a review of current BCAM

architectures in FPGAs. Using registers to create BCAMs is
described in subsection A. The traditional brute-force BRAM-
based approach is described in subsection B. A review of
FPGA vendors’ supports of BCAMs is placed in subsection C.

1 http://www.ece.ubc.ca/~lemieux/downloads

A. Register-based BCAMs
The flexibility of reading and writing flip-flops makes it

possible to concurrently read and compare all the patterns as
depicted in Fig. 1. Similar to a register-based RAM, an address
decoder is used to generate one-hot decoded address lines,
enabling a single line for writing. Each registered pattern is
compared with the matched pattern (MPatt) simultaneously;
the comparison results drive the match line, also called match
indicators (MIndc) followed by a priority-encoder (PE) to
detect the first matching address (MAddr). The high demand
for limited resources such as registers, comparators, address
decoder and PE (proportional to BCAM depth), besides the
increasing routing complexity, makes this approach infeasible
for deep BCAMs. Using Altera’s high-end Stratix V device,
only 32K-line single byte pattern BCAM can be generated.

B. Brute-force Approach via Transposed-Indicators RAM

The RAM-based brute-force approach address the RAM by
the match pattern while each bit of the RAM data indicates the
existence of the pattern in each BCAM address location. A
RAM with ܴ lines in depth and ܦௐ bits data width allows a
BCAM with ܥ ൌ ௐܦ lines depth and ܲௐ ൌ ���ଶہ ܴۂ bits
pattern width. In this paper, this structure is called Transposed-
Indicators-RAM (TIRAM).

The complete system of the brute-force TIRAM approach
is described in Fig. 2. Reading from the TIRAM is performed
by providing the match pattern (MPatt) as address to read the
match indicators (MIndc) for the entire BCAM address space.
A PE detects the first match address (MAddr) from the match
indicators. However, rewriting the TIRAM requires more
computation since it requires setting the new indicator and
clearing the old indicator. As shown in Fig. 2, an ErRAM
(Erase RAM) is used in parallel to the indicators RAM
(TIRAM) in order to provide for a given address what pattern
is already stored and should be removed. This is used for
writing where the old indicator should be cleared; ErRAM will
provide the old pattern in the current written address. Hence,
the BCAM writing consumes two cycles as follows.

1. Set cycle:
1.1. Set (write ‘1’) a new pattern indicator to TIRAM
1.2. Read old data (pattern) from ErRAM

2. Clear cycle:
2.1. Clear (write ’0’) the old indicator from the TIRAM

(location is already provided by step 1.2)
2.2. Write new data (pattern) to ErRAM

To implement a BCAM with ܥ lines and ௐܲ pattern
width, namely a ܥ ൈ ܲௐ BCAM, The brute-force TIRAM
approach requires ܥ ȉ ܲௐ SRAM cells for the ErRAM and
ʹೈ ȉ SRAM cells for the TIRAM, a total ofܥ

ܥ ȉ ሺܲௐ ʹೈሻ. (1)

C. Vendor Support for BCAMs
Modern FPGAs provide plenty of embedded hard-coded

blocks, such as block RAM, external memory controllers,
processors, DSP blocks/multipliers, and fast I/O transceivers.
However, hard CAM blocks do not exist in modern FPGAs –
presumably due to their high area and power consumption, and
their highly specialized nature. While most FPGA vendors
provide simple register-based or brute-force SRAM-based
CAMs, some old devices provide partial support for CAM
construction. Altera’s legacy FLEX, Mercury and APEX [5]
device family integrates intrinsic BCAM support into their
embedded system blocks (ESBs). The ESB can be configured
into a 32×32 BCAM. Since ESBs are limited to few hundred
blocks in these devices, and due to routing complexity, deep
CAMs are infeasible. Furthermore, BCAMs can only be
implemented as soft IP in modern Altera devices.

On the other hand, Xilinx devices do not provide native
support for BCAMs. However, partial configuration
capabilities in Xilinx Virtex devices can be utilized to create a
CAM as described in Xilinx application notes [8]. This
approach is very slow at writing new patterns. Xilinx
application notes also suggest utilizing BRAMs with the brute-
force approach to create BCAMs [8].

Lattice ispXPLD devices [9] have an integrated support for
CAMs via their Multi-Function Block (MFB) which can be
configured into a 128×48 Ternary CAM block (with don’t care
values). Alternatively, Actel application notes [10] recommend
using multi-cycle CAMs by searching BRAM in parallel; for a
single-cycle CAM, using registers is suggested.

III. SEGMENTED TRANSPOSED INDICATORS RAM DEEP BCAMS
The proposed Segmented Transposed Indicators (STIRAM)

approach is a modular BRAM-based BCAM approach suitable
for deep applications. The address range is divided into equal
size segments; each segment is a very wide word that stores a
set number of patterns. BCAM pattern lookup works in two
stages. First, a RAM structure is indexed by the pattern; it
stores match information for each pattern. This is used by a PE
to identify the address of a segment containing the pattern; it
also produces the upper bits of the match address. The address
indexes into a second RAM structure to produce the segment.
Second, the wide segment is searched in parallel for a match to
the pattern; the location of the match within the segment
produces the lower bits of the match address.

While cascadable BCAMs require indicators from every
address location at every stage, this requirement can be

Fig. 2. (left) Brute-force TIRAM approach (right) 8×2 example

W
rit

e
Co

nt
ro

lle
r

ۂlog2CDہ

PW

WPatt

WAddr

Wr MPatt

PW

PW

0
1

Pr
io

rit
y

En
co

de
r ۂlog2PWہ

MAddr

WEnb

WPatt

MIndc

MPatt

Addr

Wr/Er

WData

RData

Addr

W/R

TIRAM CD X PW

CD

ErRAM CD X PW

7 1
6 1
5 1
4 2
3 3
2 3
1 0
0 1

Patterns

0
1
0
0

1
0
0
0

0
0
0
1

0
0
0
1

0
0
1
0

0
1
0
0

0
1
0
0

0
1
0
0

0 1 2 3 4 5 6 7
0
1
2
3

Addresses

Pa
tt

er
ns

TIRAM 8×2

Er
RA

M
 8

×2

A
dd

re
ss

es

Fig. 1. Register-based BCAM

ۂlog2CDہ

WPatt

M
In

dc

A
dd

re
ss

D
ec

od
er

WAddr

PW

=

MPatt

C D

=
PW

PW

=

Pr
io

ri
ty

En

co
de

r

ۂlog2CDہ

MAddr

Match

PWPW
Q

Q

Q
En
D Reg0

En
D Reg1

En
D RegCD-1

alleviated if the BCAM will not be cascaded. Instead of storing
pattern indicators for each address location separately, an
indicator is generated for a group of addresses, indicating if the
pattern exists at any of these addresses. A segment of width ܵௐ
holds a number of patterns in fixed positions. For a ܥ-lines
BCAM, and ܵௐ segments width, ܥڿ ܵௐΤ ۀ segments exist. A
segment indicator indicates if a segment contains the
corresponding pattern in any of its positions.

STIRAM provides information for matched patterns within
a segment, not the exact location. To detect the exact pattern
location, an auxiliary RAM stores the patterns associated with
each segment. Hence, it called the segments RAM (SegRAM).
If a match is found in a specific segment, this segment will be
fetched from the SegRAM and all patterns within this segment
are compared concurrently to match pattern. Fig. 3 illustrates
the complete STIRAM system. Two RAM structures are
required, the first is STIRAM, a transposed RAM, addressed
by patterns and storing segment indicators. The second is
SegRAM, storing data patterns, with all patterns from a
segment stored in one RAM line.

The match operation checks STIRAM for a match within a
segment, detects the first matching segment using a PE, fetches
the corresponding segment patterns (with a match) from
SegRAM, then compares all patterns with the match pattern in
parallel to detect the exact match location. The match operation
is described in detail as follows:

1. Detect match among segments:
1.1. STIRAM detects which segments contains MPatt (MInd)
1.2. The segments PE generates the binary address for the

first segment with a matching pattern. This address
composes the higher part of MAddr.

1.3. Segments PE also generates the Match signal, which
indicates that a match was found.

2. Detect match exact location within the segment:
2.1. The address of the first matched segment (step 1.2) is

provided to the SegRAM to fetch the entire segment.
2.2. Each pattern within the segment is compared to MPatt.
2.3. The Intra-segment PE) detects the first matching pattern.

The address of the first matching pattern composes the
lower part of MAddr.

While detecting a match is completed by reading the
STIRAM in one cycle, computing the exact match address
requires another cycle to read the SegRAM. Hence, the match
operation latency is two cycles. However, the throughput is one
cycle since both STIRAM and SegRAM are read concurrently.

Similar to the brute-force approach, writing to the STIRAM
requires two cycles, one cycle for new pattern insertion, and a
second cycle for old pattern deletion. However, before clearing
the old data indicator in the STIRAM, other occurrences of the
old data should be checked. If other occurrences of the deleted
pattern are found in the same segment, the segment indicator
for this pattern in the STIRAM shouldn’t be cleared. In detail,
STIRAM BCAM writing is performed as follows:

1. Cycle 1: STIRAM write; SegRAM read
1.1. Write STIRAM with WPatt and the higher ڿ���ଶሺܥ ܵௐΤ ሻۀ

bits of WAddr to set the corresponding segment indicator
1.2. Read the entire corresponding segment from SegRAM

(addressed by the higher ڿ���ଶሺܥ ܵௐΤ ሻۀ bits of WAddr)
1.2.1. The “Pattern to remove MUX” selects the pattern

that is being rewritten from the segment.
The selector is the lower ඃ���ଶ ܵௐඇ bits of WAddr.

1.2.2. The “Occurrences Indicators” are a compare of the
currently rewritten pattern with all the other
patterns in the segment to detect other occurrences.

1.2.3. The final stage masks the indicator of the currently
rewritten pattern, since only other occurrences
should be detected. All the indicators are OR’ed to
detect any other occurrence

2. Cycle 2: SegRAM write; STIRAM conditional erase
2.1. The SegRAM is written with WPatt. Byte-enable is used

to write the corresponding pattern in the segment.
2.2. If no other occurrences of the currently rewritten pattern

are detected (stage 1.2.3 above), the STIRAM indicator
for the replace pattern and the current address is cleared.

To implement a BCAM with ܥ lines and ܲௐ pattern width,
namely a ܥ ൈ ܲௐ BCAM, The STIRAM approach requires
ܥڿ ܵௐΤ ۀ ൈ ܲௐ ȉ ܵௐ SRAM cells for the SegRAM and ʹೈ ൈ
ܥڿ ܵௐΤ SRAM cells for the STIRAM, a total of ۀ

ܥڿ ܵௐΤ ۀ ȉ ሺܲௐ ȉ ܵௐ ʹೈሻ. (2)

Fig. 3. (left) The complete STIRAM BCAM (right) 8×2; Sw=2 example

WData

=

=

=

WAddr

W
rit

e
Co

nt
ro

lle
r

=

=

=

In
tr

a-
Se

gm
en

t
Pr

io
rit

y
En

co
de

r

PW
MPatt

log2(CD/SW)

CD/SW

MAddr

log2(SW)

log2(CD)

PW

PW

PW

SW·PW

SW·PW

PW

PW

PW

PW

PW

PW

SW

log2SW
log2CD

log2(CD/SW)

M
ul

tiP
at

t

In
tr

a-
se

gm
en

t
M

at
ch

 C
om

pa
re

One-hot
Decoder

Pa
tt

er
n

to
Re

m
ov

e
M

U
X

O
cc

ur
re

nc
es

In
di

ca
to

rs

M
as

ki
ng

SegRAM (CD/SW)X(SW·PW)
Addr

RData

WData
Addr

W/R

RData

ByteEn

MPatt

MIndc

STIRAM (CD/SW)XPW

WEnb

WPatt
Addr

Wr/Er

Wr/Er
MUX Se

gm
en

ts
Pr

io
rit

y
En

co
de

r Match

3 1
2 1
1 3
0 0

Patterns
SegRAM 4×4

A
dd

re
ss

es

1
3
3
1

1
1
0
0

0
0
0
1

0
1
1
0

0
1
0
0

0 1 2 3
0
1
2
3P

a
tt

e
rn

s

Addresses
STIRAM 4×4 (SW=2)

IV. EXPERIMENTAL RESULTS
To verify and simulate the suggested approach and

compare to standard techniques, fully parameterized Verilog
modules have been developed, including register-based, brute-
force TIRAM, and the proposed STIRAM method. To simulate
and synthesize these designs with various parameters in batch
using Altera’s ModelSim and Quartus II, a run-in-batch flow
manager has been developed. The Verilog modules and the
flow manager are available online [2]. A large variety of
different BCAM architectures and parameters, e.g. bypassing,
depth, pattern width, and segment width, are swept and
simulated in batch, each with over million random cycles using
Altera’s ModelSim. All different BCAM design modules were
implemented using Altera’s Quartus II on Altera’s Stratix V
5SGXMA7N1F45C1 device. This is a high-performance
device with 235k ALMs and 2560 M20K blocks.

Fig. 4 plots feasible BCAM depth and pattern width sweeps
implemented on Altera’s Stratix V device. Within the device
limitation, the proposed STIRAM approach is able to reach 4M
lines of CAM, while the brute-force TIRAM and the register-
based approach cannot exceed 64K and 32K lines,
respectively. The number of Altera’s M20K blocks used to
implement each BCAM configuration is plotted in Fig. 4
(bottom). Even for shallow memories of 64K and 32K, the
proposed approach demonstrates lower BRAM consumption
than the TIRAM method. The columns in Fig. 4 (bottom) show
the BCAM consumption of the two RAM structures that
compose the STIRAM approach; the SegRAM and the
STIRAM. The SegRAM stores the patterns themselves; hence,
if the SegRAM BRAM consumption is dominating the
STIRAM consumption, the area efficiency will be higher.

The proposed STIRAM method exhibits significantly lower
ALM count and higher Fmax due to splitting the PE as shown
in Fig. 4 (middle and top). Register-based BCAM consumes
the highest ALMs due to massive register usage.

V. CONCLUSIONS
In this paper, a novel BCAM architecture for FPGAs is

proposed. The approach is fully BRAM-based and employs
segmentation to reduce BRAM consumption. While traditional
brute-force approach have a pattern match indicator for each
single address, our approach maintains a single pattern match
indicator for each segment, where a segment holds a number of
patterns. While traditional methods cannot exceed 64K-line,
our method is capable of implementing a 4M-line CAM and
significantly improves area and performance. However, the
proposed approach is not cascadable, leading to an exponential
growth of BRAM consumption as pattern width increases;
hence it is most efficient for deep and narrow CAMs where it
completely dominates all past designs in area and Fmax.

REFERENCES
[1] K. Pagiamtzis, A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: a tutorial and survey,” Solid-State
Circuits, IEEE Journal of , vol.41, no.3, pp.712–727, March 2006.

[2] http://www.ece.ubc.ca/~lemieux/downloads
[3] C.W. Jones and S. J.E. Wilton, “Content-Addressable Memory with

Cascaded Match, Read and Write Logic in a Programmable Logic
Device,” U.S. Patent 6 622 204 B1, Sep. 16, 2003.

[4] G.R. Schlacter ,”Emulation of Content-Addressable Memories,” U.S.
Patent 6 754 766 B1, Jun. 22, 2004.

[5] "APEX 20K Programmable Logic Device Family," Data Sheet, March
2004, ver. 5.1, Altera Corporation, San Jose, CA.

[6] F. Heile, A. Leaver, and K. Veenstra, “Programmable memory blocks
supporting content-addressable memory,” in Proc. of the ACM/SIGDA
symposium on Field programmable gate arrays, 2000, Monterey, CA.

[7] “Implementing High-Speed Search Applications with Altera CAM,”
Application Note 119, ver. 2.1, July 2001, Altera Corp., San Jose, CA.

[8] K. Locke, “Parameterizable Content-Addressable Memory,”
Application Note XAPP1151, 2011, Xilinx, Inc., San Jose, CA.

[9] "Content Addressable Memory (CAM) Applications for ispXPLD
Devices," App. Note AN8071, 2002, Lattice Semi, Hillsboro, OR.

[10] "Content-Addressable Memory (CAM) in Actel Devices," Application
Note AC194, December 2003, Actel Corporation, Mountain View, CA.

Fig. 4. Results for several BCAM depth and pattern width sweeps (bottom) M20K count (1000’s) (middle) ALMs count (1000’s) (top) Fmax (MHz) T=0°C

0

1

2

3

4

W 7 8 9 10 11 12 13 14 15 16 17 18 19 20 7 8 9 10 11 12 13 14 15 16 17 18 19 7 8 9 10 11 12 13 14 15 16 17 18 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 7 8 9 10

D 32K 64K 128K 512K 2M 4M

M
20

Ks
 (T

ho
us

an
ds

) SegRAM Blocks
STIRAM Blocks

0

50

100

150

200

250

A
LM

s
(T

ho
us

an
ds

)

Reg-based
TIRAM
STIRAM
Device Limit

0

100

200

300

400

500

600

Fm
ax

 (M
H

z)
 T

=0
˚C

