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1 Package contents

The following files should be in the MTLTF directory:

pulClosed Some m-files with closed formulas for per unit length (PUL) pa-
rameters for certain setups

pulData temporary directory to store PUL parameters computed

genNumPorts.m Counts the number of ports at nodes

MTLPULTF.m Computes the multiple input, multiple output (MIMO) trans-
fer function (TF ), given a multiconductor transmission line (MTL) setup

script mtl.m Example file to demonstrate the usage of MTLPULTF.m

Furthermore, all files contained in the common directory are needed:

createTree.m Creates a tree from nodes and edges

findEdge.m Searches for an edge connecting two nodes, given the two nodes

findPath.m Searches for a path between two nodes through a tree

getConn.m Gets the connection arrays for some edge

isValidTree.m Can be used to check if a tree looks valid

printFun.m Helper function that will print pretty graphs

PULYZ.m Will compute the admittance and impedance matrices using the
PUL parameters

reduceTree.m Reduces a tree to a single line, “carrying back” the branches’
loads

singleLineTF.m Computes the single input, multiple output (SIMO) from
the MIMO TF

treeplotWText.m Can be used to plot a tree, with descriptions at the nodes

wireTF.m Computes the TF for a single cable

It is assumed that the common directory is in the same directory as the MTLTF
directory.
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2 Input of the MTL setup structure

Consider the following setup depicted in figure 1: Transmitter (TX) and receiver
(RX) are connected by a cable. A branch cable is connected at a branch point
(BP). The destination of the branch cable is called BE. We denote TX, RX, BP
and BE nodes, and following the tree-terminology, we define the section between
two nodes as an edge. We can identify three edges in the setup: edge one from
TX to BP, edge two from BP to RX and edge three from BP to BE. The number
of wires in one edge and the wires properties always remain constant (Therefore,
one edge can be described by one set of PUL parameters).
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Figure 1: Cable setup
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Figure 2: MTL setup with one branch

Figure 2 shows the wires inside the cables. The wires in the figure are labelled
e:x, w:y, where x is the number of the edge, and y is the number of the wire in
that edge. The entities where the wires can end are labelled n:x, p:y, where x is
the number of the node (which is an endpoint to an edge), and y is the number
of the port. A port is a entity at a node of the tree. A node may have unlimited
ports. One wire connects to exactly one port at a given node (therefore, one
wire connects to a total of two ports: one port at the wire’s source, and one
port at the wire’s destination). Several wires may connect to the same port and
wires that connect to the same port are assumed to be electrically connected at
that node.
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In order to describe the setup depicted above in MATLAB, we first define the
set of nodes as a cell array of strings:

nodes = {’TX’, ’RX’, ’BE’, ’BP’};

Then we define the edges between the nodes as a struct array with source
(src), destination (dst), length (len), number of wires (numWires) and the
source and destination connection arrays (srcConn and dstConn) of each edge.
The connection arrays srcConn and dstConn describe how the single wires of the
edges are connected at the branch point (and anywhere else in more complicated
setups). A connection array is defined as follows: y = srcConn(x) means that
wire number x of the edge is connected to port y at the edge’s source node.

Please be aware: Each edge needs to contain exactly one reference wire.
Furthermore it is assumed that all reference wires are always connected. In
the above case, we assume that wire ”r” is the reference wire. The reference

wire is not accounted for in the connection arrays! We do this as the per unit
length parameters used to describe the edge’s electrical properties are always
with respect to a reference wire.

The “edges”-struct-array could look like this for the setup depicted above:

edges = struct( ...

’src’, { ’TX’, ’BP’, ’BP’}, ...

’dst’, { ’BP’, ’BE’, ’RX’}, ...

’len’, { 10, 20, 30 }, ...

’srcConn’, { [1 2 3], [1], [1 2 3]}, ...

’dstConn’, { [1 2 3], [1], [1 2 3]});

The srcConn array for edge one, and the dstConn arrays for edge two and
three are only important when we define the load admittance matrices at those
points, as they must match what we define here. (i.e, if we use 3 = conn(1),
then the load admittance matrix must contain the load connected to wire one
as the third entry).

Notice how the actual number of the port at the node in the middle is
irrelevant, as long as all wires that are connected to it have the same number.
In this case we labeled the ports from bottom to top 1, 2, and 3. (the port
where the reference wires connect is not accounted for).

The now defined variables nodes, and edges, define the structure of the
MTL network.

3 Input format for loads

The next thing to do is to define the loads at the nodes: We use a cell array
of matrices, YL, to define the loads. Every load admittance matrix is defined
so that I = YL · V holds, where I is the current array, and V is the voltage
array. Therefore, if we have a load between one wire and ground, the entry on
the main diagonal corresponding to the wire in the load admittance needs to
be set to that value. If however, we have a load between two non-ground wires
(say, wire two and four), we want the following to hold true:

−I(2) = I(4); I(4) = y · (V(4)−V(2)). (1)
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We can incorporate this load admittance into the matrix by settingYL(4, 2) =
−y, YL(4, 4) = y, YL(2, 4) = −y, and YL(2, 2) = y. In our case we assume
all loads are either 50Ω, or open and are between each conductor and ground.
Therefore the YL cell array could read:

Y_L{1} = zeros(3,3, nFreq);

Y_L{2} = repmat(eye(3)*1/50, [1 1 nFreq]);

Y_L{3} = repmat(1/50, [1 1 nFreq]);

Y_L{4} = zeros(3,3, nFreq);

Where nFreq is the number of frequencies. Notice how we said there would be
no load at the transmitter. This is because we handle the input load admittance
with a separate matrix:

Y_TX = repmat(eye(2)*1/50, [1 1 nFreq]);

The input load admittance matrix has only two entries, as it defines the input
loads that are connected to all wires that are not part of the communication
link. If we had a cable with n wires, the input load admittance matrix would
therefore be of dimension (n− 2)× (n− 2)× (nFreq).

For more information on how the load admittances are defined, please refer
to the thesis, or to Tonello’s Paper [1].

4 Input of electrical properties

Now we need to define the properties of the edges. The edges’ properties are
described using the per unit length parameter matrices R, C, L and G.

Now we need to assign the per unit length parameters to the edges. We use
the cell array PUL to do this:

PUL{1} = load(’pulData/4cond_plane’); %edge TX<->BP

PUL{2} = @flat_two %edge BP<->BE

PUL{3} = load(’pulData/4cond_symm’); %edge BP<->RX

As the example shows, we may either specify the per unit length parameter
matrices as structs containing R, C, L and G matrices, or we may specify a
function handle that will compute the per unit length parameters. The interface
for the functions is as follows: [R, C, L, G] = fun(freq), where freq is a
scalar denoting the frequency in Hz at which to compute the per unit length
parameter.

PUL{x} therefore holds the per unit length parameter matrices (or a function
pointer to a function that computes those) for the edge between edges(x).src

and edges(x).dst.
We provide several functions that compute approximations of the per unit

length parameters for some typical cables:

flat two Two conductors, vinyl insulation and vinyl sheath flat (VVF) [2]

flat three central Three conductors flat, central conductor is reference [1]

flat three outer Three conductors flat, one of the outer conductors is refer-
ence [1]
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symmetric three Three symmetrically aligned conductors [1]

Furthermore, we provided precomputed per unit length parameter matrices for
four conductors flat, and four symmetrically aligned conductors.

5 Output

We define which node is transmitter and which is receiver, and which wire is
used for transmission at the transmitter:

tx = ’TX’;

txWireId = 1;

rx = ’RX’;

and compute the transfer function between the transmitters first wire and
all wires of the receiver:

H_SIMO = MTLPULTF(f, nodes, Y_L, Y_TX, edges, PUL, tx, rx, txWireId);

The MTLPULTF function internally computes the MIMO transfer function
satisfying the following equation:

VRX = HMIMO ·VTX, (2)

where VRX is the voltage vector at node RX (node 3 in figure 2), and VTX the
one at node TX (node 1 in figure 2) . The algorithm to compute the MIMO
transfer function is an adaptation from Tonello’s [1] voltage ratio approach to
networks including edges with nonequal number of wires.

Using the MIMO transfer function and the input admittance, the SIMO
transfer function that satisfies

VRX = HSIMO ·VTX(i), (3)

whereVTX(i) denotes the i-th entry inVTX, is then computed in singleLineTF.
HSIMO then is a (n)×(nFreq) matrix, where n is the number of wires minus

one at the receiver (in our case three), and nFreq is the number of frequency
points. Note that HSIMO is not in decibel, so we could compute the insertion
loss in wire one in figure 2 as follows:

H_d = 20*log10(abs(H_SIMO(1, :)));
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