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1 Contents of the package

The following files or directories should be in the HarnessTF-directory:

input Contains input files

pulData Contains computed PUL parameters

tmp Contains temporary files

assignWires.m assigns wires to tubes, based on the tree-structure of the tubes

genRndCondPos.m generates positions for conductors on a random basis

MTLHarnessTF.m Computes the multiple input, multiple output (MIMO)
transfer function (TF ), given a set of cables and a tube tree

polarRand.m generates equally distributed random positions in a circle

script simpleHarness.m example script demonstrating the use of MTLHarnessTF.

script carHarness.m example script for a car harness

sdbmTubeHash.m Computes a hash for a tube setup, based on the SDBM
algorithm[1].

Furthermore, all files contained in the common-directory are needed:

createTree.m Creates a tree from nodes and edges

findEdge.m Searches for an edge connecting two nodes, given the two nodes

findPath.m Searches for a path between two nodes through a tree

getConn.m Gets the connection arrays for some edge

printFun.m Helper function that will print pretty graphs

PULYZ.m Will compute the admittance and impedance matrices using the
PUL parameters

tubeYZ.m Computes PUL parameters for an edge.

reduceTree.m Reduces a tree to a single line, “carrying back” the branches’
loads
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Figure 1: Tubes of our example harness

singleLineTF.m Computes the single input, multiple output (SIMO) from
the MIMO TF

treeplotWText.m Can be used to plot a tree, with descriptions at the nodes

wireTF.m Computes the TF for a single cable

We will describe the simple example file, script_simpleHarness.m, in greater
detail here. It should not be necessary to understand the other files.

2 Input of the harness structure

The purpose of this code is to simulate cable harnesses like they can be found in
cars, where we have a set of known wires, which are somehow routed through a
network of plastic tubes. We don’t know how many wires are in each and every
plastic tube and we do not know how the wires are positioned relative to each
other inside a plastic tube.

Consider figure 1:
Several wires may run in a tube. The points TX, RX, and C1, C2, C3 are

supposed to be connectors. We define the points BP1, BP2, and BP3, where some
wires of the tube continue into a different tube than the others.

Figure 2 shows the single cables in the tubes.
From now on we will denote the points we labeled in the above picture as

nodes, and the lines between them as edges.
By comparing the first and the second picture, we can determine which wires

run in which edges: In the first edge from TX to BP1, there are five wires, w1

to w5. In the second edge from BP1 to BP2, there are four wires: w3, w4, w5,
and w6. In the third edge from BP2 to BP3, there are only two wires: w3, and
w6. In the fourth edge from BP3 to RX again are only two wires, w3, and w7. In
the fifth edge from BP1 to C1 are three wires, w1, w2, and w6. In the sixth edge
from BP2 to C2 are two wires, w4, and w5. In the seventh edge from BP3 to C3

are two wires, w6, and w7.
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Figure 2: Wires lying in the tubes

We don’t need to do this assignment, as the algorithm can determine it by
itself given the edges and wires.

To do so using the provided algorithms, we first need to define all nodes of
this graph as a cell array of strings:

nodes = {’TX’, ’RX’, ’BP1’, ’BP2’, ’BP3’, ’C1’, ’C2’, ’C3’};

and the edges that connect the nodes as a struct array defining each edges
source (src), destination (dst), and length (len):

edges = struct(...

’src’, {’TX’,’BP1’,’BP2’,’BP3’,’BP1’,’BP2’,’BP3’}, ...

’dst’, {’BP1’, ’BP2’, ’BP3’, ’RX’,’C1’,’C2’,’C3’ }, ...

’len’, { 10,20,30,40,10,20,30 });

3 Definition of loads

Firstly, we define a port as an abstract concept at a node: A node may have an
arbitrary number of ports, and wires may be connected to ports. All wires that
connect to the same port are assumed to be electrically connected. If the node
represents a connector, then the pins at the connector would be the equivalent
to the ports of the node.

There are several ways to define the loads:

scalar If only one scalar is set as load, this scalar value will be assumed to be
the admittance between any wire and ground, at every node.

vector If a vector is given, it must have one element per node. Each node will
then be assigned its scalar value, which will be the admittance between
any wire and ground at that node.

cell array Must have one element per node. Each element may be:
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function pointer will be called with the number of ports at that node
and the frequencies as arguments

scalar the admittance between any wire and ground at that node will be
set to this value

vector Must have one entry per port at that node. Assumed to contain
the admittance between each wire and ground.

matrix Assumed to be the admittance matrix of that node. Must have
(np)× (np)× (nFreq), where np is the number of ports at that node,
and nFreq is the number of frequencies.

We use a cell array to define the load admittance matrices:

Y_L{1} = 0;

Y_L{2} = repmat(diag([1/50 1/50]), [1 1 nFreq]);

Y_L{3} = 0;

Y_L{4} = 0;

Y_L{5} = 0;

%very basic function to generate a load admittance matrix

c1LoadF = @(numPorts, f) repmat((1/50)*eye(numPorts), ...

[1 1 length(f)]);

Y_L{6} = c1LoadF;

Y_L{7} = [1/20 1/200];

Y_L{8} = 1/200;

We define the input admittance matrix as

Y_TX = repmat(diag([1/50 1/50 1/50 1/50]), [1 1 nFreq]);

4 Input of wires in harness

The next step is to define the wires:

wires = struct(...

’src’, {’TX’,’TX’,’TX’,’TX’,’TX’,’C1’,’C3’}, ...

’dst’, {’C1’,’C1’,’RX’,’C2’,’C2’,’C3’,’RX’}, ...

’srcPort’, {’TXa’,’TXb’,’TXc’,’TXd’,’TXe’,’C1c’,’C3b’}, ...

’dstPort’,{’C1a’,’C1b’,’RXb’,’C2a’,’C2b’,’C3a’,’RXa’}, ...

’id’,{’w01’,’w02’,’w03’,’w04’,’w05’,’w06’,’w07’}, ...

’condRad’,1e-3, ...

’sigma’,5.7e8, ...

’dielThickness’, .5e-3, ...

’e_r’,2.5, ...

’sigma_d’,1e-5, ...

’gnd’,false);

Where

src Name of the node where the wire originates

dst Name of the destination node of the wire
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srcPort Name of the port at the node where the wire originates

dstPort Name of the port at the destination of the wire

id unique ID for the wire

condRad radius of the conductor

sigma conductivity of the conductor

dielThickness thickness of the dielectric around the conductor

e r relative permittivity of the dielectric around the conductor

sigma d conductivity of the dielectric around the conductor

gnd true if the wire should be the reference wire.

Note that per tube only one reference wire is allowed, and no ground plane
may be specified if there are reference wires.

5 Input of ground plane

If desired, a ground plane can be specified:

gndProp = struct(’gndSigma’, 5.7e8, ’gndDist’, 10e-3, ...

’gndHeight’, .5e-3, ’gndWidth’, .1);

Where

gndSigma conductivity of the ground plane

gndDist distance between cable bundle and ground plane

gndHeight height of the ground plane

gndWidth width of the ground plane

Note: As the algorithm to compute the PUL parameters does not converge
for very large areas, it is advisable to only simulate a part of the ground plane
(for example that is only a little bit larger than the cable bundle. Of course this
will introduce errors, but it seems like the errors introduced are rather small.

6 output

We define the transmitting node, the receiving node and the wire at which we
transmit:

tx = ’TX’;

rx = ’RX’;

txWire = ’w01’;

rxWire = ’w07’;

We can now determine the SIMO TF from any wire of the transmitter to all
wires at the receiver:
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H_SIMO = MTLHarnessTF(f, nodes, edges, wires, ...

tx, rx, txWire, rxWire, Y_L, Y_TX, gndProp);

The function will execute the following steps:

• create a tree from the nodes and edges variables

• determine which wires run through which tubes, and generate descriptions
for each tube (how many wires run through each tube, which wires, ...)

• generate random positions for the conductors in each tube. The way the
program is configured now, it will try to fit the conductors in a circular
region as small as possible

• compute a hash for a tube: if we re-run the program, we don’t want
to re-compute the per unit length parameter for known tubes, as this is
time-consuming. The hash does not contain the position of the wires

• compute the per unit length parameter matrices for each tube, and save
them using the hash as file name

• reduce the tree to a backbone, which is the shortest path from receiver to
transmitter

• compute the transfer function for the backbone
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