
Modular SRAM-based Binary Content-Addressable Memories

Ameer M.S. Abdelhadi and Guy G.F. Lemieux

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, B.C., V6T 1Z4, Canada

{ameer,lemieux}@ece.ubc.ca

Abstract—Binary Content Addressable Memories (BCAMs),

also known as associative memories, are hardware-based search

engines. BCAMs employ a massively parallel exhaustive search

of the entire memory space, and are capable of matching a

specific data within a single cycle. Networking, memory

management, pattern matching, data compression, DSP, and

other applications utilize CAMs as single-cycle associative

search accelerators. Due to the increasing amount of processed

information, modern BCAM applications demand a deep

searching space. However, traditional BCAM approaches in

FPGAs suffer from storage inefficiency. In this paper, a novel,

efficient and modular technique for constructing BCAMs out of

standard SRAM blocks in FPGAs is proposed. Hierarchical

search is employed to achieve high storage efficiency. Previous

hierarchical search approaches cannot be cascaded since they

provide a single matching address; this incurs an exponential

increase of RAM consumption as pattern width increases. Our

approach, however, efficiently regenerates a match indicator for

every single address by storing indirect indices for address

match indicators. Hence, the proposed method can be cascaded

and exponential growth is alleviated into linear. Our method

exhibits high storage efficiency and is capable of implementing

up to 9 times wider BCAMs compared to other approaches. A

fully parameterized Verilog implementation is being released as

an open source library. The library has been extensively tested

using Altera’s Quartus and ModelSim.

Keywords-content addressable memory; data addressable

memory; associative memory; associative array; catalog memory

I. INTRODUCTION

Binary content addressable memories (BCAMs), also
known as associative memories, are capable of searching the
entire memory space for a specific value within a single clock
cycle. While a standard RAM returns data located in a given
memory address, a BCAM returns an address containing a
specific given data, thus performing a memory-wide search
for a specific value. BCAMs, being a hardware
implementation of associative arrays, are massively parallel
search engines accessing all memory content to compare with
the searched pattern simultaneously. BCAMs are considered
heavy power consumers due to the very wide memory
bandwidth requirement and the concurrent compare.

A BCAM is actually a high-performance implementation
of a very basic and widely used associative search, hence it’s
used almost in every science field requiring high-speed
processing of associative search. Networking, associative
caches and TLBs, pattern matching, data compression, DSP,

bioinformatics, and other variety of scientific fields use CAMs
as single-cycle associative search accelerators with millions
of search lines. Yet, FPGAs lack an area-efficient soft CAM
implementation. Current CAM approaches in vendor IP
libraries achieve a maximum of 64K entries and utilize all the
resources of a modern FPGA device.

BCAMs are usually designed at the transistor level [1].
Older devices, including Altera’s FLEX, Mercury and APEX
devices [9] employed minor architectural features to support
small CAM blocks. However, FPGA vendors do not provide
dedicated hard cores for CAMs in modern devices. These
have been replaced with soft CAM cores that employ a brute-
force approach of transposed RAM described in this paper as
the traditional or transposed-indicators RAM approach.

While address space in modern databases can easily
exceed millions of entries, traditional BCAM techniques in
FPGAs cannot satisfy these requirements. Wide and shallow
RAMs are needed to efficiently implement brute-force
BCAMs. Shallow RAMs are required because each extra bit
in the CAM pattern width doubles the required RAM depth,
resulting in poor efficiency. Instead RAMs should be shallow;
wider patterns can be matched by a cascade of AND’ing
several matches in parallel. In addition, deeper CAMs can be
built by increasing RAM width. However, BCAM
requirements are getting deeper as FPGAs advance, yet
individual FPGA RAM block width is growing slowly. For
example, M4K blocks in Stratix II devices have minimal
depth of 128 with maximal width of 36, M9K blocks in Stratix
III and Stratix IV devices have minimal depth of 256 and
maximal width of 36, M20K blocks in Stratix V devices have
minimal depth of 512 and maximal width of 40. With the
increasing depth of RAMs, and limited width growth, the
brute-force approach is getting less efficient.

Hierarchical search BCAMs [3] efficiently reduce search
space by dividing the address range into sets. First, a set with
a match is found, and then the exact match location within this
set is found. However, Hierarchical search BCAMs can
generate only one match location, since only one set is
searched for the exact location. Therefore, Hierarchical search
BCAMs cannot be cascaded, which incurs exponential growth
of RAM consumption as pattern width increases. Adversely,
Hierarchical search BCAMs support only narrow patterns,
hence they are impractical for most BCAM applications.

In this paper, a modular SRAM-based BCAM is proposed.
Similar to hierarchical search BCAMs, our approach arranges
the memory into two-dimensional data sets, hence the name
two-dimensional BCAM. Our approach, however, is superior

to the hierarchical search approach since it efficiently
regenerates match indicators for every single address by
storing indirect indices for address match indicators. Thus,
unlike hierarchical search, the proposed method can support
wide patterns by cascading; this transforms exponential RAM
growth into linear.

The proposed method is device-independent; hence, it can
be applied to any FPGA device containing standard dual-
ported BRAMs. The proposed approach dramatically
improves CAM area efficiency compared to conventional
methods. In contrast to algorithmic approaches (e.g. hashes
and tries) or other BCAM techniques that require several
nondeterministic cycles to write or match [5][6][7], our
approach is high-throughput and can perform a pattern read
(match) every cycle and a pattern write every two cycles.

Major contributions of this paper are:

 A novel highly efficient BCAM architecture.
Compared to other BCAM approaches, the proposed
technique provides up to 9 times wider BCAMs. To the
authors’ best knowledge, research and patent literature
do not have similar BCAM techniques.

 A parameterized Verilog implementation of the our
method, together with other approaches. A flow
manager to simulate and synthesize various designs
with various parameters in batch using Altera’s
ModelSim and Quartus is also provided. The Verilog
modules and the flow manager are available online [2].

 A pipelined, FPGA-optimized wide priority-encoder
used in our BCAM architecture.

 A CAM bypassing mechanism is also provided to
write and match the same pattern in the same cycle.

To verify correctness, the proposed BCAM architecture is
fully implemented in Verilog, simulated using Altera’s
ModelSim, and compiled using Quartus II [8]. A large variety
of BCAM architectures and parameters, e.g. BCAM depth and
pattern width are simulated in batch, each with over 1 million
random BCAM write and match cycles. Stratix V, Altera’s
high-end FPGA, is used to implement and compare the
proposed architecture with previous approaches.

Notation and abbreviations used for the rest of the paper
are listed in Table I. The rest of this paper is organized as
follows. In Section II, conventional BCAM techniques in
embedded systems are reviewed. Our proposed indirectly
indexed two-dimensional (II2D) BCAM approach is
described in detail in Section III. Discussion of the suggested
method and comparison to previous techniques are provided
in Section IV. The experimental framework, simulation and
synthesis results, are discussed in Section V. Future
improvements and conclusions are drawn in Section VI.

II. BACKGROUND ON FPGA-BASED CAMS

This section provides a review of current BCAM
architectures in FPGAs. Using registers to create BCAMs is
described in subsection A. The traditional brute-force BRAM-
based approach is described in subsection B. BCAM
cascading is described in section C. Hierarchical search
BCAMs are explained in section D. A review of FPGA
vendors’ supports of BCAMs is placed in subsection E.

A. Register-based BCAMs

The flexibility of reading and writing flip-flops makes it
possible to concurrently read and compare all the patterns as
depicted in Fig. 1. Similar to a register-based RAM, an
address decoder is used to generate one-hot decoded address
lines, enabling a single line for writing. Each registered
pattern is compared with the matched pattern (MPatt)
simultaneously; the comparison results drive the match line,
also called match indicators (MIndc) followed by a priority-
encoder to detect the first matching address (MAddr). The
high demand for limited resources such as registers,
comparators, address decoder and priority encoder
(proportional to BCAM depth) make this approach infeasible
for deep BCAMs; using Altera’s high-end Stratix V device,
only one byte-wide, 32K-depth BCAM can be generated.

B. Brute-force Approach via Transposed-Indicators RAM

The brute-force approach creates BCAMs out of standard
BRAMs. These BRAMs are addressed with the match pattern,
thus allowing a single cycle pattern match. This approach is
utilized by FPGA vendor IP libraries or application notes. As
depicted in Fig. 2, a BRAM is addressed by the match pattern
while each bit of the RAM data indicates the existence of the
pattern of each BCAM address location. A RAM with 𝑅𝐷
lines in depth and 𝐷𝑊 bits data width allows a BCAM with
CD = DW lines depth and 𝑃𝑊 = ⌊log2 𝑅𝐷⌋ bits pattern width. In
this paper, this structure is called Transposed-Indicators-RAM
(TIRAM) and is described as a matrix of indicators

 𝑇𝐼𝑅𝐴𝑀 = [
𝐼0,0 𝐼0,1 …

𝐼1,0 𝐼1,1 …

⋮ ⋮ ⋱

]| ∀
𝑎 ∈ 𝐴
𝑝 ∈ 𝑃

: 𝐼𝑝,𝑎 = (𝑅𝐴𝑀[𝑎] 𝐸𝑄 𝑝)

Where A is the address space set and P is the pattern set in
the corresponding RAM structure.

TABLE I. LIST OF NOTATIONS AND ABBREVATIONS

𝑅𝐷, 𝐶𝐷 RAM, CAM depth 𝐼𝑝,𝑎 Single match indicator

𝐷𝑊, 𝑃𝑊, 𝑆𝑊 Data, pattern, set width 𝐼𝑝,𝑠
𝑆𝑊 Set match indicator

𝑃𝑊,𝑜𝑝𝑡 Optimal cascaded pattern width WPatt, WAddr Write pattern, address

𝑛𝐶 Number of cascades MPatt, MAddr Match pattern, address

𝐴, 𝑆, 𝑃 Address, set, pattern sets MIndc Match indicators

𝑅𝑊,𝑚𝑎𝑥 Widest RAM configuration RmPatt Removed pattern

𝑅𝐷,𝑚𝑖𝑛 Shallowest RAM configuration MultiPatt Multiple patterns

Figure 1. Register-based BCAM

⌊log2CD⌋

WPatt

M
In

dc

A
d

dr
es

s
D

e
co

de
r

WAddr

PW

=

MPatt

C
D

En
D QReg0

En
D QReg1

En
D QRegCD-1

=
PW

PW
=

P
ri

o
ri

ty

En
co

de
r

⌊log2CD⌋
MAddr

Match

PWPW

Figure 2. BCAM as Transposed-RAM

RAM Data Width (DW bits)

RAM
Address
 Depth

(RD lines)

CAM Pattern

CAM Addresses (CD=DW lines)

⌊log2DW⌋

PW =⌊log2RD⌋ bits

Writing to the TIRAM structure requires writing to a
single bit in the TIRAM to set or clear a pattern indicator. As
described in Fig. 3 (top), this can be achieved by employing
the BRAM mixed-width capability in simple dual-ported
mode supported by most FPGA vendors. The writing port
width is set to a single bit, while the reading port is set to the
maximum available width. The byte-enable functionality can
also be utilized to write part of the data line as described in
Fig. 3 (middle); however, usually byte-enables do not control
fine-grained parts of the data, which make it impractical for
TIRAM implementation. Both mixed-width and byte-enable
methods can be combined as shown in Fig. 3 (bottom).

The complete system of the brute-force TIRAM approach

is described in Fig. 4. Reading from the TIRAM is performed
by providing the match pattern (MPatt) as address to read the
match indicators (MIndc) for the entire BCAM address space
for this specific match pattern. A priority encoder detects the
first match address (MAddr) from the match indicators.
However, writing (also called rewriting or updating) to the
TIRAM structure requires more computation since it requires
setting the new indicator and clearing the old indicator. As
shown in Fig. 4, an ErRAM (Erase RAM) is used in parallel
to the indicators RAM (TIRAM) in order to track the BCAM
content and provide for a given address what pattern is already
stored and should be removed. This is useful for BCAM
writing operation where the old indicator should be cleared;
ErRAM will provide the old pattern in the current written
address. BCAM writing will consume two cycles as follows.
1. Set cycle:

1.1. Set (write ‘1’) a new pattern indicator to TIRAM
1.2. Read old data (pattern) from ErRAM

2. Clear cycle:
2.1. Clear (write ’0’) the old indicator from the TIRAM

(location is already provided by step 1.2)
2.2. Write new data (pattern) to ErRAM

To implement a BCAM with 𝐶𝐷 lines and 𝑃𝑊 pattern
width, namely a 𝐶𝐷 × 𝑃𝑊 BCAM, The brute-force TIRAM
approach requires 𝐶𝐷 ∙ 𝑃𝑊 SRAM cells for the ErRAM and
2𝑃𝑊 ∙ 𝐶𝐷 SRAM cells for the TIRAM, a total of

 𝐶𝐷 ∙ 𝑃𝑊 + 2𝑃𝑊 ∙ 𝐶𝐷

Assuming that ErRAM is fully utilized, and TIRAM uses
the widest BRAM configuration, BRAM count is estimated as

 ⌈
𝐶𝐷∙𝑃𝑊

𝑅𝐷,𝑚𝑖𝑛⋅𝑅𝑊,𝑚𝑎𝑥
⌉ + ⌈

2𝑃𝑊

𝑅𝐷,𝑚𝑖𝑛
⌉ ⋅ ⌈

𝐶𝐷

𝑅𝑊,𝑚𝑎𝑥
⌉

Where 𝑅𝑊,𝑚𝑎𝑥 and 𝑅𝐷,𝑚𝑖𝑛 are BCAM parameters indicating

the maximum width, and minimum depth, respectively.

C. Cascading and Scaling of the Brute-force Approach

As shown in (2), SRAM cell usage for the brute-force
TIRAM approach is exponential to pattern width 𝑃𝑊 . A wide
pattern width will make the SRAM requirements infeasible.
BCAM cascading alleviates the SRAM usage from
exponential into linear. As depicted in Fig. 5, the BCAM
pattern (both matched and written pattern) is divided into
smaller pattern segments; each segment is associated with a
separate BCAM. The write operation writes every pattern
segment into its corresponding BCAM, while match operation
matches each pattern segment with its corresponding CAM. A
match for the entire pattern is found if a match is found for all
segments individually (hence the bitwise AND). The optimal
pattern segment width is determined by the minimal depth
𝑅𝐷,𝑚𝑖𝑛 of the BRAM, namely the shallowest and widest

configuration, since choosing a wider pattern requires
exponential growth. The optimal pattern width is therefore
𝑃𝑊,𝑜𝑝𝑡 = ⌊log2(𝑅𝐷,𝑚𝑖𝑛)⌋ and the total number of BCAM

cascades is 𝑛𝐶 = ⌈𝑃𝑊 𝑃𝑊,𝑜𝑝𝑡⁄ ⌉.

One stage of TIRAM will consume ⌈𝐶𝐷 𝑅𝑊,𝑚𝑎𝑥⁄ ⌉ BRAMs

and the total BCAM consumption of the TIRAM is therefore

 𝑛𝐶 ∙ (⌈
𝐶𝐷

𝑅𝑊,𝑚𝑎𝑥
⌉ + ⌈

𝐶𝐷⋅𝑃𝑊,𝑜𝑝𝑡

𝑅𝐷,𝑚𝑖𝑛⋅𝑅𝑊,𝑚𝑎𝑥
⌉)

The linear relation to 𝑃𝑊 and 𝐶𝐷 in (4) is clear, in contrary
to the uncascaded version in (3) where the relation to 𝑃𝑊 is
exponential.

Figure 3. Transposed-Indicators-RAM (TIRAM) implementation using

(top) Mixed-width (middle) Byte-enable (bottom) Combined methods

⌈log2(RD·DW)⌉
⌈log2CD⌉=⌈log2DW⌉

PW=⌊log2RD⌋
CD=DW

Match

PW=⌊log2RD⌋
MPatt

RD·RW Lines X 1 Bit RD Lines X RW Bits

Din

Addr

Dout

AddrDual-port
 RAM

Write/Erase

WPatt
(base)

WAddr
(offset)

Write
 Port

Read
 Port

PW=⌊log2RD⌋

⌈log2CD⌉=⌈log2DW⌉ CD=DW

CD=DW

Bin 2
1-hot CD=DW

Match

PW=⌊log2RD⌋
MPatt

Write/Erase

WPatt

WAddr
RD Lines X RW Bits

Din

Addr

ByteEnb
(one-hot)

Write
 Port

Read
 Port

Dout

AddrDual-port
 RAM

⌈log2(RD·PW/b)⌉
PW=⌊log2RD⌋

WPatt

WAddr

(base)

(offset)

⌈log2CD⌉=⌈log2DW⌉

b

b
Write/Erase

Bin 2
1-hot

CD=DW

Match

PW=⌊log2RD⌋
MPatt

log2b

Addr

Din

ByteEnb

RD·DW/b
Lines

X b Bits

RD
Lines

X DW Bits

Dual-port
 RAM(one-hot)

Dout

Addr

Write
 Port

Read
 Port

Figure 4. (left) Brute-force TIRAM approach (right) 8×2 example

W
rit

e
Co

nt
ro

lle
r

⌊log2CD⌋

PW

WPatt

WAddr

Wr MPatt

PW

PW

0
1

Pr
io

rit
y

En
co

de
r ⌊log2PW⌋

MAddr

WEnb

WPatt

MIndc

MPatt

Addr

Wr/Er

WData

RData

Addr

W/R

TIRAM CD X PW

CD

ErRAM CD X PW

7 1
6 1
5 1
4 2
3 3
2 3
1 0
0 1

Patterns

0
1
0
0

1
0
0
0

0
0
0
1

0
0
0
1

0
0
1
0

0
1
0
0

0
1
0
0

0
1
0
0

0 1 2 3 4 5 6 7
0
1
2
3

Addresses

P
at

te
rn

s

TIRAM 8×2

E
rR

A
M

 8
×

2

A
d

d
re

ss
e

s

Figure 5. BCAM cascading

⌊log2CD⌋

WPatt MIndc

MPatt
WAddr

CAM0

CD X PW0 MIndc

MPatt

WAddr

CD

∑PW

Wr
PW0

WPatt
∑PW

PWn-1

B
it-

w
is

e
A

N
D

WPatt MIndc

MPatt
WAddr

CAM1

CD X PW1Wr

WPatt MIndc

MPatt
WAddr

CAMn-1

CD X PWn-1Wr

PW1

PW0

PW1

PWn-1

CD

CD

CD

D. Deep BCAMs via Hierarchical Search

The previously shown brute-force TIRAM approach
requires a match indicator for each single address location.
This structure is inefficient for deep BCAMs since it requires
a RAM with a width equals to the BCAM depth to implement
the TIRAM structure. On the other hand, BCAMs with
hierarchical search [3] alleviate this requirement. Instead of
storing match indicators for each address location separately,
an indicator is generated for a set of 𝑆𝑊 addresses, indicating
whether the pattern exists at any of these addresses in the set.
For a BCAM with 𝐶𝐷 entries in depth, and 𝑆𝑊 set width,
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ sets exist, and can be enumerated as

 𝑆 = {0,1, … , ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ − 1}

A set indicator 𝐼𝑝,𝑠
𝑆𝑊 indicates if any of the addresses in set

𝑠 , hence addresses 𝑆𝑊 ∙ 𝑠 upto 𝑆𝑊 ∙ (𝑠 + 1) − 1 contains the
pattern 𝑝. The set transposed indicators RAM (STIRAM) is
therefore,

𝑆𝑇𝐼𝑅𝐴𝑀 = [

𝐼0,0
𝑆𝑊 𝐼0,1

𝑆𝑊 …

𝐼1,0
𝑆𝑊 𝐼1,1

𝑆𝑊 …

⋮ ⋮ ⋱

]| ∀
𝑠 ∈ 𝑆
𝑝 ∈ 𝑃

 𝐼𝑝,𝑠
𝑆𝑊 = ⋁ 𝐼𝑝,𝑎

𝑎=𝑆𝑊∙(𝑠+1)−1
𝑎=𝑆𝑊∙𝑠

STIRAM identifies which sets hold the match pattern, not
the exact location. To detect the exact pattern location, an
auxiliary RAM stores the patterns associated with each set,
each set’s patterns packed in one RAM line, hence it called
the sets RAM (SetRAM). Fig. 6 (left) provides an example of
these two structures.

Fig. 6 (right) illustrates the matching mechanism of the

hierarchical search system; the writing mechanism is omitted
for simplicity. The match operation will search the STIRAM
for a set with a matching pattern. A priority-encoder generates
the address of the first set with matching pattern; this address
is used to address the SetRAM and fetch the entire set patterns.
Finally, the match pattern is compared concurrently with all
the patterns is set to find the exact location.

Similar to the brute-force TIRAM approach, writing to the
STIRAM BCAM requires two cycles, one cycle for new
pattern insertion, and a second cycle for old pattern deletion.

To implement a BCAM with 𝐶𝐷 entries and 𝑃𝑊 pattern
width, namely a 𝐶𝐷 × 𝑃𝑊 BCAM, this approach requires
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ × 𝑃𝑊 ∙ 𝑆𝑊 SRAM cells for the SetRAM and 2𝑃𝑊 ×
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ SRAM cells for the STIRAM, a total of

 ⌈
𝐶𝐷

𝑆𝑊
⌉ ∙ 𝑃𝑊 ∙ 𝑆𝑊 + 2𝑃𝑊 ∙ ⌈

𝐶𝐷

𝑆𝑊
⌉

Assuming a wide RAM requirement, an upper bound
estimate for the BRAMs needed to construct the STIRAM is

 ⌈
2𝑃𝑊

𝑅𝐷,𝑚𝑖𝑛
⌉ ∙ ⌈

⌈𝐶𝐷 𝑆𝑊⁄ ⌉

𝑅𝑊,𝑚𝑎𝑥
⌉

The SetRAM is a true dual-port RAM. 𝑅𝑊,𝑏𝑦𝑡𝑒 describes

the width of data controlled by a single byte-enable. A single
BCAM accommodates 𝑅𝑊,𝑚𝑎𝑥 𝑅𝑊,𝑏𝑦𝑡𝑒⁄ individual byte-

enable controlled data, and each pattern requires ⌈𝑃𝑊 𝑅𝑊,𝑏𝑦𝑡𝑒⁄ ⌉

of them. Finally, 𝑆𝑊 lines of this structure are required.
Therefore, the number of BCAMs needed to construct the
SetRAM is

𝑅𝑊,𝑚𝑎𝑥

𝑅𝑊,𝑏𝑦𝑡𝑒
∙ ⌈

𝑃𝑊

𝑅𝑊,𝑏𝑦𝑡𝑒
⌉ ∙ ⌈

𝑆𝑊

𝑅𝐷,𝑚𝑖𝑛
⌉

Since a set of address match indicators can be lumped into
a single set indicator, the hierarchical search approach can
support very deep BCAMs. However, cascading is not
possible since it requires the entire match indicators for every
address, while only a single priority-encoded match address is
produced. Therefore, the memory consumption of this method
is exponential to the pattern with. Only very narrow patterns
are be supported, which makes the hierarchical search
approach impractical for most applications.

E. Vendor Support of BCAMs

Modern FPGAs provide plenty of embedded hard-coded
blocks, such as block RAM, external memory controllers,
processors, DSP blocks/multipliers, and fast I/O transceivers.
However, hard CAM blocks do not exist in modern FPGAs –
presumably due to their high area and power consumption,
and their highly specialized nature. While most FPGA
vendors provide simple register-based or brute-force SRAM-
based CAMs, some old devices provide partial support for
CAM construction. Altera’s legacy FLEX, Mercury and
APEX [9] device family integrates intrinsic BCAM support
into their embedded system blocks (ESBs). The ESB can be
configured into several modes; a 2Kbits RAM/ROM mode
with configurable width and depth, 32 product terms with 32
literal inputs, or a 32×32 BCAM. These BCAM blocks can be
used in parallel to increase the address space, and can be
cascaded as described in the previous subsection to increase
pattern width. Since ESBs are limited to a few hundred blocks
in these devices, deep CAMs are infeasible. Furthermore,
BCAMs can only be implemented as soft IP in modern Altera
devices.

On the other hand, Xilinx devices do not provide native
support for BCAMs. However, partial configuration
capabilities in Xilinx Virtex devices can be utilized to create
a CAM as described in Xilinx application notes [12][13] and
this approach is very slow at writing new patterns. Other
Xilinx application notes suggest utilizing BCAMs with the
brute-force approach to create BCAMs [13][14].

Figure 6. (left) An example of STIRAM and SetRAM structures for a 8×2;

Sw=2 BCAMs (right) Hierarchical search matching mechanism

3 1
2 1
1 3
0 0

Patterns

Se
tR

A
M

 4
×4

A
d

d
re

ss
es

1
3
3
1

1
1
0
0

0
0
0
1

0
1
1
0

0
1
0
0

0 1 2 3
0

1
2
3P

a
tt

e
rn

s

Addresses

ST
IR

A
M

 4
×4

 (S
W

=2
)

set0

set1

set2

set3

se
t 0

se
t 1

se
t 2

se
t 3

0

1

1

3

1

3

3

1
0

Pattern

A
d

d
re

ss
es

3

2

1

0

7

6

5

4

se
t 0

se
t 1

se
t 2

se
t 3

RAM 8×2

=

=

=

PW
MPatt

log2(CD/SW)

CD/SW

MAddr

log2(SW)

log2(CD)

PW

PW

PW

SW·PW

In
tr

a-
se

t
C

om
pa

re

Se
tR

A
M

 (
C

D
/S

W
)X

(S
W

·P
W

) Addr

RData

MPatt

MIndc

ST
IR

A
M

 (C
D
/S

W
)X

P W

Se
gm

en
ts

P
ri

o
ri

ty

En
co

d
er Match

In
tr

a-
Se

gm
en

t
P

ri
o

ri
ty

 E
n

co
d

er

Lattice ispXPLD devices [15] have an integrated support
for CAMs via their Multi-Function Blocks (MFBs) which can
be configured into 128×48 Ternary CAM block (with don’t
care values). Alternatively, Actel application notes [16]
recommend using multi-cycle CAMs by searching BRAM in
parallel; for a single-cycle CAM, using registers is suggested.

III. INDIRECTLY INDEXED TWO-DIMENSIONAL BCAMS

In this section, the proposed Indirectly Indexed Two-
Dimensional (II2D) BCAM method is described in detail. The
motivation and key idea for this work are explained in
subsection A. The design method is described in subsection
B. The construction of wide priority encoders in FPGAs,
which are crucial for BCAMs in general, is described in
subsection C. BCAM bypassing techniques are described in
subsection D. Subsection E describes a device-specific
instance for Altera’s Stratix device family.

A. Motivation and Key Idea

As shown in subsection II.D, Hierarchical search BCAMs
cannot be cascaded, hence suffer from exponential growth of
the required memory size as function of pattern width. This
limitation is crucial since the vast majority of applications
require wide patterns. To support BCAM cascading, all match
indicators for every single BCAM address shall be generated,
as in the brute-force approach (subsection II.C). However,
storing all match indicators requires wide RAM and incurs
high memory overhead.

Our proposed Indirectly Indexed Two-Dimensional (II2D)
BCAM is based on hierarchical search BCAMs and utilize the
sparsity of the set indicators RAM to store only the required
match indicators, and is able to regenerate all match indicators
for every BCAM address, hence can be cascaded. The
following theorem is the basic keystone of our technique.
Lemma 1 The number of binary ‘1’ (matches) in each column
(address) of the TIRAM matrix from (1), is exactly 1, namely,

 ∀𝑎 ∈ 𝐴: ∑ 𝐼𝑝,𝑎 = 1𝑝∈𝑃

Proof Similar to RAM, each address of a BCAM contains one
and only one valid pattern. A pattern 𝑝` located at address 𝑎`
means 𝐼𝑝`,𝑎` = 1 and 𝐼𝑝,𝑎` = 0 for every 𝑝 ≠ 𝑝` . Hence, the

corresponding column of address 𝑎` in the TIRAM matrix has
a binary ‘1’ only in 𝐼𝑝`,𝑎` and zeros for all the other patterns. ∎

Theorem 1 The number of binary ‘1’ (matches) in each
column (set) of the STIRAM matrix from (6) is limited to the
set width 𝑆𝑊, namely,

 ∀𝑠 ∈ 𝑆: ∑ 𝐼𝑝,𝑠
𝑆𝑊

𝑝∈𝑃 ≤ 𝑆𝑊

Proof A match indicator of a set is defined in (6) and indicates
if any of the addresses in the set has a match. Given a set 𝑠` of
𝑆𝑊 addresses, (6) provides 𝐼𝑝,𝑠`

𝑆𝑊 = ⋁ 𝐼𝑝,𝑎
𝑎=𝑆𝑊∙(𝑠`+1)−1
𝑎=𝑆𝑊∙𝑠` . Lemma 1

insures that each address 𝑎 ∈ {𝑆𝑊 ∙ 𝑠`, … , 𝑆𝑊 ∙ (𝑠` + 1) − 1} has one
and only one 𝑝 such that 𝐼𝑝,𝑎 = 1 . Since the set 𝑠` has 𝑆𝑊

addresses, exactly 𝑆𝑊 different 𝐼𝑝,𝑎 = 1 exist. Hence, in the

entire set, maximum 𝑆𝑊 patterns have a match (less than 𝑆𝑊
in case two addresses or more has the same pattern). ∎

The significance of theorem 1 lies in the measurement it
provides for the STIRAM matrix sparsity. Namely, it provides
an upper bound of the number of binary ‘1’ (matches) for a set
(a column in STIRAM). Instead of storing match indicators
for every address and pattern pairs as in brute-force approach
(Fig. 7 (left)), or set indicators as in hierarchical search
approach (Fig. 7 (middle)), we store all address indicators
only for sets with a match, as they are limited to 𝑆𝑊. To reduce
memory consumption, address match indicators are saved in
another auxiliary structure, while the original STIRAM will
hold indices to the auxiliary structure (Fig 7. (right)).

B. II2D-BCAM: Design and Functionality

As depicted in Fig. 8, a single-stage of the proposed II2D-
BCAM consist of three parts. First, the match RAM where the
set indices and match indicators are stored; this is the most
memory consuming structure. Second, the status RAM where
the system status is stored and feeds the control logic with
system status. Finally, the control and steering logic, which
generates control signals to control the entire structure (based
on system status), feeds the match RAM with indicators and
indices, and updates the status RAM.

1) Match RAM:
As described in the previous subsection, instead of storing

set match indicators in the STIRAM, we store only indirect
indices for other auxiliary RAM, which holds the match
indictors for all the addresses in the set, hence it called the
indicators RAM (IndRAM). Theorem 1 shows that maximum
𝑆𝑊 different patterns can have a match in a set; hence, the
depth of IndRAM is 𝑆𝑊 at most. Each set has 𝑆𝑊 addresses,
therefore IndRAM should have 𝑆𝑊 address indicators for each
set and its width should also be 𝑆𝑊. The address space consists
of ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ sets; hence, ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ IndRAM 𝑆𝑊 × 𝑆𝑊 blocks are
required.

The STIRAM hold indices for all pattern and set pairs. To
represent all patterns the required depth is 2𝑃𝑊. For each of the
⌈𝐶𝐷 𝑆𝑊⁄ ⌉ sets, ⌈log2(𝑆𝑊)⌉ bits are required for each index. In
total, the STIRAM width is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ ∙ ⌈log2(𝑆𝑊)⌉ bits.

2) Status RAM:
The status RAM is updated at each write to reflect the

system status and consists of three RAM structures as follows.

a) Sets RAM (SetRAM):

Similar to the hierarchical search method, this RAM holds
the entire CAM patterns, each set’s patterns packed in one
row, hence, can be fetched in a single cycle. Its size is
therefore ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ × (𝑃𝑊 ∙ 𝑆𝑊).

b) Indices RAM (IdxRAM):

The Indices RAM stores the index of each pattern in the
BCAM, arranged similar to the SetRAM, namely each set’s
indices in one row. Its size is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ × (⌈log2(𝑆𝑊)⌉ ∙ 𝑆𝑊).

Figure 7: Indicators arrangment for three different approaches

Pa
tt

er
ns

A d d r e s s e s S e t s S e t s

Pa
tt

er
ns

Pa
tt

er
ns

Brute-force Hierarchical II2D
I n d i c a t o r s

c) Vacancy RAM (VacRAM):

The Vacancy RAM indicates for each row of the IndRAM
whether it is vacant or holds valid indicators. The IndRAM
consists of ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ RAM blocks (for each set), each with 𝑆𝑊
rows. The Vacancy RAM hold the status of each IndRAM
block in one row, hence its depth is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ and marks the
validity of all the 𝑆𝑊 IndRAM rows, hence its width is 𝑆𝑊.

3) Control and steering logic:
Based on current system status and the required write

pattern and write address, it generates write indicators to
IndRAM and indices to IndRAM and STIRAM. Furthermore,
it updates the IdxRAM and VacRAM status.

C. Wide Priority Encoders in FPGAs

A priority-encoder, also called leading zero detector
(LZD) or leading zero counter (LZC), receives an n-bit input
vector and detects the index of the first binary ‘1’ in the input
vector. A valid signal indicates if any binary ‘1’ was detected
in the input vector, hence the index is valid.

Our proposed II2D-BCAM consists of a ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ wide
priority-encoder, for deep BCAMs the priority-encoder delay
considerably affects the overall performance; hence, a fast
priority-encoder design is essential.

As depicted in Fig. 9, the suggested priority-encoder is
recursively constructed. The input vector is split into 𝑘 equal
fragments with 𝑛/𝑘 bits. A priority encoder PEn/k with a
narrower width of 𝑛/𝑘 is applied for each fragment. The valid
bit of each of the 𝑘 PEn/k‘s goes to a 𝑘 bit PEk to detect the first
valid fragment. The location of this fragment is the higher part
of the overall index, and steers the exact location within the
fragment itself to produce the lower part of the overall index.

The depth of the proposed structure is ⌈log𝑘 𝑛⌉, while the
hardware area complexity is 𝑂(𝑛). If Altera’s Stratix V or
equivalent device is used, 𝑘 = 4 is recommended to achieve
higher performance and area compression, since the mux can
be implemented using 6-LUT, hence an entire ALM.

D. BCAM Bypassing

Writing a new pattern to a register-based BCAM is
immediate on the triggering clock edge and it is ready to be
matched immediately. In contrast, BRAM-based BCAM
methods, namely TIRAM and STIRAM, require two cycles
for writing. Hence, matching a pattern that is being written in
the same cycle will match old indicators, introducing a read-
after-write hazard. However, some applications, e.g. caches
and TLBs, require immediate matching of the recently written
patterns, hence, pattern bypassing is required.

Fig. 10 shows the bypassing circuitry for both TIRAM and
STIRAM. In both, the writing address (WAddr) is one-hot
encoded; the insertion mask (bitwise OR) forces ‘1’ into the
matched indicators (MIndc) in location MAddr. Similarly, the
removal mask (bitwise AND) forces ‘0’ into the matched
indicators (MIndc) in location MAddr. In the TIRAM
approach, if the matched pattern (MPatt) is equivalent to the
written pattern (WPatt), the insertion mask output is passed to
the matching indicators output (MIndc); otherwise the
removal mask output is passed. In the STIRAM approach,
there is another case. The removal mask output is allowed to
be passed only if MPatt equals to the removed pattern
(RmPattern), and there are no other occurrences of the
removed pattern in the same set (negated MultiPatt).

E. Feasibility on Altera's Stratix Devices

An area efficient implementation of the proposed II2D-
BCAMs requires heterogeneous BRAMs on FPGA. The
relatively small BRAMs will be used to construct IndRAM
and store match indicators. A perfect candidate is the LUT

TABLE II. BRAM USAGE OF A SINGLE
1
 STAGE II2D-BCAM

Structure Blocks # Depth Width

STIRAM 1 2𝑃𝑊 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ ∙ ⌈log2(𝑆𝑊)⌉

IndRAM ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ 𝑆𝑊 𝑆𝑊

SetRAM 1 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ 𝑃𝑊 ∙ 𝑆𝑊

IdxRAM 1 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ ⌈log2(𝑆𝑊)⌉ ∙ 𝑆𝑊

VacRAM 1 ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ 𝑆𝑊

1. For cascaded II2D-BCAM, cascading method from II.C. is employed;

𝑃𝑊 = 𝑃𝑊,𝑜𝑝𝑡 = ⌊log2(𝑅𝐷,𝑚𝑖𝑛)⌋ is used for each stage, while 𝑛𝐶 = ⌈𝑃𝑊,𝑡𝑜𝑡𝑎𝑙 𝑃𝑊,𝑜𝑝𝑡⁄ ⌉ stages are required.

Figure 8: II2D-BCAM single-stage (top) high-level architicture (bottom)

8×3; Sw=4 example; pattern ‘4’ is highlighted with all related RAM content

WIndc

WIndx

MIndc

MPatt

WPatt
WAddr

RA
dd

r

W
A

dd
r

WData

RData

Dual-port
RAM

Connectivity

Match
RAM

St
at

u
s

R
A

M

S T I R A M

Ind
RAM

Ind
RAM

Ind
RAM

Set RAM

Vac RAM

Idx RAM

C
o

n
tr

o
l a

n
d

 s
te

er
in

g
lo

gi
c

4

4

2

1

2

1
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
Pattern

A
d

d
re

ss
e

s

se
t 0

se
t 1

se
t 2

se
t 3

3
2
1
0

Se
ts

Patterns

3
2
1
0

Se
ts

Indices

3
2
1
0

Se
ts

Vacancy Status

Se
tR

A
M

Id
xR

A
M

V
ac

R
A

M

3
2
1
0

In
d

ic
es

In
d

R
A

M

Match Indicators

7
6
5
4
3
2
1
0

P
at

te
rn

s

Indices

ST
IR

A
M

3
0
2
2
1
0

7
7
5
5
5
0
0
0
0

3
1
7
0

0
0
5
0

2

5
0

2
7
5
0

2
1
1
0

0
0
0
0

1

0
0

1
3
0
0

1
1
1
1

1
1
1
0

1

0
0

0
1
0
0

--
--
--
--
2
1
--
0

3
--
--

--
--
1
0

1
--
0
--

--
--
--
--
--
--
--
0

--
--
--
--

0
1
0
0

0
0
0
1

0
0
1
0

0
0
1
0

0
0
0
1

0
0
0
1

0
0
0
1

0
0
0
1

0
0
1
0

0
0
0
1

0
0
0
1

0
0
0
1

0
0
1
0

0
0
0
1

0

0
0

1
0
0
0

R
A

M
 C

o
n

te
n

t

Figure 9. Priority-encoder (left) symbol (right) recursive definition

n

⌈l
og

2n
⌉

in

vld idx

PEn

PE k

n
n/kn/kn/kn/k

⌈lo
g 2

(n
/k

)⌉

⌈log2k⌉
⌈log2(n/k)⌉

⌈log2n⌉

vld idx

in

#k-1
PE n / k

#2
PE n / k

#1
PE n / k

#0
PE n / k

k-1 2 1 0

Figure 10. Bypassing logic (top) brute-force approach (bottom) proposed

II2D-BCAM approach

WPatt

One-hot
encoder

=
Removal

Mask

Insertion

Mask

0

1

enb

enb

WEnb
MIndc

WAddr

MIndc

MPatt

(bypassed)(unbypassed)

WPatt

One-hot
encoder

=
0

1

enb

enb

WEnb

MIndc

WAddr

MIndc

MPatt

(bypassed)
(unbypassed)

0

1

=RmPatt

MultiPatt

Insertion

Mask

Removal

Mask

configuration RAM, known as LUT RAM, and is supported
by both Altera and Xilinx devices. On the other hand, the
relatively large BRAMs will be used to construct other
structures; M20K BRAMs will be used for this purpose.

Altera’s Stratix V memory architecture provides a 640-bit
LUT RAM memory called MLAB (Memory Logic Array
Block) as well as 20Kb BRAMs called M20K.

Both MLABs and M20Ks are used in their shallowest/
widest configuration modes. Hence, the MLABs are 32×20,
and the M20Ks are 512×40. Since the depth of MLABs is 32,
and they are used to implement the IndRAM, we set 𝑆𝑊 = 32.
With an index width of ⌈log2(𝑆𝑊)⌉ = 5, a single M20K line
can store up to 8 indices. M20K’s mixed-width port capability
is used to write a single 5-bit index.

IV. COMPARISON AND DISCUSSION

The BCAM storage efficiency 𝜇𝑠 is first introduced in this
paper, and is defined as the SRAM cell utilization for a
specific BCAM implementation. In other words, 𝜇𝑠 is the
ratio between the total BCAM bits and the total SRAM cells
used to implement this BCAM.

Table III shows storage efficiency estimation for different
BCAM architectures and is derived from (2), (4), (7) and
Table II. The storage efficacy of the uncascaded brute-force
implementation (UBF) is inversely proportional to the
exponent of 𝑃𝑊, hence, decays rapidly with 𝑃𝑊 increase. The
cascaded brute-force (CBF) is not related to 𝑃𝑊, hence the
efficiency is not affected when 𝑃𝑊 increases. However, the
efficiency is affected by an intrinsic BRAM characteristic,
the minimal depth 𝑅𝐷,𝑚𝑖𝑛 (associated with the maximum

width). The efficiency is inversely proportional to 𝑅𝐷,𝑚𝑖𝑛 ,

hence, shallow and wide BRAMs with smaller 𝑅𝐷,𝑚𝑖𝑛 (and

larger 𝑅𝑊,𝑚𝑎𝑥) will exhibit higher storage efficiency. Similar

to the uncascaded brute-force (UBF), the efficiency of the
hierarchical search approach (HS) is inversely proportional to
the exponent of 𝑃𝑊 . However, the exponential relation is
mitigated by the set width 𝑆𝑊 , an external and user-driven
parameter. On the other hand, the efficiency of our II2D-
BCAM approach is not related the pattern width 𝑃𝑊, but is
augmented by 𝑆𝑊 . To generalize, HS-BCAM provides the
highest efficiency up to

 𝑃𝑊 = −
𝑊−1(−

ln 2

𝑎
)

ln 2
, 𝑎 =

𝑆𝑊⋅𝑅𝐷,𝑚𝑖𝑛

log2(𝑅𝐷,𝑚𝑖𝑛)

Where 𝑊−1 is the lower branch of the Lambert Product
Logarithm function (also called Omega function).

For the HS-BCAM approach, the set width 𝑆𝑊 has a
limitation due to the minimal width of the SetRAM it is stored
in. The SetRAM depth is ⌈𝐶𝐷 𝑆𝑊⁄ ⌉ and is limited by 𝑅𝐷,𝑚𝑖𝑛.
Hence, to achieve maximum efficiency, 𝑆𝑊 is bounded by

 𝑆𝑊 ≤
𝐶𝐷

𝑅𝐷,𝑚𝑖𝑛

On the other hand, the set width 𝑆𝑊 for our II2D-BCAM
is bounded by internal RAM parameters. Specifically, the
depth of the LUT RAM and the BRAM allowable write port

width in mixed-width mode. As described in subsection III.E,
Altera’s Stratix V MLAB depth (for the widest configuration)
is 32, and log2(32) = 5 is allowed as write data width for
M20K mixed-width configuration, hence, 𝑆𝑊 = 32 is the
suitable set width.

V. EXPERIMENTAL RESULTS

To verify and simulate the suggested II2D approach and
compare to standard and previous techniques, fully
parameterized Verilog modules have been developed.
Register-based, cascaded and uncascaded brute-force
TIRAM, Hierarchical search BCAM, and the proposed II2D-
BCAM methods have been implemented. A run-in-batch flow
manager has also been developed to simulate and synthesize
these designs with various parameters in batch using Altera’s
ModelSim and Quartus II. The Verilog modules and the flow
manager are available online [2].

To verify correctness, the proposed architecture is
simulated using Altera’s ModelSim. A large variety of
different BCAM architectures and parameters, e.g. BCAM
depth and pattern width, are swept and simulated in batch,
each with over a million random cycles. All different BCAM
design modules were implemented using Altera’s Quartus II
on Altera’s Stratix V 5SGXMABN1F45C2 device. This is a
speed grade 2 device with 360k ALMs and 2640 M20K
blocks. Half of the ALM’s can be used to construct MLABs,
while a single MLAB consists of 10 ALMs.

Fig. 11 plots feasible BCAM depth and pattern width
sweeps. Within the device limitation, the proposed II2D-
BCAM approach is able to reach 153-bits pattern width, while
other approaches cannot exceed 45-bits for 16K entries. The
number of Altera’s M20K blocks used to implement each
BCAM configuration is plotted in Fig. 11 (bottom). The BF-
BCAM and our II2D-BCAM exhibit a linear growth of M20K
consumption as pattern width increases since both methods
are cascaded. However, the II2D-BCAM growth rate is lower
since addresses are grouped as sets. On the other hand, HS-
BCAM suffers from exponential growth, hence it cannot
exceed a very narrow 19-bits pattern width.

As shown in Fig. 11 (middle), the proposed II2D-BCAM
method and the BF-BCAM also exhibit linear ALM count
growth as pattern width increases. The priority-encoder in the
HS-BCAM approach is split in two, hence the ALM count is
lower. Furthermore, our II2D-BCAM approach uses ALMs as
MLABs, hence it has higher ALM consumption. The register-
based BCAM consumes the most ALMs due to massive
register usage.

Figure 11 (top) plots the Fmax of all BCAM architectures.
The HS-BCAM exhibit the highest Fmax for very narrow
patterns, where it is feasible. However, Fmax drops
dramatically as the pattern width increases due to massive

TABLE III. STORAGE EFFICIENCY (INVERSED)

 Uncascaded Cascaded

Brute-force 𝜇𝑠(𝑈𝐵𝐹)−1 ≈ 1 +
2𝑃𝑊

𝑃𝑊
 𝜇𝑠(𝐶𝐵𝐹)−1 ≈ 1 +

𝑅𝐷,𝑚𝑖𝑛

log2(𝑅𝐷,𝑚𝑖𝑛)

Hierarchical

Search

𝜇𝑠(𝐻𝑆)−1 ≈ 1 +
2𝑃𝑊

𝑆𝑊 ⋅ 𝑃𝑊

𝜇𝑠(𝐼𝐼2𝐷)−1 ≈ 1 +

1 +
𝑅𝐷,𝑚𝑖𝑛 ⋅ log2(𝑆𝑊)

𝑆𝑊
2

log2(𝑅𝐷,𝑚𝑖𝑛)

increase of M20K usage. On the other hand, II2D-BCAM
performs better than BF-CAM and register-based BCAM for
shallow memory. As can be seen, Fmax decreases mildly as
pattern goes wider due to cascading.

Similar to BF-BCAM and HS-BCAM, our approach is
capable of matching a pattern every cycle and writing a pattern
every two. Pipelining is employed to increase Fmax and this
adversely increases latency. The longest combinational path
goes through the output priority-encoder, and is pipelined
every stage. For the device-specific priority-encoder from
subsection III.C, ⌈log4⌈𝐶𝐷 𝑆𝑊⁄ ⌉⌉ pipe stages are required. HS-
BCAM benefits from higher 𝑆𝑊, hence it can exhibit lower
latency. On the other hand, sets are not used in BF-BCAM,
hence its match latency is ⌈log4 𝐶𝐷⌉.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel BCAM architecture for FPGAs is
proposed. The approach is fully BRAM-based and employs
hierarchical search to reduce BRAM consumption. While
traditional brute-force approaches have a pattern match
indicator for every single address, the proposed approach
groups addresses into sets and maintains a single pattern
match indicator for every set. Current hierarchical search
BCAMs cannot be cascaded since they provide a single
matching address; this incurs an exponential increase of RAM
consumption as pattern width increases. On the other hand,
our approach efficiently regenerates a match indicator for
every single address by storing indirect indices for address
match indicators. Hence, the proposed method can be
cascaded and the exponential growth is alleviated into linear.
Our technique supports up to 4 times wider patterns compared
to brute-force BCAM and up to 9 times wider patterns
compared to hierarchical search BCAM.

Furthermore, we provide a high-performance area-wise
recursive priority-encoder as an essential part of our BCAM.
To match a pattern that is being written at the same cycle, a
bypassing mechanism for our BCAM and HS-BCAMs in
general is also provided. In addition, we perform a detailed
comparison for different FPGA-based BCAM architectures.

A fully parameterized Verilog implementation of the
suggested methods is provided as open source hardware [2].
As future work, the suggested BCAMs can be tested with
other FPGA vendors’ tools and devices. Furthermore, these
methods can be tested for ASIC implementation using dual-
ported RAMs as building blocks, and compared against
customary designed BCAMs. Excessive pipelining and time-
borrowing techniques can be used to improve Fmax. The goal
would be to recover the frequency drop due to the comparators
and priority-encoder. One possible approach uses shifted
clocks to provide more reading and writing time [17].
However, adapting this method to BCAMs is not trivial due
to internal timing paths across the BCAM. To fit some
applications that require single-cycle writing, e.g. caches and
TLBs, the proposed technique can be enhanced to support
single cycle write by using multi-write RAM [18].

REFERENCES

[1] K. Pagiamtzis, A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: a tutorial and survey,” Solid-State
Circuits, IEEE Journal of , vol.41, no.3, pp.712–727, March 2006.

[2] http://www.ece.ubc.ca/~lemieux/downloads/.

[3] A. M.S. Abdelhadi and G.F. Lemieux, “Deep and Narrow Binary
Content-Addressable Memories using FPGA-based BRAMs,” IEEE
International Conference on Field-Programmable Technology (FPT),
Dec. 2014, Shanghai, China.

[4] Altera Corporation, Stratix V Device Handbook, May 2013.

[5] S. J.E. Wilton, W. Jones, and J. Lamoureux, “An embedded flexible
content-addressable memory core for inclusion in a Field-
Programmable Gate Array”, in Proceedings of the 2004 International
Symposium on Circuits and Systems (ISCAS '04), may 2004.

[6] C.W. Jones and S. J.E. Wilton, “Content-Addressable Memory with
Cascaded Match, Read and Write Logic in a Programmable Logic
Device,” U.S. Patent 6 622 204 B1, Sep. 16, 2003.

[7] G.R. Schlacter ,”Emulation of Content-Addressable Memories,” U.S.
Patent 6 754 766 B1, Jun. 22, 2004.

[8] Altera Corporation, Quartus II Handbook, Version 13.1, Nov. 2013.

[9] "APEX 20K Programmable Logic Device Family," Data Sheet, March
2004, ver. 5.1, Altera Corporation, San Jose, CA.

[10] F. Heile, A. Leaver, and K. Veenstra, “Programmable memory blocks
supporting content-addressable memory,” in Proceedings of the 2000
ACM/SIGDA eighth international symposium on Field programmable
gate arrays, pp. 13-21, February 10-11, 2000, Monterey, CA.

[11] “Implementing High-Speed Search Applications with Altera CAM,”
Application Note 119, ver. 2.1, July 2001, Altera Corp., San Jose, CA.

[12] J.-L. Brelet and B. New, “Designing Flexible, Fast CAMs With Virtex
Family FPGAs,” Application Note XAPP203, 1999, Xilinx, Inc., CA.

[13] K. Locke, “Parameterizable Content-Addressable Memory,”
Application Note XAPP1151, 2011, Xilinx, Inc., San Jose, CA.

[14] J.-L. Brelet, “Methods for Implementing CAM Functions Using Dual-
Port RAM,” U.S. Patent 6 353 332 B1, Mar. 5, 2002.

[15] "Content Addressable Memory (CAM) Applications for ispXPLD
Devices," Application Note 8071, 2002, Lattice Corp., Hillsboro, OR.

[16] "Content-Addressable Memory (CAM) in Actel Devices," Application
Note AC194, December 2003, Actel Corp., Mountain View, CA.

[17] A. Brant, A. Abdelhadi, A. Severance, G. Lemieux, “Pipeline
Frequency Boosting: Hiding Dual-Ported Block RAM Latency using
Intentional Clock Skew,” IEEE International Conference on Field-
Programmable Technology (FPT), Dec. 2012, Seoul, South Korea.

[18] A. M.S. Abdelhadi and G. G.F. Lemieux, “Modular Multi-ported
SRAM-based Memories,” In Proceedings of the 2014 ACM/SIGDA
international symposium on Field-programmable gate arrays, pp. 35-
44, February 26-28, 2014, Monterey, CA.

Figure 11: Results for several BCAM depth and pattern width sweeps

(bottom) M20K count (middle) ALMs count (top) Fmax at T=0° C

0

0.5

1

1.5

2

2.5

3

9
1

8
2

7
3

6
4

5
5

4
6

3
7

2
8

1
9

0
9

9
1

0
8

1
1

7
1

2
6

1
3

5
1

4
4

1
5

3 9
1

8
2

7
3

6
4

5
5

4
6

3
7

2 9
1

8
2

7
3

6 9

16K 32k 64k 128k

M
2

0
K

s
(1

0
0

0
's

)

0
50

100
150
200
250
300
350

A
LM

s (
10

00
's)

0

100

200

300

400

500

Fm
ax

 (
M

H
z)

Reg-based
BF-BCAM
HS-BCAM
II2D-BCAM
Device Limit

PW

CD

