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Abstract—Binary Content Addressable Memories (BCAMs), 

also known as associative memories, are hardware-based search 

engines. BCAMs employ a massively parallel exhaustive search 

of the entire memory space, and are capable of matching a 

specific data within a single cycle. Networking, memory 

management, pattern matching, data compression, DSP, and 

other applications utilize CAMs as single-cycle associative 

search accelerators. Due to the increasing amount of processed 

information, modern BCAM applications demand a deep 

searching space. However, traditional BCAM approaches in 

FPGAs suffer from storage inefficiency. In this paper, a novel, 

efficient and modular technique for constructing BCAMs out of 

standard SRAM blocks in FPGAs is proposed. Hierarchical 

search is employed to achieve high storage efficiency. Previous 

hierarchical search approaches cannot be cascaded since they 

provide a single matching address; this incurs an exponential 

increase of RAM consumption as pattern width increases. Our 

approach, however, efficiently regenerates a match indicator for 

every single address by storing indirect indices for address 

match indicators. Hence, the proposed method can be cascaded 

and exponential growth is alleviated into linear. Our method 

exhibits high storage efficiency and is capable of implementing 

up to 9 times wider BCAMs compared to other approaches. A 

fully parameterized Verilog implementation is being released as 

an open source library. The library has been extensively tested 

using Altera’s Quartus and ModelSim. 
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memory; associative memory; associative array; catalog memory 

I.  INTRODUCTION 

Binary content addressable memories (BCAMs), also 
known as associative memories, are capable of searching the 
entire memory space for a specific value within a single clock 
cycle. While a standard RAM returns data located in a given 
memory address, a BCAM returns an address containing a 
specific given data, thus performing a memory-wide search 
for a specific value. BCAMs, being a hardware 
implementation of associative arrays, are massively parallel 
search engines accessing all memory content to compare with 
the searched pattern simultaneously. BCAMs are considered 
heavy power consumers due to the very wide memory 
bandwidth requirement and the concurrent compare. 

A BCAM is actually a high-performance implementation 
of a very basic and widely used associative search, hence it’s 
used almost in every science field requiring high-speed 
processing of associative search. Networking, associative 
caches and TLBs, pattern matching, data compression, DSP, 

bioinformatics, and other variety of scientific fields use CAMs 
as single-cycle associative search accelerators with millions 
of search lines. Yet, FPGAs lack an area-efficient soft CAM 
implementation. Current CAM approaches in vendor IP 
libraries achieve a maximum of 64K entries and utilize all the 
resources of a modern FPGA device. 

BCAMs are usually designed at the transistor level [1]. 
Older devices, including Altera’s FLEX, Mercury and APEX 
devices [9] employed minor architectural features to support 
small CAM blocks. However, FPGA vendors do not provide 
dedicated hard cores for CAMs in modern devices. These 
have been replaced with soft CAM cores that employ a brute-
force approach of transposed RAM described in this paper as 
the traditional or transposed-indicators RAM approach. 

While address space in modern databases can easily 
exceed millions of entries, traditional BCAM techniques in 
FPGAs cannot satisfy these requirements. Wide and shallow 
RAMs are needed to efficiently implement brute-force 
BCAMs. Shallow RAMs are required because each extra bit 
in the CAM pattern width doubles the required RAM depth, 
resulting in poor efficiency. Instead RAMs should be shallow; 
wider patterns can be matched by a cascade of AND’ing 
several matches in parallel. In addition, deeper CAMs can be 
built by increasing RAM width. However, BCAM 
requirements are getting deeper as FPGAs advance, yet 
individual FPGA RAM block width is growing slowly. For 
example, M4K blocks in Stratix II devices have minimal 
depth of 128 with maximal width of 36, M9K blocks in Stratix 
III and Stratix IV devices have minimal depth of 256 and 
maximal width of 36, M20K blocks in Stratix V devices have 
minimal depth of 512 and maximal width of 40. With the 
increasing depth of RAMs, and limited width growth, the 
brute-force approach is getting less efficient. 

Hierarchical search BCAMs [3] efficiently reduce search 
space by dividing the address range into sets. First, a set with 
a match is found, and then the exact match location within this 
set is found. However, Hierarchical search BCAMs can 
generate only one match location, since only one set is 
searched for the exact location. Therefore, Hierarchical search 
BCAMs cannot be cascaded, which incurs exponential growth 
of RAM consumption as pattern width increases. Adversely, 
Hierarchical search BCAMs support only narrow patterns, 
hence they are impractical for most BCAM applications. 

In this paper, a modular SRAM-based BCAM is proposed. 
Similar to hierarchical search BCAMs, our approach arranges 
the memory into two-dimensional data sets, hence the name 
two-dimensional BCAM. Our approach, however, is superior 



to the hierarchical search approach since it efficiently 
regenerates match indicators for every single address by 
storing indirect indices for address match indicators. Thus, 
unlike hierarchical search, the proposed method can support 
wide patterns by cascading; this transforms exponential RAM 
growth into linear. 

The proposed method is device-independent; hence, it can 
be applied to any FPGA device containing standard dual-
ported BRAMs. The proposed approach dramatically 
improves CAM area efficiency compared to conventional 
methods. In contrast to algorithmic approaches (e.g. hashes 
and tries) or other BCAM techniques that require several 
nondeterministic cycles to write or match [5][6][7], our 
approach is high-throughput and can perform a pattern read 
(match) every cycle and a pattern write every two cycles. 

Major contributions of this paper are: 

 A novel highly efficient BCAM architecture. 
Compared to other BCAM approaches, the proposed 
technique provides up to 9 times wider BCAMs. To the 
authors’ best knowledge, research and patent literature 
do not have similar BCAM techniques. 

 A parameterized Verilog implementation of the our 
method, together with other approaches. A flow 
manager to simulate and synthesize various designs 
with various parameters in batch using Altera’s 
ModelSim and Quartus is also provided. The Verilog 
modules and the flow manager are available online [2]. 

 A pipelined, FPGA-optimized wide priority-encoder 
used in our BCAM architecture. 

 A CAM bypassing mechanism is also provided to 
write and match the same pattern in the same cycle. 

To verify correctness, the proposed BCAM architecture is 
fully implemented in Verilog, simulated using Altera’s 
ModelSim, and compiled using Quartus II [8]. A large variety 
of BCAM architectures and parameters, e.g. BCAM depth and 
pattern width are simulated in batch, each with over 1 million 
random BCAM write and match cycles. Stratix V, Altera’s 
high-end FPGA, is used to implement and compare the 
proposed architecture with previous approaches. 

Notation and abbreviations used for the rest of the paper 
are listed in Table I. The rest of this paper is organized as 
follows. In Section II, conventional BCAM techniques in 
embedded systems are reviewed. Our proposed indirectly 
indexed two-dimensional (II2D) BCAM approach is 
described in detail in Section III. Discussion of the suggested 
method and comparison to previous techniques are provided 
in Section IV. The experimental framework, simulation and 
synthesis results, are discussed in Section V. Future 
improvements and conclusions are drawn in Section VI. 

 

II. BACKGROUND ON FPGA-BASED CAMS 

This section provides a review of current BCAM 
architectures in FPGAs. Using registers to create BCAMs is 
described in subsection A. The traditional brute-force BRAM-
based approach is described in subsection B. BCAM 
cascading is described in section C. Hierarchical search 
BCAMs are explained in section D. A review of FPGA 
vendors’ supports of BCAMs is placed in subsection E. 

A. Register-based BCAMs 

The flexibility of reading and writing flip-flops makes it 
possible to concurrently read and compare all the patterns as 
depicted in Fig. 1. Similar to a register-based RAM, an 
address decoder is used to generate one-hot decoded address 
lines, enabling a single line for writing. Each registered 
pattern is compared with the matched pattern (MPatt) 
simultaneously; the comparison results drive the match line, 
also called match indicators (MIndc) followed by a priority-
encoder to detect the first matching address (MAddr). The 
high demand for limited resources such as registers, 
comparators, address decoder and priority encoder 
(proportional to BCAM depth) make this approach infeasible 
for deep BCAMs; using Altera’s high-end Stratix V device, 
only one byte-wide, 32K-depth BCAM can be generated. 

 

B. Brute-force Approach via Transposed-Indicators RAM 

The brute-force approach creates BCAMs out of standard 
BRAMs. These BRAMs are addressed with the match pattern, 
thus allowing a single cycle pattern match. This approach is 
utilized by FPGA vendor IP libraries or application notes. As 
depicted in Fig. 2, a BRAM is addressed by the match pattern 
while each bit of the RAM data indicates the existence of the 
pattern of each BCAM address location. A RAM with 𝑅𝐷 
lines in depth and 𝐷𝑊 bits data width allows a BCAM with 
CD = DW lines depth and 𝑃𝑊 = ⌊log2 𝑅𝐷⌋ bits pattern width. In 
this paper, this structure is called Transposed-Indicators-RAM 
(TIRAM) and is described as a matrix of indicators 

 𝑇𝐼𝑅𝐴𝑀 = [
𝐼0,0 𝐼0,1 …

𝐼1,0 𝐼1,1 …

⋮ ⋮ ⋱

]| ∀
𝑎 ∈ 𝐴
𝑝 ∈ 𝑃

: 𝐼𝑝,𝑎 = (𝑅𝐴𝑀[𝑎] 𝐸𝑄 𝑝) 

Where A is the address space set and P is the pattern set in 
the corresponding RAM structure. 

 

TABLE I.  LIST OF NOTATIONS AND ABBREVATIONS 

𝑅𝐷, 𝐶𝐷 RAM, CAM depth  𝐼𝑝,𝑎 Single match indicator 

𝐷𝑊, 𝑃𝑊, 𝑆𝑊 Data, pattern, set width  𝐼𝑝,𝑠
𝑆𝑊  Set match indicator 

𝑃𝑊,𝑜𝑝𝑡 Optimal cascaded pattern width  WPatt, WAddr Write pattern, address 

𝑛𝐶  Number of cascades  MPatt, MAddr Match pattern, address 

𝐴, 𝑆, 𝑃 Address, set, pattern sets   MIndc Match indicators 

𝑅𝑊,𝑚𝑎𝑥 Widest RAM configuration  RmPatt Removed pattern 

𝑅𝐷,𝑚𝑖𝑛 Shallowest RAM configuration  MultiPatt Multiple patterns 

 

 

 

Figure 1.  Register-based BCAM 
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Figure 2.  BCAM as Transposed-RAM 
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Writing to the TIRAM structure requires writing to a 
single bit in the TIRAM to set or clear a pattern indicator. As 
described in Fig. 3 (top), this can be achieved by employing 
the BRAM mixed-width capability in simple dual-ported 
mode supported by most FPGA vendors. The writing port 
width is set to a single bit, while the reading port is set to the 
maximum available width. The byte-enable functionality can 
also be utilized to write part of the data line as described in 
Fig. 3 (middle); however, usually byte-enables do not control 
fine-grained parts of the data, which make it impractical for 
TIRAM implementation. Both mixed-width and byte-enable 
methods can be combined as shown in Fig. 3 (bottom). 

 
The complete system of the brute-force TIRAM approach 

is described in Fig. 4. Reading from the TIRAM is performed 
by providing the match pattern (MPatt) as address to read the 
match indicators (MIndc) for the entire BCAM address space 
for this specific match pattern. A priority encoder detects the 
first match address (MAddr) from the match indicators. 
However, writing (also called rewriting or updating) to the 
TIRAM structure requires more computation since it requires 
setting the new indicator and clearing the old indicator. As 
shown in  Fig. 4, an ErRAM (Erase RAM) is used in parallel 
to the indicators RAM (TIRAM) in order to track the BCAM 
content and provide for a given address what pattern is already 
stored and should be removed. This is useful for BCAM 
writing operation where the old indicator should be cleared; 
ErRAM will provide the old pattern in the current written 
address. BCAM writing will consume two cycles as follows. 
1. Set cycle: 

1.1. Set (write ‘1’) a new pattern indicator to TIRAM 
1.2. Read old data (pattern) from ErRAM 

2. Clear cycle: 
2.1. Clear (write ’0’) the old indicator from the TIRAM 

(location is already provided by step 1.2) 
2.2. Write new data (pattern) to ErRAM 

To implement a BCAM with 𝐶𝐷  lines and 𝑃𝑊  pattern 
width, namely a 𝐶𝐷 × 𝑃𝑊  BCAM, The brute-force TIRAM 
approach requires 𝐶𝐷 ∙ 𝑃𝑊  SRAM cells for the ErRAM and 
2𝑃𝑊 ∙ 𝐶𝐷 SRAM cells for the TIRAM, a total of 

 𝐶𝐷 ∙ 𝑃𝑊 + 2𝑃𝑊 ∙ 𝐶𝐷 

Assuming that ErRAM is fully utilized, and TIRAM uses 
the widest BRAM configuration, BRAM count is estimated as 

 ⌈
𝐶𝐷∙𝑃𝑊

𝑅𝐷,𝑚𝑖𝑛⋅𝑅𝑊,𝑚𝑎𝑥
⌉ + ⌈

2𝑃𝑊

𝑅𝐷,𝑚𝑖𝑛
⌉ ⋅ ⌈

𝐶𝐷

𝑅𝑊,𝑚𝑎𝑥
⌉ 

Where 𝑅𝑊,𝑚𝑎𝑥 and 𝑅𝐷,𝑚𝑖𝑛 are BCAM parameters indicating 

the maximum width, and minimum depth, respectively. 

 

C. Cascading and Scaling of the Brute-force Approach 

As shown in (2), SRAM cell usage for the brute-force 
TIRAM approach is exponential to pattern width 𝑃𝑊 . A wide 
pattern width will make the SRAM requirements infeasible. 
BCAM cascading alleviates the SRAM usage from 
exponential into linear. As depicted in Fig. 5, the BCAM 
pattern (both matched and written pattern) is divided into 
smaller pattern segments; each segment is associated with a 
separate BCAM. The write operation writes every pattern 
segment into its corresponding BCAM, while match operation 
matches each pattern segment with its corresponding CAM. A 
match for the entire pattern is found if a match is found for all 
segments individually (hence the bitwise AND). The optimal 
pattern segment width is determined by the minimal depth 
𝑅𝐷,𝑚𝑖𝑛  of the BRAM, namely the shallowest and widest 

configuration, since choosing a wider pattern requires 
exponential growth. The optimal pattern width is therefore 
𝑃𝑊,𝑜𝑝𝑡 = ⌊log2(𝑅𝐷,𝑚𝑖𝑛)⌋  and the total number of BCAM 

cascades is 𝑛𝐶 = ⌈𝑃𝑊 𝑃𝑊,𝑜𝑝𝑡⁄ ⌉. 

One stage of TIRAM will consume ⌈𝐶𝐷 𝑅𝑊,𝑚𝑎𝑥⁄ ⌉ BRAMs 

and the total BCAM consumption of the TIRAM is therefore 

 𝑛𝐶 ∙ (⌈
𝐶𝐷

𝑅𝑊,𝑚𝑎𝑥
⌉ + ⌈

𝐶𝐷⋅𝑃𝑊,𝑜𝑝𝑡

𝑅𝐷,𝑚𝑖𝑛⋅𝑅𝑊,𝑚𝑎𝑥
⌉) 

The linear relation to 𝑃𝑊 and 𝐶𝐷 in (4) is clear, in contrary 
to the uncascaded version in (3) where the relation to 𝑃𝑊 is 
exponential. 

 

 

 

 
Figure 3.  Transposed-Indicators-RAM (TIRAM) implementation using 

(top) Mixed-width (middle) Byte-enable (bottom) Combined methods 
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Figure 4.  (left) Brute-force TIRAM approach (right) 8×2 example  
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Figure 5.  BCAM cascading 
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D. Deep BCAMs via Hierarchical Search 

The previously shown brute-force TIRAM approach 
requires a match indicator for each single address location. 
This structure is inefficient for deep BCAMs since it requires 
a RAM with a width equals to the BCAM depth to implement 
the TIRAM structure. On the other hand, BCAMs with 
hierarchical search [3] alleviate this requirement. Instead of 
storing match indicators for each address location separately, 
an indicator is generated for a set of 𝑆𝑊 addresses, indicating 
whether the pattern exists at any of these addresses in the set. 
For a BCAM with 𝐶𝐷  entries in depth, and 𝑆𝑊  set width, 
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ sets exist, and can be enumerated as 

 𝑆 = {0,1, … , ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ − 1} 

A set indicator 𝐼𝑝,𝑠
𝑆𝑊 indicates if any of the addresses in set 

𝑠 , hence addresses 𝑆𝑊 ∙ 𝑠  upto 𝑆𝑊 ∙ (𝑠 + 1) − 1  contains the 
pattern 𝑝. The set transposed indicators RAM (STIRAM) is 
therefore, 

𝑆𝑇𝐼𝑅𝐴𝑀 = [

𝐼0,0
𝑆𝑊 𝐼0,1

𝑆𝑊 …

𝐼1,0
𝑆𝑊 𝐼1,1

𝑆𝑊 …

⋮ ⋮ ⋱

]| ∀
𝑠 ∈ 𝑆
𝑝 ∈ 𝑃

 𝐼𝑝,𝑠
𝑆𝑊 = ⋁ 𝐼𝑝,𝑎

𝑎=𝑆𝑊∙(𝑠+1)−1
𝑎=𝑆𝑊∙𝑠 

STIRAM identifies which sets hold the match pattern, not 
the exact location. To detect the exact pattern location, an 
auxiliary RAM stores the patterns associated with each set, 
each set’s patterns packed in one RAM line, hence it called 
the sets RAM (SetRAM). Fig. 6 (left) provides an example of 
these two structures. 

 
Fig. 6 (right) illustrates the matching mechanism of the 

hierarchical search system; the writing mechanism is omitted 
for simplicity. The match operation will search the STIRAM 
for a set with a matching pattern. A priority-encoder generates 
the address of the first set with matching pattern; this address 
is used to address the SetRAM and fetch the entire set patterns. 
Finally, the match pattern is compared concurrently with all 
the patterns is set to find the exact location. 

Similar to the brute-force TIRAM approach, writing to the 
STIRAM BCAM requires two cycles, one cycle for new 
pattern insertion, and a second cycle for old pattern deletion. 

To implement a BCAM with 𝐶𝐷  entries and 𝑃𝑊  pattern 
width, namely a 𝐶𝐷 × 𝑃𝑊  BCAM, this approach requires 
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ × 𝑃𝑊 ∙ 𝑆𝑊  SRAM cells for the SetRAM and 2𝑃𝑊 ×
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ SRAM cells for the STIRAM, a total of 

 ⌈
𝐶𝐷

𝑆𝑊
⌉ ∙ 𝑃𝑊 ∙ 𝑆𝑊 + 2𝑃𝑊 ∙ ⌈

𝐶𝐷

𝑆𝑊
⌉ 

Assuming a wide RAM requirement, an upper bound 
estimate for the BRAMs needed to construct the STIRAM is 

 ⌈
2𝑃𝑊

𝑅𝐷,𝑚𝑖𝑛
⌉ ∙ ⌈

⌈𝐶𝐷 𝑆𝑊⁄ ⌉

𝑅𝑊,𝑚𝑎𝑥
⌉ 

The SetRAM is a true dual-port RAM. 𝑅𝑊,𝑏𝑦𝑡𝑒 describes 

the width of data controlled by a single byte-enable. A single 
BCAM accommodates 𝑅𝑊,𝑚𝑎𝑥 𝑅𝑊,𝑏𝑦𝑡𝑒⁄  individual byte-

enable controlled data, and each pattern requires ⌈𝑃𝑊 𝑅𝑊,𝑏𝑦𝑡𝑒⁄ ⌉ 

of them. Finally, 𝑆𝑊  lines of this structure are required. 
Therefore, the number of BCAMs needed to construct the 
SetRAM is 


𝑅𝑊,𝑚𝑎𝑥

𝑅𝑊,𝑏𝑦𝑡𝑒
∙ ⌈

𝑃𝑊

𝑅𝑊,𝑏𝑦𝑡𝑒
⌉ ∙ ⌈

𝑆𝑊

𝑅𝐷,𝑚𝑖𝑛
⌉ 

Since a set of address match indicators can be lumped into 
a single set indicator, the hierarchical search approach can 
support very deep BCAMs. However, cascading is not 
possible since it requires the entire match indicators for every 
address, while only a single priority-encoded match address is 
produced. Therefore, the memory consumption of this method 
is exponential to the pattern with. Only very narrow patterns 
are be supported, which makes the hierarchical search 
approach impractical for most applications. 

E. Vendor Support of BCAMs 

Modern FPGAs provide plenty of embedded hard-coded 
blocks, such as block RAM, external memory controllers, 
processors, DSP blocks/multipliers, and fast I/O transceivers. 
However, hard CAM blocks do not exist in modern FPGAs – 
presumably due to their high area and power consumption, 
and their highly specialized nature. While most FPGA 
vendors provide simple register-based or brute-force SRAM-
based CAMs, some old devices provide partial support for 
CAM construction. Altera’s legacy FLEX, Mercury and 
APEX [9] device family integrates intrinsic BCAM support 
into their embedded system blocks (ESBs). The ESB can be 
configured into several modes; a 2Kbits RAM/ROM mode 
with configurable width and depth, 32 product terms with 32 
literal inputs, or a 32×32 BCAM. These BCAM blocks can be 
used in parallel to increase the address space, and can be 
cascaded as described in the previous subsection to increase 
pattern width. Since ESBs are limited to a few hundred blocks 
in these devices, deep CAMs are infeasible. Furthermore, 
BCAMs can only be implemented as soft IP in modern Altera 
devices. 

On the other hand, Xilinx devices do not provide native 
support for BCAMs. However, partial configuration 
capabilities in Xilinx Virtex devices can be utilized to create 
a CAM as described in Xilinx application notes [12][13] and 
this approach is very slow at writing new patterns. Other 
Xilinx application notes suggest utilizing BCAMs with the 
brute-force approach to create BCAMs [13][14]. 

 

  
Figure 6.  (left) An example of STIRAM and SetRAM structures for a 8×2; 

Sw=2 BCAMs (right) Hierarchical search matching mechanism 
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Lattice ispXPLD devices [15] have an integrated support 
for CAMs via their Multi-Function Blocks (MFBs) which can 
be configured into 128×48 Ternary CAM block (with don’t 
care values). Alternatively, Actel application notes [16] 
recommend using multi-cycle CAMs by searching BRAM in 
parallel; for a single-cycle CAM, using registers is suggested. 

III. INDIRECTLY INDEXED TWO-DIMENSIONAL BCAMS 

In this section, the proposed Indirectly Indexed Two-
Dimensional (II2D) BCAM method is described in detail. The 
motivation and key idea for this work are explained in 
subsection A. The design method is described in subsection 
B. The construction of wide priority encoders in FPGAs, 
which are crucial for BCAMs in general, is described in 
subsection C. BCAM bypassing techniques are described in 
subsection D. Subsection E describes a device-specific 
instance for Altera’s Stratix device family.  

A. Motivation and Key Idea 

As shown in subsection II.D, Hierarchical search BCAMs 
cannot be cascaded, hence suffer from exponential growth of 
the required memory size as function of pattern width. This 
limitation is crucial since the vast majority of applications 
require wide patterns. To support BCAM cascading, all match 
indicators for every single BCAM address shall be generated, 
as in the brute-force approach (subsection II.C). However, 
storing all match indicators requires wide RAM and incurs 
high memory overhead. 

Our proposed Indirectly Indexed Two-Dimensional (II2D) 
BCAM is based on hierarchical search BCAMs and utilize the 
sparsity of the set indicators RAM to store only the required 
match indicators, and is able to regenerate all match indicators 
for every BCAM address, hence can be cascaded. The 
following theorem is the basic keystone of our technique. 
Lemma 1 The number of binary ‘1’ (matches) in each column 
(address) of the TIRAM matrix from (1), is exactly 1, namely, 

 ∀𝑎 ∈ 𝐴: ∑ 𝐼𝑝,𝑎 = 1𝑝∈𝑃  

Proof Similar to RAM, each address of a BCAM contains one 
and only one valid pattern. A pattern 𝑝` located at address 𝑎` 
means 𝐼𝑝`,𝑎` = 1 and 𝐼𝑝,𝑎` = 0  for every 𝑝 ≠ 𝑝` . Hence, the 

corresponding column of address 𝑎` in the TIRAM matrix has 
a binary ‘1’ only in 𝐼𝑝`,𝑎` and zeros for all the other patterns. ∎ 

Theorem 1 The number of binary ‘1’ (matches) in each 
column (set) of the STIRAM matrix from (6) is limited to the 
set width 𝑆𝑊, namely, 

 ∀𝑠 ∈ 𝑆: ∑ 𝐼𝑝,𝑠
𝑆𝑊

𝑝∈𝑃 ≤ 𝑆𝑊 

Proof A match indicator of a set is defined in (6) and indicates 
if any of the addresses in the set has a match. Given a set 𝑠` of 
𝑆𝑊  addresses, (6) provides 𝐼𝑝,𝑠`

𝑆𝑊 = ⋁ 𝐼𝑝,𝑎
𝑎=𝑆𝑊∙(𝑠`+1)−1
𝑎=𝑆𝑊∙𝑠` . Lemma 1 

insures that each address 𝑎 ∈ {𝑆𝑊 ∙ 𝑠`, … , 𝑆𝑊 ∙ (𝑠` + 1) − 1} has one 
and only one 𝑝  such that 𝐼𝑝,𝑎 = 1 . Since the set 𝑠`  has 𝑆𝑊 

addresses, exactly 𝑆𝑊  different 𝐼𝑝,𝑎 = 1 exist. Hence, in the 

entire set, maximum 𝑆𝑊 patterns have a match (less than 𝑆𝑊 
in case two addresses or more has the same pattern). ∎ 

The significance of theorem 1 lies in the measurement it 
provides for the STIRAM matrix sparsity. Namely, it provides 
an upper bound of the number of binary ‘1’ (matches) for a set 
(a column in STIRAM). Instead of storing match indicators 
for every address and pattern pairs as in brute-force approach 
(Fig. 7 (left)), or set indicators as in hierarchical search 
approach (Fig. 7 (middle)), we store all address indicators 
only for sets with a match, as they are limited to 𝑆𝑊. To reduce 
memory consumption, address match indicators are saved in 
another auxiliary structure, while the original STIRAM will 
hold indices to the auxiliary structure (Fig 7. (right)). 

 

B. II2D-BCAM: Design and Functionality 

As depicted in Fig. 8, a single-stage of the proposed II2D-
BCAM consist of three parts. First, the match RAM where the 
set indices and match indicators are stored; this is the most 
memory consuming structure. Second, the status RAM where 
the system status is stored and feeds the control logic with 
system status. Finally, the control and steering logic, which 
generates control signals to control the entire structure (based 
on system status), feeds the match RAM with indicators and 
indices, and updates the status RAM. 

1) Match RAM: 
As described in the previous subsection, instead of storing 

set match indicators in the STIRAM, we store only indirect 
indices for other auxiliary RAM, which holds the match 
indictors for all the addresses in the set, hence it called the 
indicators RAM (IndRAM). Theorem 1 shows that maximum 
𝑆𝑊  different patterns can have a match in a set; hence, the 
depth of IndRAM is 𝑆𝑊 at most. Each set has 𝑆𝑊 addresses, 
therefore IndRAM should have 𝑆𝑊 address indicators for each 
set and its width should also be 𝑆𝑊. The address space consists 
of ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ sets; hence, ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ IndRAM 𝑆𝑊 × 𝑆𝑊 blocks are 
required. 

The STIRAM hold indices for all pattern and set pairs. To 
represent all patterns the required depth is 2𝑃𝑊. For each of the 
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ sets, ⌈log2(𝑆𝑊)⌉ bits are required for each index. In 
total, the STIRAM width is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ ∙ ⌈log2(𝑆𝑊)⌉ bits. 

2) Status RAM: 
The status RAM is updated at each write to reflect the 

system status and consists of three RAM structures as follows. 

a) Sets RAM (SetRAM): 

Similar to the hierarchical search method, this RAM holds 
the entire CAM patterns, each set’s patterns packed in one 
row, hence, can be fetched in a single cycle. Its size is 
therefore ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ × (𝑃𝑊 ∙ 𝑆𝑊). 

b) Indices RAM (IdxRAM): 

The Indices RAM stores the index of each pattern in the 
BCAM, arranged similar to the SetRAM, namely each set’s 
indices in one row. Its size is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ × (⌈log2(𝑆𝑊)⌉ ∙ 𝑆𝑊). 

 
Figure 7: Indicators arrangment for three different approaches 
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c) Vacancy RAM (VacRAM): 

The Vacancy RAM indicates for each row of the IndRAM 
whether it is vacant or holds valid indicators. The IndRAM 
consists of  ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ RAM blocks (for each set), each with 𝑆𝑊 
rows. The Vacancy RAM hold the status of each IndRAM 
block in one row, hence its depth is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ and marks the 
validity of all the 𝑆𝑊 IndRAM rows, hence its width is 𝑆𝑊. 

3) Control and steering logic: 
Based on current system status and the required write 

pattern and write address, it generates write indicators to 
IndRAM and indices to IndRAM and STIRAM. Furthermore, 
it updates the IdxRAM and VacRAM status. 

 
 

 

C. Wide Priority Encoders in FPGAs 

A priority-encoder, also called leading zero detector 
(LZD) or leading zero counter (LZC), receives an n-bit input 
vector and detects the index of the first binary ‘1’ in the input 
vector. A valid signal indicates if any binary ‘1’ was detected 
in the input vector, hence the index is valid. 

Our proposed II2D-BCAM consists of a ⌈𝐶𝐷 𝑆𝑊⁄ ⌉  wide 
priority-encoder, for deep BCAMs the priority-encoder delay 
considerably affects the overall performance; hence, a fast 
priority-encoder design is essential. 

As depicted in Fig. 9, the suggested priority-encoder is 
recursively constructed. The input vector is split into 𝑘 equal 
fragments with 𝑛/𝑘  bits. A priority encoder PEn/k with a 
narrower width of 𝑛/𝑘 is applied for each fragment. The valid 
bit of each of the 𝑘 PEn/k‘s goes to a 𝑘 bit PEk to detect the first 
valid fragment. The location of this fragment is the higher part 
of the overall index, and steers the exact location within the 
fragment itself to produce the lower part of the overall index. 

The depth of the proposed structure is ⌈log𝑘 𝑛⌉, while the 
hardware area complexity is 𝑂(𝑛). If Altera’s Stratix V or 
equivalent device is used, 𝑘 = 4 is recommended to achieve 
higher performance and area compression, since the mux can 
be implemented using 6-LUT, hence an entire ALM. 

 

D. BCAM Bypassing 

Writing a new pattern to a register-based BCAM is 
immediate on the triggering clock edge and it is ready to be 
matched immediately. In contrast, BRAM-based BCAM 
methods, namely TIRAM and STIRAM, require two cycles 
for writing. Hence, matching a pattern that is being written in 
the same cycle will match old indicators, introducing a read-
after-write hazard. However, some applications, e.g. caches 
and TLBs, require immediate matching of the recently written 
patterns, hence, pattern bypassing is required. 

Fig. 10 shows the bypassing circuitry for both TIRAM and 
STIRAM. In both, the writing address (WAddr) is one-hot 
encoded; the insertion mask (bitwise OR) forces ‘1’ into the 
matched indicators (MIndc) in location MAddr. Similarly, the 
removal mask (bitwise AND) forces ‘0’ into the matched 
indicators (MIndc) in location MAddr. In the TIRAM 
approach, if the matched pattern (MPatt) is equivalent to the 
written pattern (WPatt), the insertion mask output is passed to 
the matching indicators output (MIndc); otherwise the 
removal mask output is passed. In the STIRAM approach, 
there is another case. The removal mask output is allowed to 
be passed only if MPatt equals to the removed pattern 
(RmPattern), and there are no other occurrences of the 
removed pattern in the same set (negated MultiPatt). 

 

E. Feasibility on Altera's Stratix Devices 

An area efficient implementation of the proposed II2D-
BCAMs requires heterogeneous  BRAMs on FPGA. The 
relatively small BRAMs will be used to construct IndRAM 
and store match indicators. A perfect candidate is the LUT 

TABLE II.  BRAM USAGE OF A SINGLE
1
 STAGE II2D-BCAM 

Structure Blocks # Depth Width 

STIRAM 1 2𝑃𝑊  ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ ∙ ⌈log2(𝑆𝑊)⌉ 

IndRAM ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ 𝑆𝑊 𝑆𝑊 

SetRAM 1 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ 𝑃𝑊 ∙ 𝑆𝑊 

IdxRAM 1 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ ⌈log2(𝑆𝑊)⌉ ∙ 𝑆𝑊 

VacRAM 1 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ 𝑆𝑊 

1.  For cascaded II2D-BCAM, cascading method from II.C. is employed; 

𝑃𝑊 = 𝑃𝑊,𝑜𝑝𝑡 = ⌊log2(𝑅𝐷,𝑚𝑖𝑛)⌋ is used for each stage, while 𝑛𝐶 = ⌈𝑃𝑊,𝑡𝑜𝑡𝑎𝑙 𝑃𝑊,𝑜𝑝𝑡⁄ ⌉ stages are required. 

 
------------------------------------------------------------------------------------------------------------------------- 

 

Figure 8: II2D-BCAM single-stage (top) high-level architicture (bottom) 
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Figure 9. Priority-encoder (left) symbol (right) recursive definition 
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Figure 10.  Bypassing logic (top) brute-force approach (bottom) proposed 
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configuration RAM, known as LUT RAM, and is supported 
by both Altera and Xilinx devices. On the other hand, the 
relatively large BRAMs will be used to construct other 
structures; M20K BRAMs will be used for this purpose. 

Altera’s Stratix V memory architecture provides a 640-bit 
LUT RAM memory called MLAB (Memory Logic Array 
Block) as well as 20Kb BRAMs called M20K. 

Both MLABs and M20Ks are used in their shallowest/ 
widest configuration modes. Hence, the MLABs are 32×20, 
and the M20Ks are 512×40. Since the depth of MLABs is 32, 
and they are used to implement the IndRAM, we set 𝑆𝑊 = 32. 
With an index width of ⌈log2(𝑆𝑊)⌉ = 5, a single M20K line 
can store up to 8 indices. M20K’s mixed-width port capability 
is used to write a single 5-bit index. 

IV. COMPARISON AND DISCUSSION 

The BCAM storage efficiency 𝜇𝑠 is first introduced in this 
paper, and is defined as the SRAM cell utilization for a 
specific BCAM implementation. In other words, 𝜇𝑠  is the 
ratio between the total BCAM bits and the total SRAM cells 
used to implement this BCAM. 

Table III shows storage efficiency estimation for different 
BCAM architectures and is derived from (2), (4), (7) and 
Table II. The storage efficacy of the uncascaded brute-force 
implementation (UBF) is inversely proportional to the 
exponent of 𝑃𝑊, hence, decays rapidly with 𝑃𝑊 increase. The 
cascaded brute-force (CBF) is not related to 𝑃𝑊, hence the 
efficiency is not affected when 𝑃𝑊 increases. However, the 
efficiency is affected by an intrinsic BRAM characteristic, 
the minimal depth 𝑅𝐷,𝑚𝑖𝑛  (associated with the maximum 

width). The efficiency is inversely proportional to 𝑅𝐷,𝑚𝑖𝑛 , 

hence, shallow and wide BRAMs with smaller 𝑅𝐷,𝑚𝑖𝑛  (and 

larger 𝑅𝑊,𝑚𝑎𝑥) will exhibit higher storage efficiency. Similar 

to the uncascaded brute-force (UBF), the efficiency of the 
hierarchical search approach (HS) is inversely proportional to 
the exponent of 𝑃𝑊 . However, the exponential relation is 
mitigated by the set width 𝑆𝑊 , an external and user-driven 
parameter. On the other hand, the efficiency of our II2D-
BCAM approach is not related the pattern width 𝑃𝑊, but is 
augmented by 𝑆𝑊 . To generalize, HS-BCAM provides the 
highest efficiency up to 

 𝑃𝑊 = −
𝑊−1(−

ln 2

𝑎
)

ln 2
, 𝑎 =

𝑆𝑊⋅𝑅𝐷,𝑚𝑖𝑛

log2(𝑅𝐷,𝑚𝑖𝑛)
 

Where 𝑊−1 is the lower branch of the Lambert Product 
Logarithm function (also called Omega function). 

For the HS-BCAM approach, the set width 𝑆𝑊  has a 
limitation due to the minimal width of the SetRAM it is stored 
in. The SetRAM depth is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ and is limited by 𝑅𝐷,𝑚𝑖𝑛. 
Hence, to achieve maximum efficiency, 𝑆𝑊 is bounded by 

 𝑆𝑊 ≤
𝐶𝐷

𝑅𝐷,𝑚𝑖𝑛
 

On the other hand, the set width 𝑆𝑊 for our II2D-BCAM 
is bounded by internal RAM parameters. Specifically, the 
depth of the LUT RAM and the BRAM allowable write port 

width in mixed-width mode. As described in subsection III.E, 
Altera’s Stratix V MLAB depth (for the widest configuration) 
is 32, and log2(32) = 5  is allowed as write data width for 
M20K mixed-width configuration, hence, 𝑆𝑊 = 32  is the 
suitable set width. 

 

V. EXPERIMENTAL RESULTS 

To verify and simulate the suggested II2D approach and 
compare to standard and previous techniques, fully 
parameterized Verilog modules have been developed. 
Register-based, cascaded and uncascaded brute-force 
TIRAM, Hierarchical search BCAM, and the proposed II2D- 
BCAM methods have been implemented. A run-in-batch flow 
manager has also been developed to simulate and synthesize 
these designs with various parameters in batch using Altera’s 
ModelSim and Quartus II. The Verilog modules and the flow 
manager are available online [2]. 

To verify correctness, the proposed architecture is 
simulated using Altera’s ModelSim. A large variety of 
different BCAM architectures and parameters, e.g. BCAM 
depth and pattern width, are swept and simulated in batch, 
each with over a million random cycles. All different BCAM 
design modules were implemented using Altera’s Quartus II 
on Altera’s Stratix V 5SGXMABN1F45C2 device. This is a 
speed grade 2 device with 360k ALMs and 2640 M20K 
blocks. Half of the ALM’s can be used to construct MLABs, 
while a single MLAB consists of 10 ALMs. 

Fig. 11 plots feasible BCAM depth and pattern width 
sweeps. Within the device limitation, the proposed II2D-
BCAM approach is able to reach 153-bits pattern width, while 
other approaches cannot exceed 45-bits for 16K entries. The 
number of Altera’s M20K blocks used to implement each 
BCAM configuration is plotted in Fig. 11 (bottom). The BF-
BCAM and our II2D-BCAM exhibit a linear growth of M20K 
consumption as pattern width increases since both methods 
are cascaded. However, the II2D-BCAM growth rate is lower 
since addresses are grouped as sets. On the other hand, HS-
BCAM suffers from exponential growth, hence it cannot 
exceed a very narrow 19-bits pattern width. 

As shown in Fig. 11 (middle), the proposed II2D-BCAM 
method and the BF-BCAM also exhibit linear ALM count 
growth as pattern width increases. The priority-encoder in the 
HS-BCAM approach is split in two, hence the ALM count is 
lower. Furthermore, our II2D-BCAM approach uses ALMs as 
MLABs, hence it has higher ALM consumption. The register-
based BCAM consumes the most ALMs due to massive 
register usage. 

Figure 11 (top) plots the Fmax of all BCAM architectures. 
The HS-BCAM exhibit the highest Fmax for very narrow 
patterns, where it is feasible. However, Fmax drops 
dramatically as the pattern width increases due to massive 

TABLE III.  STORAGE EFFICIENCY (INVERSED) 

 Uncascaded Cascaded 

Brute-force 𝜇𝑠(𝑈𝐵𝐹)−1 ≈ 1 +
2𝑃𝑊

𝑃𝑊
 𝜇𝑠(𝐶𝐵𝐹)−1 ≈ 1 +

𝑅𝐷,𝑚𝑖𝑛

log2(𝑅𝐷,𝑚𝑖𝑛)
 

Hierarchical 

Search 

𝜇𝑠(𝐻𝑆)−1 ≈ 1 +
2𝑃𝑊

𝑆𝑊 ⋅ 𝑃𝑊
 

𝜇𝑠(𝐼𝐼2𝐷)−1 ≈ 1 +

1 +
𝑅𝐷,𝑚𝑖𝑛 ⋅ log2(𝑆𝑊)

𝑆𝑊
2

log2(𝑅𝐷,𝑚𝑖𝑛)
 

 



increase of M20K usage. On the other hand, II2D-BCAM 
performs better than BF-CAM and register-based BCAM for 
shallow memory. As can be seen, Fmax decreases mildly as 
pattern goes wider due to cascading. 

Similar to BF-BCAM and HS-BCAM, our approach is 
capable of matching a pattern every cycle and writing a pattern 
every two.  Pipelining is employed to increase Fmax and this 
adversely increases latency. The longest combinational path 
goes through the output priority-encoder, and is pipelined 
every stage. For the device-specific priority-encoder from 
subsection III.C, ⌈log4⌈𝐶𝐷 𝑆𝑊⁄ ⌉⌉ pipe stages are required. HS-
BCAM benefits from higher 𝑆𝑊, hence it can exhibit lower 
latency. On the other hand, sets are not used in BF-BCAM, 
hence its match latency is ⌈log4 𝐶𝐷⌉. 

  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, a novel BCAM architecture for FPGAs is 
proposed. The approach is fully BRAM-based and employs 
hierarchical search to reduce BRAM consumption. While 
traditional brute-force approaches have a pattern match 
indicator for every single address, the proposed approach 
groups addresses into sets and maintains a single pattern 
match indicator for every set. Current hierarchical search 
BCAMs cannot be cascaded since they provide a single 
matching address; this incurs an exponential increase of RAM 
consumption as pattern width increases. On the other hand, 
our approach efficiently regenerates a match indicator for 
every single address by storing indirect indices for address 
match indicators. Hence, the proposed method can be 
cascaded and the exponential growth is alleviated into linear. 
Our technique supports up to 4 times wider patterns compared 
to brute-force BCAM and up to 9 times wider patterns 
compared to hierarchical search BCAM. 

Furthermore, we provide a high-performance area-wise 
recursive priority-encoder as an essential part of our BCAM. 
To match a pattern that is being written at the same cycle, a 
bypassing mechanism for our BCAM and HS-BCAMs in 
general is also provided. In addition, we perform a detailed 
comparison for different FPGA-based BCAM architectures.   

A fully parameterized Verilog implementation of the 
suggested methods is provided as open source hardware [2]. 
As future work, the suggested BCAMs can be tested with 
other FPGA vendors’ tools and devices. Furthermore, these 
methods can be tested for ASIC implementation using dual-
ported RAMs as building blocks, and compared against 
customary designed BCAMs. Excessive pipelining and time-
borrowing techniques can be used to improve Fmax. The goal 
would be to recover the frequency drop due to the comparators 
and priority-encoder. One possible approach uses shifted 
clocks to provide more reading and writing time [17]. 
However, adapting this method to BCAMs is not trivial due 
to internal timing paths across the BCAM. To fit some 
applications that require single-cycle writing, e.g. caches and 
TLBs, the proposed technique can be enhanced to support 
single cycle write by using multi-write RAM [18]. 
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Figure 11: Results for several BCAM depth and pattern width sweeps 
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